Restoration of Degraded Lands in the Arid Zone of the European Part of Russia by the Method of Phytomelioration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographic Area of Research
2.2. Data Collection
2.3. Data Analysis
- в—plant height (cm),
- C—a layer of decayed stems (cm).
3. Results and Discussion
3.1. Assessment of the State and Productivity of Pasture Ecosystems during Vegetation Degradation
3.2. Analysis of the Correlation of the Intensity of Transpiration of Phytomeliorants Depending on Temperature and Humidity
3.3. Analysis of Biomorphological Features of Native Species of Forage Plants Promising for Phytomeliorative Reconstruction of Degraded Pastures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lia, Z.; Wanga, S.; Songa, S.; Wanga, Y.; Musakwab, W. Detecting land degradation in Southern Africa using Time Series Segment and Residual Trend (TSS-RESTREND). J. Arid Environ. 2021, 184, 104314. [Google Scholar] [CrossRef]
- Gamoun, M.; Hanchi, B.; Neffati, M. Dynamic of plant communities in Saharan rangelands of Tunisia. Arid Ecosyst. 2012, 18, 54–61. [Google Scholar] [CrossRef]
- Vininga, B.R.; Hillmanb, A.D.; Contrerasc, A. El Niño Southern Oscillation and enhanced arid land vegetation productivity in NW South America. J. Arid Environ. 2022, 198, 104695. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Tong, S.; Guo, E. Monitoring the trends of aeolian desertified lands based on time-series remote sensing data in the Horqin Sandy Land, China. Catena 2017, 157, 286–298. [Google Scholar] [CrossRef]
- Xu, D.; You, X.; Xiab, C. Assessing the spatial-temporal pattern and evolution of areas sensitive to land desertification in North China. Ecol. Indic. 2019, 97, 150–158. [Google Scholar] [CrossRef]
- Yaomin, L. The use of phytoclimatic maps to predict the restoration of potential vegetation (North-Western Caspian Sea). Bull. St. Petersburg Univ. 2009, 7, 105–110. [Google Scholar]
- Koubaa, Y.; Gartziab, M.; Aichc, A.E.; Alados, C.L. Deserts do not advance, they are created: Land degradation and desertification in semiarid environments in the Middle Atlas, Morocco. J. Arid Environ. 2018, 158, 1–8. [Google Scholar] [CrossRef]
- Mganga, K.Z.; Musimba, N.K.R.; Nyariki, D.M.; Nyangito, M.M.; Ekaya, W.N.; Muiru, W.M.; Mwang’ombe, A.W. Different land use types in the semi-arid rangelands of Kenya influence soil properties. J. Soil Sci. Environ. Manag. 2011, 2, 370–374. [Google Scholar]
- Zalibekov, Z.G.; Mamaev, S.A.; Magomedov, R.A.; Kotenko, M.E. Priorities in the development of the research strategy for arid lands of the world. Arid Ecosyst. 2020, 10, 171–180. [Google Scholar] [CrossRef]
- Cao, S.; Chen, L.; Shankman, D.; Wang, C.; Wang, X.; Zhang, H. Excessive reliance on afforestation in China’s arid and semi-arid regions: Lessons in ecological restoration. Earth-Sci. Rev. 2011, 104, 240–245. [Google Scholar] [CrossRef]
- Lin, Y.; Han, G.D.; Zhao, M.L.; Chang, S.X. Spatial vegetation patterns as early signs of desertification: A case study of a desert steppe in Inner Mongolia, China. Landsc. Ecol. 2010, 25, 1519–1527. [Google Scholar] [CrossRef]
- Oellers-Frahm, K.; Zimmermann, A. United Nations Convention to Combat Desertification in Those Countries Experiencing Serious Drought and/or Desertification, Particularly in Africa of June 17. In Dispute Settlement in Public International Law (1581–1582); Paris, France, 1994; p. 62. [Google Scholar] [CrossRef]
- Stringer, L.C. Reviewing the International Year of Deserts and Desertification 2006: What contribution towards combating global desertification and implementing the United Nations Convention to Combat Desertification? J. Arid Environ. 2008, 72, 2065–2074. [Google Scholar] [CrossRef] [Green Version]
- Kust, G.S. Desertification: Principles of Ecological-genetic Assessment and Mapping; Moscow State University: Moscow, Russia, 1999; p. 362. [Google Scholar]
- Pavlovskij, E.S.; Kulik, K.N.; Barabanov, A.T.; Garshinev, E.A. Sub-Regional National Action Programme to Combat Desertification (NPDB) for the South-East of the European Part of the Russian Federation; VNIALMI: Volgograd, Russia, 1999; p. 313. [Google Scholar]
- Pavlovsky, E.S.; Kulik, K.N. (Eds.) Anthropogenic Degradation of Landscapes and Ecological Safety; VNIALMI: Volgograd, Russia, 2000; p. 512. [Google Scholar]
- Pavlovsky, E.S.; Kulik, K.N. (Eds.) Restoration and Use of Eroded Lands; VNIALMI: Volgograd, Russia, 1998; p. 380. [Google Scholar]
- Savostyanov, V.K. (Ed.) Sub-Regional National Action Program to Combat Desertification (NPDB) for the South of Central Siberia of the Russian Federation; Institute of Agrarian Problems of Khakassia: Abakan, Russia, 2000; p. 294. [Google Scholar]
- Christian, B.A.; Dhinwa, P.S. Ajaic Long term monitoring and assessment of desertification processes using medium & high resolution satellite data. Appl. Geogr. 2018, 97, 10–24. [Google Scholar] [CrossRef]
- Verón, S.R.; Blanco, L.J.; Texeirac, M.A.; Irisarrid, J.G.N.; Paruelo, J.M. Desertification and ecosystem services supply: The case of the Arid Chaco of South America. J. Arid Environ. 2018, 159, 66–74. [Google Scholar] [CrossRef]
- Vlasenko, M.V.; Tyutyuma, N.A. Productivity of pastoral ecosystems on the sand lands of the south of the European part of Russia. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 579, p. 012079. [Google Scholar] [CrossRef]
- Zolotokrylin, A.N. Global warming, desertification/degradation, and droughts in arid regions. Proc. Russ. Acad. Sci. Geogr. Ser. 2019, 1, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Zethof, J.H.T.; Cammeraat, E.L.H.; Nadal-Romero, E. The enhancing effect of afforestation over secondary succession on soil quality under semiarid climate conditions. Sci. Total Environ. 2019, 652, 1090–1101. [Google Scholar] [CrossRef]
- Morellato, P.; Alberton, B.; Alvarado, S.T.; Borges, B.; Buisson, E.; Camargo, M.G.G.; Cancian, L.F.; Carstensen, D.W.; Escobar, D.F.; Leite, P.T.; et al. Linking plant phenology to conservation biology. Biol. Conserv. 2016, 195, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Padilla, F.M.; Pugnaire, F.I. The role of nurse plants in the restoration of degraded environments. Front. Ecol. Environ. 2006, 4, 196–202. [Google Scholar] [CrossRef]
- Jiang, Q.; Bei, T.; Bei, T.; Xiaochan, X.; Yuanjing, Q.; Xiangzheng, D. Quantitive modeling changes in area of reclamation and returning cultivated land to forest or pastures under representative concentration pathways (RCPs) climate scenarios. Nongye Gongcheng Xuebao. Trans. Chin. Soc. Agric. Eng. 2015, 31, 271–280. [Google Scholar] [CrossRef]
- Zolotokrylin, A.N.; Cherenkova, E.A.; Titkova, T.B. Aridization of drylands in the European part of Russia: Secular trends and links to droughts. Reg. Res. Russ. 2020, 84, 207–217. [Google Scholar]
- Zolotokrylin, A.N.; Cherenkova, E.A.; Titkova, T.B. Bioclimatic subhumid zone of Russian plains: Droughts, desertification, and land degradation. Arid Ecosyst. 2018, 8, 7–12. [Google Scholar] [CrossRef]
- Georgiadi, A.G.; Kashutina, E.A. The hydro-climatic characteristics of extreme droughts observed on the Russian plain since the 1970s. Arid Ecosyst. 2021, 27, 3–11. [Google Scholar]
- Turko, S.Y.; Vlasenko, M.V.; Trubakova, K.Y. Assessment and forecast of grain crop yields in the Volgograd region in connection with changes in economic activity and global climate change. Agrar. Bull. Ural. 2018, 9, 43–49. [Google Scholar] [CrossRef]
- Kust, G.S.; Andreeva, O.V.; Lobkovsky, V.A. Neutral balance of land degradation—A modern approach to the study of arid regions at the national level. Arid Ecosyst. 2020, 20, 3–9. [Google Scholar]
- Kulik, K.N.; Rulev, A.S.; Yuferev, V.G. Geoinformation analysis of desertification dynamics in the territory of Astrakhan oblast. Arid Ecosyst. 2015, 5, 134–141. [Google Scholar] [CrossRef]
- Kulik, K.N.; Petrov, V.I.; Rulev, A.S.; Kosheleva, O.Y.; Shinkarenko, S.S. On the 30th Anniversary of the “General Plan to Combat Desertification of Black Lands and Kizlyar Pastures”. Arid Ecosyst. 2018, 8, 5–12. [Google Scholar] [CrossRef]
- Kulik, K.N.; Salugin, A.N.; Sidorova, E.A. Dynamic stability of arid ecosystems. Arid Ecosyst. 2012, 2, 86–90. [Google Scholar] [CrossRef]
- Kulik, K.N.; Barabanov, A.T.; Manaenkov, A.S.; Kulik, A.K. Forecast assumption and analysis of the development of protective afforestation in the Volgograd region. Stud. Russ. Econ. Dev. 2017, 28, 641–647. [Google Scholar] [CrossRef]
- Kulik, K.N.; Rulev, A.S.; Sazhin, A.N. Global processes of deflation in steppe ecosystems. Russ. Meteorol. Hydrol. 2018, 43, 607–612. [Google Scholar] [CrossRef]
- Kulik, K.N.; Petrov, V.I.; Yuferev, V.G.; Tkachenko, N.A.; Shinkarenko, S.S. Geoinformational Analysis of Desertification of the Northwestern Caspian. Arid Ecosyst. 2020, 10, 98–105. [Google Scholar] [CrossRef]
- Lesica, P. Feral horses are associated with a decline in a rare semi-arid grassland plant. J. Arid Environ. 2020, 179, 104180. [Google Scholar] [CrossRef]
- Rybashlykova, L.P.; Belyaev, A.I.; Pugacheva, A.M. Monitoring successional changes in pasture phytocenoses In “extinct” pockets of deflation the north-western Caspian. South Russ. Ecol. Dev. 2019, 14, 78–85. [Google Scholar] [CrossRef]
- Stybayev, G.; Serekpayev, N.; Yancheva, H.; Baitelenova, A.; Nogayev, A.; Khurmetbek, O.; Mukhanov, N. Succession dynamics, quality, and production in improved and natural pastures in Northern Kazakhstan. Bulg. J. Agric. Sci. 2021, 27 (Suppl. S1), 95–102. [Google Scholar]
- Vlasenko, M.V.; Kulik, A.K.; Turko, S.Y.; Balkushkin, R.N.; Tyutyuma, N.V. Ecological and phytocenotic organization of psammophytic communities of the Tsimlyansk sand massif. South Russ. Ecol. Dev. 2019, 14, 35–45. [Google Scholar] [CrossRef]
- Vlasenko, M.V.; Kulik, A.K.; Salugin, A.N. Evaluation of the ecological status and loss of productivity of arid pasture ecosystems of the Sarpa lowland. Arid Ecosyst. 2019, 9, 273–281. [Google Scholar] [CrossRef]
- Kulzhanova, S.M.; Saparov, K.; Kenzhegulova, S.O.; Baidyusen, A.A.; Botabekova, G.T. The impact of biological reclamation on degraded pasture areas in the dry steppe zone of Akmola region, the republic of the Kazakhstan. Int. Res. J. 2020, 100, 107–116. [Google Scholar] [CrossRef]
- Vlasenko, M.V.; Shagaipov, M.M. Elimination of the consequences of pasture digression in the desert-steppe zone with the help of phytomelioration. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 867, p. 012081. [Google Scholar] [CrossRef]
- Djanibekov, U.; Khamzina, A.; Djanibekov, N.; Lamers, J.P.A. How attractive are short-term CDM forestations in arid regions? The case of irrigated croplands in Uzbekistan. For. Policy Econ. 2012, 21, 108–117. [Google Scholar] [CrossRef] [Green Version]
- Ademoh, F.O.; Muoghalu, J.I.; Onwumere, B. Temporal pattern of tree community dynamics in a secondary forest in southwestern Nigeria, 29 years after a ground fire. Glob. Ecol. Conserv. 2017, 9, 148–170. [Google Scholar] [CrossRef]
- Cheng, X.; Bai, Y.; Zhu, J.; Han, H. Effects of forest thinning on interception and surface runoff in Larix principis-rupprechtii plantation during the growing season. J. Arid Environ. 2020, 181, 104222. [Google Scholar] [CrossRef]
- Hbirkoua, C.; Martiusb, C.; Lamersc, J.P.A.; Welpa, G.; Amelunga, W. Reducing topsoil salinity and raising carbon stocks through afforestation in Khorezm, Uzbekistan. J. Arid Environ. 2011, 75, 146–155. [Google Scholar] [CrossRef]
- Manaenkov, A.S. Forest Reclamation of Arid Zone Arenas, 2nd ed.; Federal Scientific Center of Agroecology, Complex Melioration and Protective Afforestation Russian Academy of Sciences; VNIALMI: Volgograd, Russia, 2018; pp. 1–428. [Google Scholar]
- Manaenkov, A.S.; Rybashlykova, L.P. Increasing the Efficiency of Plant-Cover Restoration in the Modern Focus of Deflation on Pastures of the Northwestern Caspian Region. Arid Ecosyst. 2020, 10, 358–367. [Google Scholar] [CrossRef]
- Radochinskaya, L.P.; Kladiev, A.K.; Rybashlykova, L.P. Production potential of restored pastures of the Northwestern Caspian. Arid Ecosyst. 2019, 9, 51–58. [Google Scholar] [CrossRef]
- Rybashlykova, L.P.; Lepesko, V.V. Assessment of natural and forest reclaimed forage lands in semi-desert conditions in southern Russia. Russ. For. J. 2021, 3, 37–48. [Google Scholar] [CrossRef]
- Voronina, V.P. Agroecological Potential of Pasture Ecosystems of the North-Western Caspian Region in a Changing Climate; Abstract of the Dissertation for the Degree of Doctor of Agricultural Sciences; VNIALMI: Volgograd, Russia, 2009; pp. 1–48. [Google Scholar]
The Degree of Downed Pasture | Projective Coverage, % | Loss of Biomass from Protected Conditions, % | Age Structure of the Cenosis | Composition of Phytomass, % | Composition of Life Forms, % |
---|---|---|---|---|---|
Weakly beaten | >75 | 0–5 | The presence of individuals of all age structures in optimal quantities | Dominants + subdominants—50–70, motley grass—30–50 | Semi-shrubs—55, Annuals—40, Other types—5 |
Average Beaten | 75–51 | 45–50 | Generative individuals dominate, there are also few juvenile and senile plants | Dominants + subdominants—70–80, motley grass—20–30 | Semi-shrubs—45, Annuals—50, Other types—5 |
Badly beaten | 50–25 | 60–70 | Senile groups of shrubs and semi-shrubs, generative ephemera and ephemeroids, there are almost no juvenile plants | Dominants + subdominants—80–90, motley grass—10–20 | Semi-shrubs—5, Annuals—90, Other types—5 |
Very badly beaten | <25 | 75–90 | Senile groups of all botanical groups dominate, there are no juvenile plants | Dominants + subdominants—95–100, motley grass—5–10 | Semi-shrubs—0–1, Annuals—90, Other types—10 |
Phytocenoses | Spring | Summer | Autumn | Winter |
---|---|---|---|---|
White-wormwood-cereals on unsalted, weakly and medium-saline light chestnut soils on the plain or micro-elevations | ||||
unbeaten | 0.32 | 0.38 | 0.24 | 0.13 |
average beaten | 0.16 | 0.14 | 0.20 | 0.09 |
badly beaten | 0.15 | 0.17 | 0.20 | 0.08 |
very badly beaten | 0.06 | 0.05 | 0.09 | 0.03 |
Bulbous-bluegrass-white wormwood on solonetzes of deep, medium and highly solonetzic light chestnut soils | ||||
unbeaten | 0.10 | 0.13 | 0.23 | 0.10 |
average beaten | 0.15 | 0.15 | 0.17 | 0.10 |
very badly beaten | 0.03 | 0.05 | 0.05 | 0.03 |
Black wormwood and bulbous-bluegrass-black wormwood on small and crusty solonetzes | ||||
unbeaten | 0.07 | 0.09 | 0.20 | 0.08 |
average beaten | 0.15 | 0.14 | 0.14 | 0.04 |
Wormwood-cereals on unsalted and slightly saline soils of dry estuaries and depressions | ||||
unbeaten | 0.33 | 0.40 | 0.31 | 0.20 |
badly beaten | 0.05 | 0.12 | 0.18 | 0.06 |
Wormwood-cereals on meadow-chestnut saline soils and meadow salt flat | ||||
unbeaten | 0.38 | 0.40 | 0.31 | 0.14 |
badly beaten | 0.09 | 0.25 | 0.20 | 0.07 |
Soils (Region) of Growth, Type | 2nd Year of Life | 3rd Year of Life | 4th Year of Life | 5th Year of Life | Plant Power Rating *, Point |
---|---|---|---|---|---|
Brown sandy loam saline soils (Astrakhan region), Artemisia pauciflora | 0.21 | 0.32 | 0.41 | 0.52 | 4 |
Light chestnut loamy saline soils (Astrakhan region), Artemisia pauciflora | 0.26 | 0.35 | 0.45 | 0.55 | 4 |
Light chestnut solonetsous soils of the wormwood-fescue-feather grass steppe (Volgograd region), Artemisia pauciflora | 0.18 | 0.28 | 0.38 | 0.49 | 4 |
Brown desert-steppe and brown desert-steppe alkaline sandy loamy and sandy soils in combination with solonetzes (Republic of Kalmykia), Artemisia pauciflora | 0.19 | 0.29 | 0.38 | 0.48 | 5 |
Salt licks in combination with light chestnut solonetzic loamy soils (Republic of Kalmykia), Artemisia lercheana | 0.27 | 0.39 | 0.48 | 0.58 | 5 |
Soils (Region) of Growth, Type | 1st Year of Life | 2nd Year of Life | 3rd Year of Life | 4th Year of Life | 5th Year of Life |
---|---|---|---|---|---|
Brown sandy loam saline soils (Astrakhan region), Artemisia pauciflora | 20.2 | 30.2 | 36.9 | 40.7 | 41.2 |
Light chestnut loamy saline soils (Astrakhan region), Artemisia pauciflora | 27.1 | 36.1 | 46.8 | 49.6 | 51.4 |
Light chestnut solonetsous soils of the wormwood-fescue-feather grass steppe (Volgograd region), Artemisia pauciflora | 18.6 | 29.8 | 35.8 | 38.0 | 39.7 |
Brown desert-steppe and brown desert-steppe alkaline sandy loamy and sandy soils in combination with solonetzes (Republic of Kalmykia), Artemisia pauciflora | 19.9 | 30.0 | 36.1 | 38.2 | 39.8 |
Salt licks in combination with light chestnut solonetzic loamy soils (Republic of Kalmykia), Artemisia lercheana | 26.3 | 34.6 | 44.2 | 47.9 | 49.7 |
Soils (Region) of Growth, Type | Seed Yield, kg/ha | Seed Size, mm | Weight of 1000 Seeds, mg | Seed Shape |
---|---|---|---|---|
Brown sandy loam saline soils (Astrakhan region), Artemisia pauciflora | 4.6 | 1.0–1.4 | 280–310 | oblong-ovate |
Light chestnut loamy saline soils (Astrakhan region), Artemisia pauciflora | 4.4 | 1.1–1.5 | 300–320 | oblong-ovate |
Light chestnut solonetsous soils of the wormwood-fescue-feather grass steppe (Volgograd region), Artemisia pauciflora | 4.9 | 0.9–1.2 | 290–320 | oblong-ovate |
Brown desert-steppe and brown desert-steppe alkaline sandy loamy and sandy soils in combination with solonetzes (Republic of Kalmykia), Artemisia pauciflora | 3.9 | 0.7–0.9 | 250–290 | oblong-ovate, slightly flat |
Salt licks in combination with light chestnut solonetzic loamy soils (Republic of Kalmykia), Artemisia lercheana | 3.2 | 0.6–0.9 | 280–300 | oblong-ovate, furrowed |
The Phenological Phase | Chemical Composition, % by Absolutely Dry Weight | ||||
---|---|---|---|---|---|
Protein | Fat | Fiber | Nitrogen-Free Extractive Substances (NES) | Ash | |
Brown sandy loam saline soils (Astrakhan region), Artemisia pauciflora | |||||
Vegetation | 18.0 | 4.6 | 24.0 | 43.3 | 10.1 |
Budding | 9.2 | 10.1 | 23.2 | 49.8 | 7.7 |
Fruiting | 7.6 | 13.2 | 27.6 | 45.0 | 6.6 |
Light chestnut loamy saline soils (Astrakhan region), Artemisia pauciflora | |||||
Vegetation | 18.6 | 5.7 | 19.3 | 46.1 | 10.3 |
Budding | 11.6 | 10.9 | 19.8 | 48.9 | 8.8 |
Fruiting | 7.1 | 11.5 | 24.5 | 50.2 | 6.3 |
Light chestnut solonetsous soils of the wormwood-fescue-feather grass steppe (Volgograd region), Artemisia pauciflora | |||||
Vegetation | 16.9 | 4.1 | 24.3 | 44.5 | 10.2 |
Budding | 9.6 | 9.7 | 23.0 | 49.6 | 8.1 |
Fruiting | 6.8 | 11.9 | 29.8 | 45.3 | 6.2 |
Brown desert-steppe and brown desert-steppe alkaline sandy loamy and sandy soils in combination with solonetzes (Republic of Kalmykia), Artemisia pauciflora | |||||
Vegetation | 17.1 | 4.5 | 23.5 | 45.0 | 9.9 |
Budding | 8.9 | 10.3 | 24.3 | 48.7 | 7.8 |
Fruiting | 7.0 | 12.5 | 28.6 | 45.9 | 6.0 |
Salt licks in combination with light chestnut solonetzic loamy soils (Republic of Kalmykia), Artemisia lercheana | |||||
Vegetation | 19.4 | 5.1 | 17.8 | 46.9 | 10.8 |
Budding | 12.1 | 11.1 | 20.5 | 48.2 | 8.1 |
Fruiting | 7.2 | 12.3 | 25.4 | 49.1 | 6.0 |
Soils (Region) of Growth, Type | Weight of One Plant, Grams | Plant Height, cm | Number of Generative Shoots, pcs. | Spike Length, cm | Spike Width, cm | Leaf Blade, cm | Evaluation of Reproductive Ability *, Score | |
---|---|---|---|---|---|---|---|---|
Length | Width | |||||||
Brown sandy loam saline soils (Astrakhan region), Agropyron cristatum | 245.0 | 60–75 | 71.2 | 9.8 | 1.04 | 24.5 | 0.62 | 4 |
Light chestnut loamy saline soils (Astrakhan region), Agropyron fragile | 235.6 | 64–85 | 44.4 | 8.0 | 0.60 | 17.2 | 0.41 | 3 |
Sandy and sandy loamy soils of the fescue-feather grass steppe (Volgograd region), Agropyron pectinatum | 195.4 | 53–75 | 67.2 | 10.3 | 1.32 | 23.2 | 0.62 | 4 |
Dark chestnut soils of the fescue-feather grass steppe (Volgograd region), Agropyron cristatum | 220.1 | 61–78 | 67.6 | 7.2 | 1.20 | 23.1 | 0.79 | 3 |
Light chestnut solonetsous soils of wormwood-fescue-feather grass steppe (Volgograd region), Agropyron cristatum | 205.7 | 53–67 | 60.3 | 6.9 | 1.23 | 18.7 | 0.81 | 4 |
Ordinary and southern chernozems of the forb-fescue-feather grass steppe (Volgograd region), Agropyron fragile | 225.6 | 63–78 | 69.4 | 8.9 | 0.64 | 20.4 | 0.79 | 4 |
Brown desert-steppe and brown desert-steppe solonetsous sandy and sandy soils in combination with solonetzes (Republic of Kalmykia), Agropyron pectinatum | 190.2 | 61–76 | 56.3 | 10.1 | 1.26 | 19.8 | 0.78 | 5 |
Solonetzes in combination with light chestnut solonetzic loamy soils (Republic of Kalmykia), Agropyron pectinatum | 193.5 | 55–68 | 62.4 | 8.3 | 0.75 | 21.1 | 0.83 | 4 |
Soils (Region) of Growth, Type | 1st Year of Life | 3rd Year of Life | 5th Year of Life | 7th Year of Life | Plant Resistance to Lodging *, Point |
---|---|---|---|---|---|
Brown sandy loam saline soils (Astrakhan region), Agropyron cristatum | 0.59 | 1.20 | 1.37 | 1.51 | 4 |
Light chestnut loamy solonetsous soils (Astrakhan region), Agropyron fragile | 0.68 | 1.26 | 1.51 | 1.80 | 5 |
Sandy and sandy loamy soils of the fescue-feather grass steppe (Volgograd region), Agropyron pectinatum | 0.71 | 1.41 | 1.49 | 1.52 | 3 |
Dark chestnut soils of the fescue-feather grass steppe (Volgograd region), Agropyron cristatum | 0.75 | 1.33 | 1.53 | 1.85 | 5 |
Light chestnut solonetsous soils of wormwood-fescue-feather grass steppe (Volgograd region), Agropyron cristatum | 0.69 | 1.37 | 1.46 | 1.76 | 4 |
Common and southern forb-fescue-feather grass steppe chernozems (Volgograd region), Agropyron fragile | 0.61 | 1.18 | 1.40 | 1.68 | 4 |
Brown desert-steppe and brown desert-steppe alkaline sandy loamy and sandy soils in combination with solonetzes (Republic of Kalmykia), Agropyron pectinatum | 0.62 | 1.39 | 1.41 | 1.61 | 4 |
Solonetzes in combination with light chestnut solonetzic loamy soils (Republic of Kalmykia), Agropyron pectinatum | 0.77 | 1.42 | 1.54 | 1.70 | 5 |
Variety | Seeding Method | Year of Observations | Assessment of Reproductive Ability *, Point | Plant Resistance to Lodging *, Point | ||||||
---|---|---|---|---|---|---|---|---|---|---|
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | ||||
A. fragile «Innovator» | solid | 3.2 | 2.8 | 1.0 | 1.0 | 0.5 | 0.5 | 0.5 | 5 | 4 |
width 45 cm | 3.6 | 3.0 | 3.2 | 1.6 | 0.8 | 0.7 | 0.9 | 5 | 5 | |
width 70 cm | 4.0 | 3.4 | 3.5 | 2.0 | 1.0 | 0.9 | 1.2 | 5 | 5 | |
A. cristatum «Vikrav» | solid | 3.2 | 6.3 | 2.5 | 2.8 | 1.8 | 1.0 | 1.4 | 5 | 4 |
width 45 cm | 3.8 | 6.5 | 4.3 | 3.0 | 2.3 | 1.1 | 1.8 | 5 | 5 | |
width 70 cm | 5.1 | 6.8 | 4.5 | 3.8 | 2.4 | 1.5 | 1.8 | 5 | 5 |
Meteorological Elements | Year | March | April | May | June | July | August | September |
---|---|---|---|---|---|---|---|---|
Temperature (°C) | 2011 | −3.4 | 8.6 | 3.0 | 6.2 | 0.9 | 2.0 | 15.7 |
2012 | −4.1 | 4.0 | 12.0 | 15.0 | 24.0 | 2.1 | 17.3 | |
2013 | 0.2 | 41.0 | 25.0 | 113.0 | 28.0 | 2.0 | 13.8 | |
2014 | 0.8 | 8.3 | 19.9 | 27.4 | 24.4 | 26.0 | 15.7 | |
2015 | 1.3 | 9.2 | 16.5 | 24.0 | 24.1 | 22.9 | 20.1 | |
2016 | 3.4 | 11.3 | 16.3 | 21.5 | 24.5 | 26.0 | 14.6 | |
2017 | 3.2 | 9.5 | 15.2 | 20.2 | 24.4 | 26.1 | 17.8 | |
2018 | −4.6 | 10.2 | 20.6 | 23.5 | 26.1 | 23.8 | 18.2 | |
X ± Sx | −1.0 ± 1.1 | 14.2 ± 6.7 | 15.3 ± 3.7 | 37.1 ± 19.3 | 20.3 ± 4.9 | 11.0 ± 5.5 | 16.5 ± 1.0 | |
Precipitation (mm) | 2011 | 8.6 | 8.1 | 17.7 | 22.4 | 28.2 | 23.4 | 39.0 |
2012 | 4.0 | 14.7 | 20.0 | 24.6 | 25.1 | 24.3 | 1.3 | |
2013 | 41.0 | 10.3 | 20.7 | 22.2 | 23.0 | 22.7 | 118.0 | |
2014 | 15.0 | 46.4 | 18.1 | 46.9 | 26.6 | 29.0 | 12.0 | |
2015 | 5.5 | 31.8 | 7.0 | 25.8 | 17.8 | 0 | 11.7 | |
2016 | 49.1 | 32.3 | 77.2 | 73.9 | 37.1 | 17.4 | 60.8 | |
2017 | 30.9 | 24.6 | 23.9 | 27.6 | 4.3 | 0 | 23.8 | |
2018 | 70.4 | 8.0 | 0 | 1.0 | 127.3 | 0.8 | 19.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlasenko, M.V.; Rybashlykova, L.P.; Turko, S.Y. Restoration of Degraded Lands in the Arid Zone of the European Part of Russia by the Method of Phytomelioration. Agriculture 2022, 12, 437. https://doi.org/10.3390/agriculture12030437
Vlasenko MV, Rybashlykova LP, Turko SY. Restoration of Degraded Lands in the Arid Zone of the European Part of Russia by the Method of Phytomelioration. Agriculture. 2022; 12(3):437. https://doi.org/10.3390/agriculture12030437
Chicago/Turabian StyleVlasenko, Marina Vladimirovna, Ludmila Petrovna Rybashlykova, and Svetlana Yurievna Turko. 2022. "Restoration of Degraded Lands in the Arid Zone of the European Part of Russia by the Method of Phytomelioration" Agriculture 12, no. 3: 437. https://doi.org/10.3390/agriculture12030437
APA StyleVlasenko, M. V., Rybashlykova, L. P., & Turko, S. Y. (2022). Restoration of Degraded Lands in the Arid Zone of the European Part of Russia by the Method of Phytomelioration. Agriculture, 12(3), 437. https://doi.org/10.3390/agriculture12030437