Functional Trait Diversity Shapes the Biomass in the Dam-Induced Riparian Zone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Vegetation Survey
2.3. Traits Measuring
2.4. Data Analysis
3. Results
3.1. Community-Level Trait along the Elevation
3.2. Relationships between AGB and Taxonomic Diversity
3.3. Relationships between AGB and CWM Traits
3.4. Relationships between AGB and Functional Diversity
3.5. Contributions of CWM Traits, Taxonomic Diversity, Functional Diversity, and Elevation on AGB
4. Discussion
4.1. Elevation Patterns of Community-Level Trait Variation
4.2. The Effect of CWM on Biomass
4.3. The Effect of Functional Diversity on Biomass
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grassein, F.; Till-Bottraud, I.; Lavorel, S. Plant resource-use strategies: The importance of phenotypic plasticity in response to a productivity gradient for two subalpine species. Ann. Bot. 2010, 106, 637–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maharjan, S.K.; Sterck, F.J.; Dhakal, B.P.; Makri, M.; Poorter, L. Functional traits shape tree species distribution in the Himalayas. J. Ecol. 2021, 109, 3818–3834. [Google Scholar] [CrossRef]
- Reich, P.B. The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto. J. Ecol. 2014, 102, 275–301. [Google Scholar] [CrossRef]
- Isaac, M.E.; Martin, A.R.; Virginio, E.D.; Rapidel, B.; Roupsard, O.; van den Meersche, K. Intraspecific trait variation and coordination: Root and leaf economics spectra in coffee across environmental gradients. Front. Plant Sci. 2017, 8, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, D.M.; Yang, S.F.; Dou, P.P.; Wang, H.J.; Wang, F.; Qian, S.H.; Yang, G.R.; Zhao, L.; Yang, Y.C.; Fanin, N. A plant economics spectrum of litter decomposition among coexisting fern species in a sub-tropical forest. Ann. Bot. 2020, 125, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Oram, N.J.; de Deyn, G.B.; Bodelier, P.L.E.; Cornelissen, J.H.C.; van Groenigen, J.W.; Abalos, D. Plant community flood resilience in intensively managed grasslands and the role of the plant economic spectrum. J. Appl. Ecol. 2020, 57, 1524–1534. [Google Scholar] [CrossRef]
- Ouedraogo, D.Y.; Mortier, F.; Gourlet-Fleury, S.; Freycon, V.; Picard, N. Slow-growing species cope best with drought: Evidence from long-term measurements in a tropical semi-deciduous moist forest of Central Africa. J. Ecol. 2013, 101, 1459–1470. [Google Scholar] [CrossRef]
- De Battisti, D.; Fowler, M.S.; Jenkins, S.R.; Skov, M.W.; Bouma, T.J.; Neyland, P.J.; Griffin, J.N. Multiple trait dimensions mediate stress gradient effects on plant biomass allocation, with implications for coastal ecosystem services. J. Ecol. 2020, 108, 1227–1240. [Google Scholar] [CrossRef]
- Mommer, L.; Lenssen, J.P.M.; Huber, H.; Visser, E.J.W.; de Kroon, H. Ecophysiological determinants of plant performance under flooding: A comparative study of seven plant families. J. Ecol. 2006, 94, 1117–1129. [Google Scholar] [CrossRef]
- Mommer, L.; Wolters-Arts, M.; Andersen, C.; Visser, E.J.W.; Pedersen, O. Submergence-induced leaf acclimation in terrestrial species varying in flooding tolerance. New Phytol. 2007, 176, 337–345. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, H.C.; Zuo, Z.J.; Li, X.Y.; Yu, D.; Wang, Z. Generality and shifts in leaf trait relationships between alpine aquatic and terrestrial herbaceous plants on the tibetan plateau. Front. Ecol. Evol. 2021, 9, 14. [Google Scholar] [CrossRef]
- Richards, C.L.; Pennings, S.C.; Donovan, L.A. Habitat range and phenotypic variation in salt marsh plants. Plant Ecol. 2005, 176, 263–273. [Google Scholar] [CrossRef]
- Vargas-Larreta, B.; Lopez-Martinez, J.O.; Gonzalez, E.J.; Corral-Rivas, J.J.; Hernandez, F.J. Assessing above-ground biomass-functional diversity relationships in temperate forests in northern Mexico. For. Ecosyst. 2021, 8, 14. [Google Scholar] [CrossRef]
- Chanteloup, P.; Bonis, A. Functional diversity in root and above-ground traits in a fertile grassland shows a detrimental effect on productivity. Basic Appl. Ecol. 2013, 14, 208–216. [Google Scholar] [CrossRef]
- Villa, P.M.; Ali, A.; Martins, S.V.; Neto, S.N.D.; Rodrigues, A.C.; Teshome, M.; Carvalho, F.A.; Heringer, G.; Gastauer, M. Stand structural attributes and functional trait composition overrule the effects of functional divergence on aboveground biomass during Amazon forest succession. For. Ecol. Manag. 2020, 477, 11. [Google Scholar]
- Hao, M.H.; Messier, C.; Geng, Y.; Zhang, C.Y.; Zhao, X.H.; von Gadow, K. Functional traits influence biomass and productivity through multiple mechanisms in a temperate secondary forest. Eur. J. For. Res. 2020, 139, 959–968. [Google Scholar] [CrossRef]
- Grime, J.P. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J. Ecol. 1998, 86, 902–910. [Google Scholar] [CrossRef]
- Mokany, K.; Ash, J.; Roxburgh, S. Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. J. Ecol. 2008, 96, 884–893. [Google Scholar] [CrossRef]
- Wondimu, M.T.; Nigussie, Z.A.; Yusuf, M.M. Tree species diversity predicts aboveground carbon storage through functional diversity and functional dominance in the dry evergreen Afromontane forest of Hararghe highland, Southeast Ethiopia. Ecol. Processes 2021, 10, 15. [Google Scholar] [CrossRef]
- Jimenez, J.E.; Yanez, J.L.; Tabilo, E.L.; Jaksic, F.M. Niche-complementarity of South American foxes: Reanalysis and test of a hypothesis. Rev. Chil. Hist. Nat. 1996, 69, 113–123. [Google Scholar]
- Ali, A.; Lohbeck, M.; Yan, E.R. Forest strata-dependent functional evenness explains whole-community aboveground biomass through opposing mechanisms. For. Ecol. Manag. 2018, 424, 439–447. [Google Scholar] [CrossRef]
- Zeng, W.X.; Xiang, W.H.; Fang, J.P.; Zhou, B.; Ouyang, S.; Zeng, Y.L.; Chen, L.; Lei, P.F.; Milcu, A.; Valverde-Barrantes, O.J. Species richness and functional-trait effects on fine root biomass along a subtropical tree diversity gradient. Plant Soil 2020, 446, 515–527. [Google Scholar] [CrossRef]
- Wasof, S.; Lenoir, J.; Hattab, T.; Jamoneau, A.; Gallet-Moron, E.; Ampoorter, E.; Saguez, R.; Bennsadek, L.; Bertrand, R.; Valdes, A.; et al. Dominance of individual plant species is more important than diversity in explaining plant biomass in the forest understorey. J. Veg. Sci. 2018, 29, 521–531. [Google Scholar] [CrossRef] [Green Version]
- Abu Hanif, M.; Yu, Q.S.; Rao, X.Q.; Shen, W.J. Disentangling the contributions of plant taxonomic and functional diversities in shaping aboveground biomass of a restored forest landscape in Southern China. Plants 2019, 8, 20. [Google Scholar]
- Zhang, Q.; Buyantuev, A.; Li, F.Y.; Jiang, L.; Niu, J.M.; Ding, Y.; Kang, S.; Ma, W.J. Functional dominance rather than taxonomic diversity and functional diversity mainly affects community aboveground biomass in the Inner Mongolia grassland. Ecology Evol. 2017, 7, 1605–1615. [Google Scholar] [CrossRef]
- Sanaei, A.; Chahouki, M.A.Z.; Ali, A.; Jafari, M.; Azarnivand, H. Abiotic and biotic drivers of aboveground biomass in semi-steppe rangelands. Sci. Total Environ. 2018, 615, 895–905. [Google Scholar] [CrossRef]
- Ali, A.; Lin, S.L.; He, J.K.; Kong, F.M.; Yu, J.H.; Jiang, H.S. Tree crown complementarity links positive functional diversity and aboveground biomass along large-scale ecological gradients in tropical forests. Sci. Total Environ. 2019, 656, 45–54. [Google Scholar] [CrossRef]
- Yi, S.J.; Wu, P.; Peng, X.Q.; Tang, Z.Y.; Bai, F.H.; Sun, X.K.; Gao, Y.A.; Qin, H.Y.; Yu, X.N.; Wang, R.Q.; et al. Biodiversity, environmental context and structural attributes as drivers of aboveground biomass in shrublands at the middle and lower reaches of the Yellow River basin. Sci. Total Environ. 2021, 774, 11. [Google Scholar] [CrossRef]
- Chen, Z.; Yuan, X.; Ro-Nickoll, M.; Hollert, H.; Schffer, A. Moderate inundation stimulates plant community assembly in the drawdown zone of China’s three gorges reservoir. Environ. Sci. Eur. 2020, 32, 79. [Google Scholar] [CrossRef]
- Zheng, J.; Arif, M.; Zhang, S.; Yuan, Z.; Li, C. Dam inundation simplifies the plant community composition. Sci. Total Environ. 2021, 801, 149827. [Google Scholar] [CrossRef]
- Su, X.; María Dolores, B.; Yi, X.; Lin, F.; Zeng, B. Unnatural flooding alters the functional diversity of riparian vegetation of the Three Gorges Reservoir. Freshw. Biol. 2020, 65, 1585–1595. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Ma, M.; Ding, Z.; Wu, S.; Jia, W.; Chen, Q.; Yi, X.; Zhang, J.; Li, X.; et al. Dam-induced difference of invasive plant species distribution along the riparian habitats. Sci. Total Environ. 2022, 808, 152103. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.D.; Wu, S.J.; Douglas, M.C.; Ma, M.H.; Zhao, J.J.; Lv, M.Q.; Tong, X.X. Effects of local and landscape factors on exotic vegetation in the riparian zone of a regulated river: Implications for reservoir conservation. Landsc. Urban Plan. 2017, 157, 45–55. [Google Scholar] [CrossRef]
- Ran, Y.; Ma, M.; Liu, Y.; Zhu, K.; Yi, X.; Wang, X.; Wu, S.; Huang, P. Physicochemical determinants in stabilizing soil aggregates along a hydrological stress gradient on reservoir riparian habitats: Implications to soil restoration. Ecol. Eng. 2020, 143, 105664. [Google Scholar] [CrossRef]
- Ran, Y.G.; Zhu, K.; Wu, S.J.; Zhou, Y.; Li, W.J.; Ma, M.H.; Huang, P. Conservative agriculture facilitates soil carbon, nitrogen accumulation, and aggregate stabilization under periodic flooding regimes. Catena 2022, 209, 11. [Google Scholar] [CrossRef]
- Wen, Z.F.; Ma, M.H.; Zhang, C.; Yi, X.M.; Chen, J.L.; Wu, S.J. Estimating seasonal aboveground biomass of a riparian pioneer plant community: An exploratory analysis by canopy structural data. Ecol. Indic. 2017, 83, 441–450. [Google Scholar] [CrossRef]
- CCFC. Flora of China; Science Press: Beijing, China, 2004. [Google Scholar]
- Perez-Harguindeguy, N.; Diaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2016, 64, 715–716. [Google Scholar] [CrossRef] [Green Version]
- Valverde-Barrantes, O.J.; Blackwood, C.B. Root traits are multidimensional: Specific root length is independent from root tissue density and the plant economic spectrum. J. Ecol. 2016, 104, 1311–1313. [Google Scholar] [CrossRef]
- Cheng, H.; Gong, Y.; Zuo, X. Precipitation variability affects aboveground biomass directly and indirectly via plant functional traits in the desert steppe of inner Mongolia, Northern China. Front. Plant Sci. 2021, 12, 674527. [Google Scholar] [CrossRef]
- Hou, Z.J.; Zhao, C.Z.; Dong, X.G.; Li, Y.; Zhang, Q.; Ma, X.L. Responses of spatial pattern of aboveground biomass of natural grassland to terrain at different scales in northern slope of Qilian Mountains. Chin. J. Ecol. 2014, 33, 10–15. [Google Scholar]
- Wang, Y.F.; Yao, L.J.; Chen, P.M.; Yu, J.; Wu, Q.E. Environmental influence on the spatiotemporal variability of fishing grounds in the Beibu Gulf, South China Sea. J. Mar. Sci. Eng. 2020, 8, 957. [Google Scholar] [CrossRef]
- Jiang, X.Y.; Jia, X.; Gao, S.J.; Jiang, Y.; Wei, N.N.; Han, C.; Zha, T.S.; Liu, P.; Tian, Y.; Qin, S.G. Plant nutrient contents rather than physical traits are coordinated between leaves and roots in a Desert Shrubland. Front. Plant Sci. 2021, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.H.D.; Batalha, M.A.; Casagrande, J.C.; Rivaben, R.; Assuncao, V.A.; Pott, A.; Damasceno, G.A. Fire can weaken or trigger functional responses of trees to flooding in wetland forest patches. J. Veg. Sci. 2019, 30, 521–532. [Google Scholar] [CrossRef]
- Wan, J.; Liu, J.; Xiao, H.; Tao, G.; Liu, Y. Analysis on the influencing factors of distribution and growth of plant communities in the water-fluctuating zone of the three gorges reservoir area. J. Hubei Univ. Techonol. 2019, 34, 83–87. [Google Scholar]
- Jian, Z.; Ma, F.; Guo, Q.; Qin, A.; Xiao, W.; Liu, J. Long-term responses of riparian plants’ composition to water level fluctuation in China’s three gorges reservoir. PLoS ONE 2018, 13, e0207689. [Google Scholar] [CrossRef]
- Tong, X.X.; Chen, C.D.; Wu, S.J.; Jia, Z.Y.; Yi, X.M.; Ma, M.H. Spatial distribution pattern of plant community and habitat impact analysis of the drawdown zone of Pengxi River in the three gorges reservoir. Acta Ecol. Sin. 2018, 38, 571–580. [Google Scholar]
- Gao, J.; Carmel, Y. Can the intermediate disturbance hypothesis explain grazing–diversity relations at a global scale? Oikos 2020, 129, 493–502. [Google Scholar] [CrossRef]
- Minden, V.; Andratschke, S.; Spalke, J.; Timmermann, H.; Kleyer, M. Plant trait-environment relationships in salt marshes: Deviations from predictions by ecological concepts. Perspect. Plant Ecol. Evol. Syst. 2012, 14, 183–192. [Google Scholar] [CrossRef]
- Shi, T.Y.; Quan, Q.M.; Li, Y.X. Effects of clonal integration on the proximal and distal ramets of Cynodon dactylon under shade stress. Braz. Arch. Biol. Technol. 2018, 61, 9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.H.; Song, T.T.; Liu, J.; Xia, H.J.; Wang, J.Z. Restoration of natural herbaceous vegetation of Xiangxi River’s water-level fluctuation zone after the flooding in three gorges reservoir area. Adv. Mater. Res. 2012, 599, 739–743. [Google Scholar] [CrossRef]
- Craine, J.M.; Lee, W.G.; Bond, W.J.; Williams, R.J.; Johnson, L.C. Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology 2005, 86, 12–19. [Google Scholar] [CrossRef]
- Geng, Y.; Wang, L.; Jin, D.M.; Liu, H.Y.; He, J.S. Alpine climate alters the relationships between leaf and root morphological traits but not chemical traits. Oecologia 2014, 175, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.L.; Wang, Q.F.; Zhao, N.; Yu, G.R.; He, N.P. Complex trait relationships between leaves and absorptive roots: Coordination in tissue N concentration but divergence in morphology. Ecol. Evol. 2017, 7, 2697–2705. [Google Scholar] [CrossRef] [PubMed]
- Bardgett, R.D.; Mommer, L.; de Vries, F.T. Going underground: Root traits as drivers of ecosystem processes. Trends Ecol. Evol. 2014, 29, 692–699. [Google Scholar] [CrossRef]
- Weemstra, M.; Mommer, L.; Visser, E.J.W.; van Ruijven, J.; Kuyper, T.W.; Mohren, G.M.J.; Sterck, F.J. Towards a multidimensional root trait framework: A tree root review. New Phytol. 2016, 211, 1159–1169. [Google Scholar] [CrossRef] [Green Version]
- Valverde-Barrantes, O.J.; Horning, A.L.; Smemo, K.A.; Blackwood, C.B. Phylogenetically structured traits in root systems influence arbuscular mycorrhizal colonization in woody angiosperms. Plant Soil 2016, 404, 1–12. [Google Scholar] [CrossRef]
- Jung, V.; Hoffmann, L.; Muller, S. Ecophysiological responses of nine floodplain meadow species to changing hydrological conditions. Plant Ecol. 2009, 201, 589–598. [Google Scholar] [CrossRef]
- Kulmatiski, A.; Beard, K.H.; Holdrege, M.C.; February, E.C. Small differences in root distributions allow resource niche partitioning. Ecol. Evol. 2020, 10, 9776–9787. [Google Scholar] [CrossRef]
- Huang, M.J.; Liu, X.; Cadotte, M.W.; Zhou, S.R. Functional and phylogenetic diversity explain different components of diversity effects on biomass production. Oikos 2020, 129, 1185–1195. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.P.; Qu, Y.B.; Wu, M.; Wang, J.L.; Wang, Z.L.; Wang, S.Q.; Zhao, N.X.; Gao, Y.B. Comparing the effects of companion species diversity and the dominant species (Stipa grandis) genotypic diversity on the biomass explained by plant functional trait. Ecol. Eng. 2019, 136, 17–22. [Google Scholar] [CrossRef]
- Brose, U.; Tielbörger, K. Subtle differences in environmental stress along a flooding gradient affect the importance of inter-specific competition in an annual plant community. Plant Ecol. 2005, 178, 51–59. [Google Scholar] [CrossRef]
- Villa, P.M.; Martins, S.V.; Rodrigues, A.C.; Safar, N.V.H.; Bonilla, M.A.C.; Ali, A. Testing species abundance distribution models in tropical forest successions: Implications for fine-scale passive restoration. Ecol. Eng. 2019, 135, 28–35. [Google Scholar] [CrossRef]
- Violle, C.; Nemergut, D.R.; Pu, Z.C.; Jiang, L. Phylogenetic limiting similarity and competitive exclusion. Ecol. Lett. 2011, 14, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.K.; Zhang, H.; Zang, R.G.; Wang, X.X.; Long, W.X.; Wang, X.; Xiong, M.H.; John, R. The effects of soil phosphorus on aboveground biomass are mediated by functional diversity in a tropical cloud forest. Plant Soil 2020, 449, 51–63. [Google Scholar] [CrossRef]
Traits | Abbreviation | Description | Unit |
---|---|---|---|
Leaf dry matter content | LDMC | The ratio of the leaf dry mass to fresh mass | g/g |
Specific leaf area | SLA | The ratio of the leaf area to dry mass | cm2/g |
Root dry matter content | RDMC | The ratio of the root dry mass to fresh mass | g/g |
Specific root length | SLR | The ratio of root length to root dry mass | cm/g |
Root tissue density | RTD | Root dry mass per root volume | g/cm3 |
Root average diameter | RAD | Average diameter of all roots | cm |
Model Factors | AIC Value | GCV Value | Adjusted R2 Value | Cumulative Deviance Explained (%) |
---|---|---|---|---|
Log(AGB + 1) = s(SLA) | 48.72 | 0.15 | 0.07 | 10.1 |
Log(AGB + 1) = s(SLA) + s(LDMC) | 45.97 | 0.14 | 0.14 | 18.0 |
Log(AGB + 1) = s(SLA) + s(LDMC) + s(Rao’s) | 28.63 | 0.10 | 0.43 | 50.5 |
Log(AGB + 1) = s(SLA) + s(LDMC) + s(Rao’s) + s(elevation) | 19.83 | 0.09 | 0.56 | 65.9 |
Variables | Contributions (%) | F-Test | Chi-Square Test |
---|---|---|---|
Rao’s | 32.5 | 0.03 | 0.00 |
Elevation | 15.4 | 0.04 | 0.00 |
SLA | 10.1 | 0.05 | 0.00 |
LDMC | 7.9 | 0.05 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wu, S.; Liu, Y.; Li, X.; Zhang, J. Functional Trait Diversity Shapes the Biomass in the Dam-Induced Riparian Zone. Agriculture 2022, 12, 423. https://doi.org/10.3390/agriculture12030423
Wang Y, Wu S, Liu Y, Li X, Zhang J. Functional Trait Diversity Shapes the Biomass in the Dam-Induced Riparian Zone. Agriculture. 2022; 12(3):423. https://doi.org/10.3390/agriculture12030423
Chicago/Turabian StyleWang, Yanfeng, Shengjun Wu, Ying Liu, Xiaohong Li, and Jing Zhang. 2022. "Functional Trait Diversity Shapes the Biomass in the Dam-Induced Riparian Zone" Agriculture 12, no. 3: 423. https://doi.org/10.3390/agriculture12030423
APA StyleWang, Y., Wu, S., Liu, Y., Li, X., & Zhang, J. (2022). Functional Trait Diversity Shapes the Biomass in the Dam-Induced Riparian Zone. Agriculture, 12(3), 423. https://doi.org/10.3390/agriculture12030423