Sand Priming Promotes Seed Germination, Respiratory Metabolism and Antioxidant Capacity of Pinus massoniana Lamb.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Sand-Priming Treatment
2.3. Laboratory Germination Experiment
2.4. Field Emergence Rate Test
2.5. Oxygen-Sensing Measurement
2.6. Antioxidant Capacity Assessment
2.7. Endogenous Hormones Determination
2.8. Quantitative Real-Time PCR Assay
2.9. Data Analysis
3. Results
3.1. Effect of Sand Priming on Seed Germination Traits and Field Emergence of Pinus massoniana Lamb.
3.2. Effect of Sand Priming on Seed Respiration of Pinus massoniana
3.3. Effect of Sand Priming on Antioxidant Capacity of Pinus massoniana
3.4. Effect of Sand Priming on the Content of Endogenous Phytohormone
3.5. Effect of Seed Priming on Gene Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, X.; Ding, G.; Wang, Y. Active constituents of soil extracts from mycorrhizal seedling rhizosphere of Pinus massoniana and their effects on seed germination. Sci. Silvae Sin. 2018, 54, 32–38. (In Chinese) [Google Scholar]
- Wang, Y.; Ding, G. Influence of ectomycorrhiza on nutrient absorption of Pinus massoniana seedlings under water stress. For. Res. 2013, 26, 227–233. (In Chinese) [Google Scholar]
- Ali, M.; Hayat, S.; Ahmad, H.; Ghani, M.I.; Amin, B.; Atif, M.J.; Cheng, Z. Priming of Solanum melongena L. seeds enhances germination, alters antioxidant enzymes, modulates ROS, and improves early seedling growth: Indicating aqueous garlic extract as seed-priming bio-stimulant for eggplant production. Appl. Sci. 2019, 9, 2203. [Google Scholar] [CrossRef] [Green Version]
- Jisha, K.C.; Vijayakumari, K.; Puthur, J.T. Seed priming for abiotic stress tolerance: An overview. Acta Physiol. Plant. 2013, 35, 1381–1396. [Google Scholar] [CrossRef]
- Tabatabaei, S.A. Effect of osmo-priming on germination and enzyme activity in barley (Hordeum vulgare L.) seeds under drought stress conditions. J. Physiol. Biochem. 2013, 9, 25–31. [Google Scholar]
- Saeedipour, S. Effect of osmo-priming on germination and early seedling growth of Brassica napus L. under salinity conditions. Res. Crops 2012, 13, 139–142. [Google Scholar]
- Gohari, G.; Alavi, Z.; Esfandiari, E.; Panahirad, S.; Hajihoseinlou, S.; Fotopoulos, V. Interaction between hydrogen peroxide and sodium nitroprusside following chemical priming of Ocimum basilicum L. against salt stress. Physiol. Plant. 2020, 168, 361–373. [Google Scholar]
- Rawat, L.; Singh, Y.; Shukla, N.; Kumar, J. Alleviation of the adverse effects of salinity stress in wheat (Triticum aestivum L.) by seed biopriming with salinity tolerant isolates of Trichoderma harzianum. Plant Soil. 2011, 347, 387–400. [Google Scholar] [CrossRef]
- Madsen, M.D.; Svejcar, L.; Radke, J.; Hulet, A. Inducing rapid seed germination of native cool season grasses with solid matrix priming and seed extrusion technology. PLoS ONE 2018, 13, e0204380. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Huo, W.; Yao, D.; Li, M. Effects of solid matrix priming (SMP) and salt stress on broccoli and cauliflower seed germination and early seedling growth. Sci. Hortic. 2019, 255, 161–168. [Google Scholar] [CrossRef]
- Hu, J.; Zhu, Z.Y.; Song, W.J.; Wang, J.C.; Hu, W.M. Effects of sand priming on germination and field performance in direct-sown rice (Oryza sativa L.). Seed Sci. Technol. 2005, 33, 243–248. [Google Scholar] [CrossRef]
- Hu, J.; Xie, X.J.; Wang, Z.F.; Song, W.J. Sand priming improves alfalfa germination under high-salt concentration stress. Seed Sci. Technol. 2006, 34, 199–204. [Google Scholar] [CrossRef]
- Bray, C.M.; Davison, P.A.; Ashraf, M.; Taylor, R.M. Biochemical changes during osmopriming of leek seeds. Ann. Bot. 1989, 63, 185–193. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2005, 59, 206–216. [Google Scholar] [CrossRef]
- Morales, M.; Munné-Bosch, S. Malondialdehyde: Facts and artifacts. Plant Physiol. 2019, 180, 1246–1250. [Google Scholar] [CrossRef] [Green Version]
- Alscher, R.G.; Donahue, J.L.; Cramer, C.L. Reactive oxygen species and antioxidants: Relationships in green cells. Physiol. Plant. 1997, 100, 224–233. [Google Scholar] [CrossRef]
- Das, K.; Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014, 2, 53. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, A.; Amjad, M.; Jahangir, M.M.; Khan, S.M.; Cui, H.; Hu, J. Induction of salt tolerance in tomato (Lycopersicon esculentum Mill.) seeds through sand priming. Aust. J. Crop Sci. 2012, 6, 1199–1203. [Google Scholar]
- Zhai, K.; Zhao, G.; Jiang, H.; Sun, C.; Ren, J. Overexpression of maize ZmMYB59 gene plays a negative regulatory role in seed germination in Nicotiana tabacum and Oryza sativa. Front. Plant Sci. 2020, 11, 564665. [Google Scholar] [CrossRef]
- Zhao, G.; Zhong, T. Improving the assessment method of seed vigor in Cunninghamia lanceolata and Pinus massoniana based on oxygen sensing technology(Article). J. For. Res. 2012, 23, 95–101. [Google Scholar] [CrossRef]
- Zhang, H.J.; Zhang, N.; Yang, R.C.; Wang, L.; Sun, Q.Q.; Li, D.B.; Cao, Y.Y.; Weeda, S.; Zhao, B.; Ren, S.X.; et al. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA(4) interaction in cucumber (Cucumis sativus L.). J. Pineal Res. 2014, 57, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Pradhan, C.; Jana, B.B. Acclimation induced responses of SDH activity of tilapia (Oreochromis mossambicus) following Introduction in a new pond habitat. J. Appl. Aquac. 2009, 21, 169–182. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Drought stress effects on growth, ROS markers, compatible solutes, phenolics, flavonoids, and antioxidant activity in Amaranthus tricolor. Appl. Biochem. Biotechnol. 2018, 186, 999–1016. [Google Scholar] [CrossRef]
- Torres, N.H.; Aguiar, M.M.; Romanholo Ferreira, L.F.; Pine Americo, J.H.; Machado, A.M.; Cavalcanti, E.B.; Tornisielo, V.L. Detection of hormones in surface and drinking water in Brazil by LC-ESI-MS/MS and ecotoxicological assessment with Daphnia magna. Environ. Monit. Assess. 2015, 187, 379. [Google Scholar] [CrossRef]
- Anand, A.; Kumari, A.; Thakur, M.; Koul, A. Hydrogen peroxide signaling integrates with phytohormones during the germination of magnetoprimed tomato seeds. Sci. Rep. 2019, 9, 8814. [Google Scholar] [CrossRef]
- Mahakham, W.; Sarmah, A.K.; Maensiri, S.; Theerakulpisut, P. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci. Rep. 2017, 7, 8263. [Google Scholar] [CrossRef]
- Lu, C.; Zhu, J.; Chen, G.; Jiang, Y. Effect of sand priming on aged seed vigor and physiological changes of transgenic insect resistant cotton. Seed 2013, 32, 20–24. (In Chinese) [Google Scholar]
- Zhao, G.; Zhong, T.; Zheng, D. Improving the field emergence performance of super sweet corn by sand priming. Plant Prod. Sci. 2009, 12, 359–364. [Google Scholar] [CrossRef]
- Wang, M.M.; Qu, H.B.; Zhang, H.D.; Liu, S.; Li, Y.; Zhang, C.Q. Hormone and RNA-seq analyses reveal the mechanisms underlying differences in seed vigour at different maize ear positions. Plant Mol. Biol. 2019, 99, 461–476. [Google Scholar] [CrossRef]
- Zhao, G.W.; Zhong, T.L. Influence of exogenous IAA and GA on seed germination, vigor and their endogenous levels in Cunninghamia lanceolata. Scand. J. For. Res. 2013, 28, 511–517. [Google Scholar] [CrossRef]
- Zhao, G.; Jiang, X. Roles of gibberellin and auxin in promoting seed germination and seedling vigor in Pinus massoniana. For. Sci. 2014, 60, 367–373. [Google Scholar]
- Iqbal, M.; Ashraf, M.; Jamil, A.; Ur-Rehman, S. Does seed priming induce changes in the levels of some endogenous plant hormones in hexaploid wheat plants under salt stress? J. Integr. Plant Biol. 2006, 48, 181–189. [Google Scholar] [CrossRef]
- Raja, V.; Majeed, U.; Kang, H.; Andrabi, K.I.; John, R. Abiotic stress: Interplay between ROS, hormones and MAPKs. Environ. Exp. Bot. 2017, 137, 142–157. [Google Scholar] [CrossRef]
- Mir, A.R.; Siddiqui, H.; Alam, P.; Hayat, S. Foliar spray of Auxin/IAA modulates photosynthesis, elemental composition, ROS localization and antioxidant machinery to promote growth of Brassica juncea. Physiol. Mol. Biol. Plants 2020, 26, 2503–2520. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R.; Blumwald, E. The roles of ROS and ABA in systemic acquired acclimation. Plant Cell 2015, 27, 64–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossain, M.A.; Bhattacharjee, S.; Armin, S.M.; Qian, P.P.; Xin, W.; Li, H.Y.; Burritt, D.J.; Fujita, M.; Tran, L.S.P. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: Insights from ROS detoxification and scavenging. Front. Plant Sci. 2015, 6, 00420. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Wang, P.; Sun, J.K.; Li, M. Cloning of GID1-homologous genes and expression analysis during seed germination in Zanthoxylum dissitum Hemsl. Zhi Wu Sheng Li Xue Bao 2017, 53, 1499–1506. [Google Scholar]
- Nkang, A.; Chandler, G. Changes during embryogenesis in rainforest seeds with orthodox and recalcitrant viability characteristics. J. Plant Physiol. 1986, 126, 243–256. [Google Scholar] [CrossRef]
- Hartman, T.; Weinrick, B.; Vilcheze, C.; Berney, M.; Tufariello, J.; Cook, G.M.; Jacobs, W.R. Succinate dehydrogenase is the regulator of respiration in Mycobacterium tuberculosis. PLoS Pathog. 2014, 10, e1004510. [Google Scholar] [CrossRef]
Accession Number | Primer Sequence (5′–3′) | Gene Annotation |
---|---|---|
MG755268.1 | GAACCCTATGTTCGGAGGCG | Gibberellin metabolism protein gene (GID1) |
CCGAAGGGATTACAGGCTGG | ||
KF910089.2 | GGTTGTGTTGTCTGGCGAAC | Peroxidase gene (POD) |
GTCTTATTGTCCCCGGGCTT | ||
KM496547.1 | ATTCTCTGCAGATCGGCCTC | Succinate dehydrogenase gene (SDH) |
TGCGATCGCGTAGGAAAGAG | ||
KM496540 | AATCAACCCTGCATCTCGTC | Polyubiquitin 4 gene (UBI4) |
CTGGATCTTGGCCTTGACAT |
Variety Name | Treatment | Germination Rate (%) | Germination Potential (%) | Germination Index | Vigor Index | Mean Germination Time (d) | Field Emergence Rate (%) |
---|---|---|---|---|---|---|---|
Dai 2.0 | NP | 73.6 ± 3.2 b | 20.2 ± 3.8 b | 8.21 ± 0.20 b | 18.68 ± 0.81 c | 4.6 ± 0.2 d | 63.1 b |
SP | 84.0 ± 4.0 a | 31.7 ± 3.7 a | 10.56 ± 0.43 a | 26.23 ± 0.77 a | 4.0 ± 0.3 e | 72.0 a | |
Dai 1.5 | NP | 48.5 ± 3.5 d | 11.6 ± 1.6 c | 6.39 ± 0.11 c | 16.48 ± 1.18 d | 5.8 ± 0.4 c | 43.2 c |
SP | 56.8 ± 3.2 c | 18.7 ± 1.3 b | 8.34 ± 0.45 b | 24.30 ± 1.30 b | 5.0 ± 0.1 d | 49.0 c | |
Dai 1.0 | NP | 22.4 ± 2.5 f | 4.6 ± 0.6 d | 2.96 ± 0.39 d | 6.13 ± 0.37 f | 9.0 ± 0.5 a | 18.9 e |
SP | 34.7 ± 3.3 e | 8.5 ± 1.5 cd | 6.73 ± 0.62 c | 10.56 ± 0.69 e | 7.8 ± 0.3 b | 27.7 d |
Variety Name | Treatment | IMT (h) | OMR (%/h) | COP (%) | RGT (h) |
---|---|---|---|---|---|
Dai 2.0 | NP | 32.25 ± 3.15 ab | 0.84 ± 0.05 b | 30.97 ± 1.75 c | 183.11 ± 5.38 b |
SP | 25.15 ± 2.89 c | 0.99 ± 0.08 a | 25.17 ± 2.08 e | 146.67 ± 5.77 d | |
Dai 1.5 | NP | 33.83 ± 4.47 ab | 0.77 ± 0.01 c | 33.18 ± 2.54 b | 188.24 ± 8.59 b |
SP | 29.25 ± 3.95 bc | 0.82 ± 0.02 b | 28.01 ± 3.12 d | 159.47 ± 10.24 c | |
Dai 1.0 | NP | 36.28 ± 3.82 a | 0.75 ± 0.05 c | 34.97 ± 2.24 a | 199.73 ± 11.16 a |
SP | 31.69 ± 2.93 ab | 0.95 ± 0.07 a | 27.57 ± 3.36 d | 163.22 ± 17.47 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, K.; Ji, Z.; Jiang, D.; Zhao, G.; Zhong, T. Sand Priming Promotes Seed Germination, Respiratory Metabolism and Antioxidant Capacity of Pinus massoniana Lamb. Agriculture 2022, 12, 455. https://doi.org/10.3390/agriculture12040455
Zhai K, Ji Z, Jiang D, Zhao G, Zhong T. Sand Priming Promotes Seed Germination, Respiratory Metabolism and Antioxidant Capacity of Pinus massoniana Lamb. Agriculture. 2022; 12(4):455. https://doi.org/10.3390/agriculture12040455
Chicago/Turabian StyleZhai, Kaihui, Zhuangzhuang Ji, Diantian Jiang, Guangwu Zhao, and Tailin Zhong. 2022. "Sand Priming Promotes Seed Germination, Respiratory Metabolism and Antioxidant Capacity of Pinus massoniana Lamb." Agriculture 12, no. 4: 455. https://doi.org/10.3390/agriculture12040455
APA StyleZhai, K., Ji, Z., Jiang, D., Zhao, G., & Zhong, T. (2022). Sand Priming Promotes Seed Germination, Respiratory Metabolism and Antioxidant Capacity of Pinus massoniana Lamb. Agriculture, 12(4), 455. https://doi.org/10.3390/agriculture12040455