Modeling of Border Irrigation in Soils with the Presence of a Shallow Water Table. I: The Advance Phase
Abstract
:1. Introduction
2. Materials and Methods
Numerical Solution
3. Results
3.1. Soil Characterization
3.2. Applications
3.3. Comparison of the Theorical Advance Curve with the Measured Data
3.4. Time Step Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adamala, S.; Raghuwanshi, N.S.; Mishra, A. Development of Surface Irrigation Systems Design and Evaluation Software (SIDES). Comput. Electron. Agric. 2014, 100, 100–109. [Google Scholar] [CrossRef]
- Mañueco, M.L.; Rodríguez, A.B.; Montenegro, A.; Galeazzi, J.; Del Brio, D.; Curetti, M.; Muñoz, Á.; Raffo, M.D. Quantification of Capillary Water Input to the Root Zone from Shallow Water Table and Determination of the Associated ‘Bartlett’ Pear Water Status. Acta Hortic. 2021, 1303, 227–234. [Google Scholar] [CrossRef]
- Prathapar, S.A.; Qureshi, A.S. Modelling the Effects of Deficit Irrigation on Soil Salinity, Depth to Water Table and Transpiration in Semi-Arid Zones with Monsoonal Rains. Int. J. Water Resour. Dev. 1999, 15, 141–159. [Google Scholar] [CrossRef]
- Chávez, C.; Fuentes, C. Design and Evaluation of Surface Irrigation Systems Applying an Analytical Formula in the Irrigation District 085, La Begoña, Mexico. Agric. Water Manag. 2019, 221, 279–285. [Google Scholar] [CrossRef]
- Liu, C.; Cui, B.; Zeleke, K.T.; Hu, C.; Wu, H.; Cui, E.; Huang, P.; Gao, F. Risk of Secondary Soil Salinization under Mixed Irrigation Using Brackish Water and Reclaimed Water. Agronomy 2021, 11, 2039. [Google Scholar] [CrossRef]
- de Carvalho, A.A.; Montenegro, A.A.D.A.; de Lima, J.L.M.P.; da Silva, T.G.F.; Pedrosa, E.M.R.; Almeida, T.A.B. Coupling Water Resources and Agricultural Practices for Sorghum in a Semiarid Environment. Water 2021, 13, 2288. [Google Scholar] [CrossRef]
- Dong, Q.; Zhang, S.; Bai, M.; Xu, D.; Feng, H. Modeling the Effects of Spatial Variability of Irrigation Parameters on Border Irrigation Performance at a Field Scale. Water 2018, 10, 1770. [Google Scholar] [CrossRef] [Green Version]
- Woolhiser, D.A. Simulation of Unsteady Overland Flow. In Unsteady Flow in Open Channels; Water Resources Publications: Fort Collins, CO, USA, 1975; Volume 2, pp. 485–508. [Google Scholar]
- Saucedo, H.; Fuentes, C.; Zavala, M. The Saint-Venant and Richards Equation System in Surface Irrigation: (2) Numerical Coupling for the Advance Phase in Border Irrigation. Ing. Hidraul. Mex. 2005, 20, 109–119. [Google Scholar]
- Fuentes, C.; de León, B.; Parlange, J.-Y.; Antonino, A.C.D. Saint-Venant and Richards Equations System in Surface Irrigation: (1) Hydraulic Resistance Power Law. Ing. Hidraul. Mex. 2004, 19, 65–75. [Google Scholar]
- Fuentes, S.; Trejo-Alonso, J.; Quevedo, A.; Fuentes, C.; Chávez, C. Modeling Soil Water Redistribution under Gravity Irrigation with the Richards Equation. Mathematics 2020, 8, 1581. [Google Scholar] [CrossRef]
- Damodhara Rao, M.; Raghuwanshi, N.S.; Singh, R. Development of a Physically Based 1D-Infiltration Model for Irrigated Soils. Agric. Water Manag. 2006, 85, 165–174. [Google Scholar] [CrossRef]
- Ma, Y.; Feng, S.; Su, D.; Gao, G.; Huo, Z. Modeling Water Infiltration in a Large Layered Soil Column with a Modified Green–Ampt Model and HYDRUS-1D. Comput. Electron. Agric. 2010, 71, S40–S47. [Google Scholar] [CrossRef]
- Malek, K.; Peters, R.T. Wetting Pattern Models for Drip Irrigation: New Empirical Model. J. Irrig. Drain Eng. 2011, 137, 530–536. [Google Scholar] [CrossRef]
- Green, W.H.; Ampt, G.A. Studies on Soil Physics, I: The Flow of Air and Water through Soils. J. Agric. Sci. 1911, 4, 1–24. [Google Scholar]
- Saucedo, H.; Zavala, M.; Fuentes, C. Use of Saint-Venant and Green and Ampt Equations to Estimate Infiltration Parameters Based on Measurements of the Water Front Advance in Border Irrigation. Water Technol. Sci. 2016, 7, 117–124. [Google Scholar]
- Saucedo, H.; Zavala, M.; Fuentes, C. Border irrigation design with the Saint-Venant and Green & Ampt equations. Water Technol. Sci. 2015, 6, 103–112. [Google Scholar]
- Castanedo, V.; Saucedo, H.; Fuentes, C. Comparison between a Hydrodynamic Full Model and a Hydrologic Model in Border Irrigation. Agrociencia 2013, 47, 209–222. [Google Scholar]
- Fuentes, C.; Chávez, C.; Zataráin, F. An analytical solution for infiltration in soils with a shallow water table: Application to gravity irrigation. Water Technol. Sci. 2010, 1, 39–49. [Google Scholar]
- Zataráin, F.; Fuentes, C.; Rendón, L.; Vauclin, M. Effective Soil Hydrodynamic Properties in Border Irrigation. Ing. Hidraul. Mex. 2003, 18, 5–15. [Google Scholar]
- Bautista, E.; Schlegel, J.L.; Clemmens, A.J. The SRFR 5 Modeling System for Surface Irrigation. J. Irrig. Drain Eng. 2016, 142, 04015038. [Google Scholar] [CrossRef]
- Gillies, M.H.; Smith, R.J. SISCO: Surface Irrigation Simulation, Calibration and Optimisation. Irrig. Sci. 2015, 33, 339–355. [Google Scholar] [CrossRef]
- Strelkoff, T.; Katopodes, N.D. Border-Irrigation Hydraulics with Zero Inertia. J. Irrig. Drain. Div. 1977, 103, 325–342. [Google Scholar] [CrossRef]
- Elliott, R.L.; Walker, W.R.; Skogerboe, G.V. Zero-Inertia Modeling of Furrow Irrigation Advance. J. Irrig. Drain. Div. 1982, 108, 179–195. [Google Scholar] [CrossRef]
- Liu, K.; Huang, G.; Xu, X.; Xiong, Y.; Huang, Q.; Šimůnek, J. A Coupled Model for Simulating Water Flow and Solute Transport in Furrow Irrigation. Agric. Water Manag. 2019, 213, 792–802. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Xiong, Y.; Xu, X.; Huang, Q.; Huo, Z.; Huang, G. Modified Model for Simulating Water Flow in Furrow Irrigation. J. Irrig. Drain Eng. 2020, 146, 06020002. [Google Scholar] [CrossRef]
- Fuentes, C. Approche Fractale Des Transferts Hydriques Dans Les Sols Non-Saturés. Ph.D. Thesis, Universidad Joseph Fourier de Grenoble, Grenoble, France, 1992. [Google Scholar]
- Tabuada, M.A.; Rego, Z.J.C.; Vachaud, G.; Pereira, L.S. Modelling of Furrow Irrigation. Advance with Two-Dimensional Infiltration. Agric. Water Manag. 1995, 28, 201–221. [Google Scholar] [CrossRef]
- Strelkoff, T. EQSWP: Extended Unsteady-Flow Double-Sweep Equation Solver. J. Hydraul. Eng. 1992, 118, 735–742. [Google Scholar] [CrossRef]
- Pacheco, P. Comparison of Irrigation Methods by Furrows and Borders and Design Alternatives in Rice Cultivation (Oryza sativa L.). Master’s Thesis, Postgraduate College, Montecillo, Mexico, 1994. [Google Scholar]
- Moré, J.J. The Levenberg-Marquardt Algorithm: Implementation and Theory. In Numerical Analysis; Watson, G.A., Ed.; Springer: Berlin/Heidelberg, Germany, 1978; pp. 105–116. [Google Scholar]
- Fuentes, C.; Chávez, C. Analytic Representation of the Optimal Flow for Gravity Irrigation. Water 2020, 12, 2710. [Google Scholar] [CrossRef]
- Sayari, S.; Rahimpour, M.; Zounemat-Kermani, M. Numerical Modeling Based on a Finite Element Method for Simulation of Flow in Furrow Irrigation. Paddy Water Environ. 2017, 15, 879–887. [Google Scholar] [CrossRef]
Test | qo (m³/s/m) | Pf (cm) | IM (cm) | θo (cm³/cm³) | (cm) | Ks (cm/h) | hf (cm) | R² |
---|---|---|---|---|---|---|---|---|
1 | 0.001428 | 152 | 14.54 | 0.3331 | 2.73 | 1.1800 | 23.84 | 0.9983 |
2 | 0.001428 | 50 | 2.15 | 0.4386 | 2.73 | 1.5325 | 44.00 | 0.9814 |
3 | 0.001238 | 52 | 2.32 | 0.4353 | 2.60 | 0.0500 | 10.00 | 0.9967 |
δt | Computation Time (min) | R2 |
---|---|---|
1.0 | 55.0 | |
1.5 | 14.5 | 1.0 |
2.0 | 8.2 | 1.0 |
5.0 | 1.3 | 1.0 |
10.0 | 0.3 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuentes, S.; Chávez, C. Modeling of Border Irrigation in Soils with the Presence of a Shallow Water Table. I: The Advance Phase. Agriculture 2022, 12, 426. https://doi.org/10.3390/agriculture12030426
Fuentes S, Chávez C. Modeling of Border Irrigation in Soils with the Presence of a Shallow Water Table. I: The Advance Phase. Agriculture. 2022; 12(3):426. https://doi.org/10.3390/agriculture12030426
Chicago/Turabian StyleFuentes, Sebastián, and Carlos Chávez. 2022. "Modeling of Border Irrigation in Soils with the Presence of a Shallow Water Table. I: The Advance Phase" Agriculture 12, no. 3: 426. https://doi.org/10.3390/agriculture12030426
APA StyleFuentes, S., & Chávez, C. (2022). Modeling of Border Irrigation in Soils with the Presence of a Shallow Water Table. I: The Advance Phase. Agriculture, 12(3), 426. https://doi.org/10.3390/agriculture12030426