Genetic Effects of Indica Lineage Introgression on Amylopectin Chain Length Distribution in Japonica Milled Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Design
2.2. Amylopectin Separation and Purification
2.3. Debranching and Detection of Amylopectin
2.4. Determination of Rice Cooking and Eating Quality
2.5. Determination of Rice Starch Viscosity
2.6. Determination of Amylose Content
2.7. High-Throughput Sequencing
2.8. Statistical Analysis
3. Results
3.1. Genotyping of Amylopectin Synthesis-Related Genes in Parent Lines
3.2. Amylose Content in CSSLs
3.3. Determination of the Chromosome Segments Regulating ACLD in CSSLs
3.4. Identification of Chromosome Segments Regulating Taste Quality Factors and RVA in CSSLs
3.5. Correlation Analysis of ACLDs in Rice
3.6. Correlation Analysis between ACLD and Quality Trait Factors in CSSLs
3.7. Correlation between ACLD and RVA Eigenvalues
4. Discussion
4.1. Genetic Factors Affecting ACLD
4.2. Genetic Factors Affecting Rice Eating Quality
4.3. Effects of ACLD on Rice Eating Quality
4.4. Correlation between ACLD and RVA
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, X.; Xu, Z.; Matsue, Y.; Xu, Q. Effects of Genetic Background and Environmental Conditions on Texture Properties in a Recombinant Inbred Population of an Inter-Subspecies Cross. Rice 2019, 12, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Liu, D.; Wang, J.Y.; Ma, D.R.; Tang, L.; Gao, H.; Xu, Z.J.; Chen, W.F. The contribution of intersubspecific hybridization to the breeding of super-high-yielding japonica rice in northeast China. Theor. Appl. Genet. 2012, 125, 1149–1157. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.H.; Xiao, X.; Li, X.F.; Li, Y.R. Study on the viscosity property of rice starch with different amylose content. Food Sci. Technol. 2006, 7, 62–65. [Google Scholar]
- Han, X.Z.; Hamaker, B.R. Amylopectin Fine Structure and Rice Starch Paste Breakdown. J. Cereal Sci. 2001, 34, 279–284. [Google Scholar] [CrossRef]
- Huang, F.S.; Sun, Z.X.; Hu, P.S.; Tang, S.Q. Present Situations and Prospects for the Research on Rice Grain Quality Forming. Chin. J. Rice Sci. 1998, 12, 172–176. [Google Scholar]
- Ong, M.H.; Blanshard, J. Texture determinants in cooked, parboiled rice. I: Rice starch amylose and the fine stucture of amylopectin. J. Cereal Sci. 1995, 21, 251–260. [Google Scholar] [CrossRef]
- Peng, X.S.; Zhu, C.L.; Wang, F.; Ou Yang, L.J.; He, X.P.; Fu, J.R.; Chen, X.R.; Liu, J.E.; He, H.H. The Relationship between Amylopectin Structure and Rice Pasteproperty of Indica/Japonica Cross Progenies. J. Nucl. Agric. Sci. 2014, 28, 1219–1225. [Google Scholar]
- Ma, F.L.; Pei, Y.Q.; Song, X.Y.; Ren, H.T. Relationship between physicochemical properties and branch chain length distributions of different rice starches. J. Henan Agric. Univ. 2017, 51, 566–571, 602. [Google Scholar]
- Kong, X.; Chen, Y.; Zhu, P.; Sui, Z.; Corke, H.; Bao, J. Relationships among Genetic, Structural, and Functional Properties of Rice Starch. J. Agric. Food Chem. 2015, 63, 6241. [Google Scholar] [CrossRef]
- Yao, Y.; Thompson, D.B.; Guiltinan, M.J. Maize starch-branching enzyme isoforms and amylopectin structure. In the absence of starch-branching enzyme IIb, the further absence of starch-branching enzyme Ia leads to increased branching. Plant Physiol. 2004, 136, 3515–3523. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Sakurai, A.; Inaba, Y.; Kimura, K.; Iwasawa, N.; Nagamine, T. The fine Structure of Amylopectin in Endosperm from Asian Cultivated Rice can be largely Classified into two Classes. Starch-Stärke 2002, 54, 117–131. [Google Scholar] [CrossRef]
- Umemoto, T.; Yano, M.; Satoh, H.; Shomura, A.; Nakamura, Y. Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties. Theor. Appl. Genet. 2002, 104, 1–8. [Google Scholar] [CrossRef]
- Peng, Y.; Mao, B.; Zhang, C.; Shao, Y.; Wu, T.; Hu, L.; Hu, Y.; Tang, L.; Li, Y.; Tang, W.; et al. Influence of physicochemical properties and starch fine structure on the eating quality of hybrid rice with similar apparent amylose content. Food Chem. 2021, 353, 129461. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, C.; Yan, Y.; Hu, Z.; Wang, K.; Zhou, J.; Zhou, Y.; Cao, L.; Wu, S. Influence of starch fine structure and storage proteins on the eating quality of rice varieties with similar amylose contents. J. Sci. Food Agric. 2021, 101, 3811–3818. [Google Scholar] [CrossRef]
- Li, H.; Prakash, S.; Nicholson, T.M.; Fitzgerald, M.A.; Gilbert, R.G. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chem. 2016, 196, 702–711. [Google Scholar] [CrossRef] [Green Version]
- Guan, H.; Li, P.; Imparl-Radosevich, J.; Preiss, J.; Keeling, P. Comparing the properties of Escherichia coli branching enzyme and maize branching enzyme. Arch. Biochem. Biophys. 1997, 342, 92–98. [Google Scholar] [CrossRef]
- Jeon, J.S.; Ryoo, N.; Hahn, T.R.; Walia, H.; Nakamura, Y. Starch biosynthesis in cereal endosperm. Plant Physiol. Biochem. 2010, 48, 383–392. [Google Scholar] [CrossRef]
- Nakamura, Y.; Francisco, P.B., Jr.; Hosaka, Y.; Sato, A.; Sawada, T.; Kubo, A.; Fujita, N. Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties. Plant Mol. Biol. 2005, 58, 213–227. [Google Scholar] [CrossRef]
- GB/T 15683-2008; Rice—Determination of Amylose Content. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China: Beijing, China, 2008.
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Friendly, M. Corrgrams: Exploratory Displays for Correlation Matrices. Am. Stat. 2002, 56, 316–324. [Google Scholar] [CrossRef]
- Zhang, Y.R.; Zhou, X.Q.; Yang, L.L. Present situation and expectation on methods for taste evaluation of rice. J. Chin. Cereals Oils Assoc. 2009, 24, 155–160. [Google Scholar]
- Yan, C.J.; Li, X.; Zhang, R.; Sui, J.M.; Gu, M.H. Performance and Inheritance of Rice Starch RVA Profile Characteristics. Rice Sci. 2005, 39–47. [Google Scholar]
- Cai, Y.X.; Wang, W.; Zhu, Z.W.; Zhang, Z.J.; Zhu, Q.S. The physiochemical characteristics of amylopectin and their relationships to pasting properties of rice flour in different varieties. Sci. Agric. Sin. 2006, 39, 1122–1129. [Google Scholar]
- Shu, Q.Y.; Wu, D.X.; Xia, Y.W.; Gao, M.W.; Mcclung, A. Relationship between RVA Profile Character and Eating Quality in Oryza sativa L. Sci. Agric. Sin. 1998, 31, 25–29. [Google Scholar]
- Teng, B.; Zhang, C.; Zhang, Y.; Du, S.; Xi, M.; Song, F.; Ni, J.; Luo, Z.; Ni, D. Effects of different Wx alleles on amylopectin molecular structure and enzymatic hydrolysis properties of rice starch. Int. J. Food Prop. 2018, 21, 2772–2784. [Google Scholar] [CrossRef]
- Sartbayeva, I.; Usenbekov, B.; Rysbekova, A.; Kazkeyev, D.; Zhanbyrbayev, Y.; Batayeva, D.; Berkimbay, K.; Zhambakin, K.; Matsuba, S.; Umemoto, T. Haplotype Analysis of Wx and Alk Genes and Amylopectin Chain-Length Distribution among Kazakhstan Glutinous Rice Lines. JARQ Jpn. Agric. Res. Q. 2017, 51, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Fujita, N.; Yoshida, M.; Kondo, T.; Saito, K.; Utsumi, Y.; Tokunaga, T.; Nishi, A.; Satoh, H.; Park, J.H.; Jane, J.L.; et al. Characterization of SSIIIa-deficient mutants of rice: The function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiol. 2007, 144, 2009–2023. [Google Scholar] [CrossRef] [Green Version]
- Ryoo, N.; Yu, C.; Park, C.S.; Baik, M.Y.; Park, I.M.; Cho, M.H.; Bhoo, S.H.; An, G.; Hahn, T.R.; Jeon, J.S. Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Rep. 2007, 26, 1083–1095. [Google Scholar] [CrossRef]
- Guan, H.P.; Keeling, P.L. Starch Biosynthesis: Understanding the Functions and Interactions of Multiple Isozymes of Starch Synthase and Branching Enzyme. Trends Glycosci. Glycotechnol. 1998, 10, 307–319. [Google Scholar] [CrossRef] [Green Version]
- Roldan, I.; Wattebled, F.; Mercedes Lucas, M.; Delvalle, D.; Planchot, V.; Jimenez, S.; Perez, R.; Ball, S.; D’Hulst, C.; Merida, A. The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. Plant J. Cell Mol. Biol. 2007, 49, 492–504. [Google Scholar] [CrossRef]
- Tanaka, N.; Fujita, N.; Nishi, A.; Satoh, H.; Hosaka, Y.; Ugaki, M.; Kawasaki, S.; Nakamura, Y. The structure of starch can be manipulated by changing the expression levels of starch branching enzyme IIb in rice endosperm. Plant Biotechnol. J. 2004, 2, 507–516. [Google Scholar] [CrossRef]
- Nishi, A.; Nakamura, Y.; Tanaka, N.; Satoh, H. Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol. 2001, 127, 459–472. [Google Scholar] [CrossRef]
- Satoh, H.; Nishi, A.; Yamashita, K.; Takemoto, Y.; Tanaka, Y.; Hosaka, Y.; Sakurai, A.; Fujita, N.; Nakamura, Y. Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiol. 2003, 133, 1111–1121. [Google Scholar] [CrossRef] [Green Version]
- Kubo, A.; Fujita, N.; Harada, K.; Matsuda, T.; Satoh, H.; Nakamura, Y. The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiol 1999, 121, 399–410. [Google Scholar] [CrossRef] [Green Version]
- Fujita, N.; Toyosawa, Y.; Utsumi, Y.; Higuchi, T.; Hanashiro, I.; Ikegami, A.; Akuzawa, S.; Yoshida, M.; Mori, A.; Inomata, K.; et al. Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm. J. Exp. Bot. 2009, 60, 1009–1023. [Google Scholar] [CrossRef] [Green Version]
- Satoh, H.; Shibahara, K.; Tokunaga, T.; Nishi, A.; Tasaki, M.; Hwang, S.K.; Okita, T.W.; Kaneko, N.; Fujita, N.; Yoshida, M.; et al. Mutation of the plastidial alpha-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant Cell 2008, 20, 1833–1849. [Google Scholar] [CrossRef] [Green Version]
- Abe, N.; Asai, H.; Yago, H.; Oitome, N.F.; Itoh, R.; Crofts, N.; Nakamura, Y.; Fujita, N. Relationships between starch synthase I and branching enzyme isozymes determined using double mutant rice lines. BMC Plant Biol. 2014, 14, 80. [Google Scholar] [CrossRef] [Green Version]
- Kubo, A.; Rahman, S.; Utsumi, Y.; Li, Z.; Mukai, Y.; Yamamoto, M.; Ugaki, M.; Harada, K.; Satoh, H.; Konik-Rose, C.; et al. Complementation of sugary-1 phenotype in rice endosperm with the wheat isoamylase1 gene supports a direct role for isoamylase1 in amylopectin biosynthesis. Plant Physiol. 2005, 137, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Fujita, N.; Yoshida, M.; Asakura, N.; Ohdan, T.; Miyao, A.; Hirochika, H.; Nakamura, Y. Function and characterization of starch synthase I using mutants in rice. Plant Physiol. 2006, 140, 1070–1084. [Google Scholar] [CrossRef] [Green Version]
- Buenafe, R.J.Q.; Kumanduri, V.; Sreenivasulu, N. Deploying viscosity and starch polymer properties to predict cooking and eating quality models: A novel breeding tool to predict texture. Carbohydr. Polym. 2021, 260. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Zeng, D.; Cui, X.; Zhou, Y.; Yan, M.; Huang, D.; Li, J.; Qian, Q. Map-based cloning of the ALK gene, which controls the gelatinization temperature of rice. Sci. China Ser. C Life Sci. 2003, 46, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Qian, Q.; Liu, Q.; Yan, M.; Liu, X.; Yan, C.; Liu, G.; Gao, Z.; Tang, S.; Zeng, D.; et al. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc. Natl. Acad. Sci. USA 2009, 106, 21760–21765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Han, Y.; Jiang, L.; Xu, C.; Lu, J.; Xu, M. Functional analysis of starch-synthesis genes in determining rice eating and cooking qualities. Mol. Breed. 2006, 18, 277–290. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, G.; Tong, C.; Sun, X.; Corke, H.; Sun, M.; Bao, J. Association Mapping of Starch Physicochemical Properties with Starch Biosynthesizing Genes in Waxy Rice (Oryza sativa L.). J. Agric. Food Chem. 2013, 61, 10110–10117. [Google Scholar] [CrossRef]
- Han, Y.; Xu, M.; Liu, X.; Yan, C.; Korban, S.S.; Chen, X.; Gu, M. Genes coding for starch branching enzymes are major contributors to starch viscosity characteristics in waxy rice (Oryza sativa L.). Plant Sci. 2004, 166, 357–364. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Tseng, M.C.; Wu, Y.P.; Lin, M.Y.; Wei, F.J.; Hwu, K.K.; Hsing, Y.I.; Lin, Y.R. Genetic factors responsible for eating and cooking qualities of rice grains in a recombinant inbred population of an inter-subspecific cross. Mol. Breed. 2014, 34, 655–673. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Xu, X.; Zhang, M.; Xu, Q.; Feng, Y.; Yuan, X.; Yu, H.; Wang, Y.; Wei, X. Genetic Basis Dissection for Eating and Cooking Qualities of Japonica Rice in Northeast China. Agronomy 2020, 10, 423. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.Q.; Bing, H.U.; Zhu, K.Z.; Zhang, H.; Leng, Y.L.; Tang, S.Z.; Gu, M.H.; Liu, Q.Q. QTL Mapping for Rice RVA Properties Using High-Throughput Re-sequenced Chromosome Segment Substitution Lines. Rice Sci. 2013, 20, 407–414. [Google Scholar] [CrossRef]
- Xin, S.; Chen, Z.; Liu, Z.; Ding, C.; She, T.; Li, G.; Wang, S.; Ding, Y. QTL Mapping for Rice RVA Properties Using Chromosome Segment Substitution Lines Derived from A Cross between Koshihikari and 9311. Mol. Plant Breed. 2015, 13, 261–268. [Google Scholar]
- Lin, L.; Cai, C.; Gilbert, R.G.; Li, E.; Wang, J.; Wei, C. Relationships between amylopectin molecular structures and functional properties of different-sized fractions of normal and high-amylose maize starches. Food Hydrocoll. 2016, 52, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.Y.; Li, J.; Liu, X.J.; Zhang, C.Q.; Liu, Q.Q. Progress in the Relationship between Soluble Starch Synthases and Starch Fine Structure in Rice. Plant Physiol. J. 2014, 50, 1453–1458. [Google Scholar]
- Jungro, L. Differences in Amylopectin Structure and Grain Quality of Rice Between Some High-Quality Japonica Cultivars from the Lower Yangtze River Region, China and Koshihikari from Niigata, Japan. Chin. J. Rice Sci. 2010, 24, 379–384. [Google Scholar]
- Fan, M.; Wang, X.; Wang, X.; Tang, L.; Quan, X.U.; Zhengjin, X.U. Research Advances of Amylopectin Structure in Rice. Chin. J. Rice Sci. 2017, 31, 124–132. [Google Scholar]
- He, X.P.; Zhu, C.L.; Liu, L.L.; Wang, F.; Fu, J.R.; Jiang, L.; Zhang, W.W.; Liu, Y.B.; Wan, J.M. Difference of Amylopectin Structure Among Rice Varieties Differing in Grain Quality and Its Correlations with Starch Physicochemical Properties. Acta Agron. Sin. 2010, 36, 276–284. [Google Scholar] [CrossRef]
- Sui, J.M.; Li, X.; Yan, S.; Yan, C.J.; Gu, M.H. Studies on the Rice RVA Profile Characteristics and Its Correlation with the Quality. Sci. Agric. Sin. 2005, 38, 657–663. [Google Scholar]
- Zhou, H.; Peng, X.; Ouyang, L.; Zhu, C.; He, X. Effects of Amylopectin Structure on Gelatinization Characteristics of Rice Starch. J. Chin. Cereals Oils Assoc. 2018, 33, 25–30, 36. [Google Scholar]
- Mar, N.N.; Umemoto, T.; Ismail, M.; Abdullah, S.N.A.; Maziah, M. Determination of amylopectin structure and physicochemical properties in rice endosperm starch of mutant lines derived from Malaysian rice cultivar MR219. J. Sci. Food Agric. 2013, 93, 110–117. [Google Scholar] [CrossRef] [Green Version]
Gene Names | Annotation | Position | CSSLs with Introgression | Polymorphism between Parents |
---|---|---|---|---|
SSⅠ | starch synthase Ⅰ | chr06:3079296…3086808 | ST21 | yes |
SSⅡa | soluble starch synthase 2–3 | chr06:6748398…6753302 | ST21 | no |
SSⅡb | starch synthase | chr02:19355790…19367127 | ST7 ST8 | yes |
SSⅡc | starch synthase | chr10:15673243…15681075 | ST35 | yes |
SSⅢa(FLO5) | starch synthase III | chr08:5352105…5363276 | ST29 | yes |
BEⅠ | 1,4-alpha-glucan-branching enzyme | chr06:30897378…30905803 | NA | no |
BEⅡa | 1,4-alpha-glucan-branching enzyme 2 | chr04:20240211…20243460 | ST16 | no |
BEⅡb | 1,4-alpha-glucan-branching enzyme | chr02:19355790…19367127 | ST7 ST8 | yes |
ISA(su1) | Alpha amylase | chr08:25893657…25900576 | ST30 | yes |
PUL | Starch debranching enzyme | chr04:4408357…4418889 | ST14 | no |
Pho1 | alpha-glucan phosphorylase isozyme | chr03:31332033…31339163 | ST13 | no |
GIF1 | glycosyl hydrolases | chr04:20422171…20426921 | ST16 | yes |
Characters | SN265 | TN013 | Mean ± SD | Variation Coefficient |
---|---|---|---|---|
AC | 16.09 a | 17.23 a | 15.55 ± 0.89 | 5.72% |
Infiltration Fragment | CSSLs with Introgression | App | Hardness | Viscosity | Balance Degree | Taste Value | PKV | HPV | BDV | CPV | CSV | PaT |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Chr1:301947…2169253 | ST1 | ** | ** | ** | ** | ** | ||||||
Chr1:2169222…10837608 | ST2 | ** | ** | ** | ** | |||||||
Chr1:10837575…21900536 | ST3 | ** | ** | ** | * | ** | ** | |||||
Chr1:21900509…35465528 | ST4 | ** | ||||||||||
Chr1:32331665…42916633 | ST5 | ** | * | ** | ** | |||||||
Chr2:124679…8980638 | ST6 | ** | ** | * | ||||||||
Chr2:8980638…20076203 | ST7 | ** | ** | ** | ||||||||
Chr2:29331976…35450234 | ST9 | ** | ||||||||||
Chr3:390594…12297803 | ST10 | ** | ** | |||||||||
Chr3:9912382…21193876 | ST11 | ** | * | ** | ** | ** | ** | ** | ||||
Chr3:17228486…30221231 | ST12 | ** | ** | ** | ** | |||||||
Chr3:26547397…35948544 | ST13 | ** | * | ** | * | |||||||
Chr4:167824…5624490 | ST14 | ** | ** | ** | ** | |||||||
Chr4:5624467…20041204 | ST15 | * | * | ** | ||||||||
Chr4:24065173…35393320 | ST17 | ** | ** | ** | ** | |||||||
Chr5:6949503…19913036 | ST19 | ** | * | ** | ** | ** | ** | ** | ** | ** | * | |
Chr5:19912953…29323354 | ST20 | ** | ** | ** | ** | ** | ** | ** | ||||
Chr6:220065…7422860 | ST21 | ** | ** | ** | ** | ** | ||||||
Chr6:15361500…25612939 | ST23 | * | ** | ** | * | |||||||
Chr7:494948…16146549 | ST25 | ** | ** | |||||||||
Chr7:5762230…18340360 | ST26 | ** | ** | ** | ** | ** | ** | |||||
Chr7:18340334…28986034 | ST27 | ** | ** | ** | ||||||||
Chr8:119337…3733832 | ST28 | ** | ** | * | ** | |||||||
Chr8:3733809…21575917 | ST29 | ** | * | ** | ** | ** | ** | ** | ** | ** | ||
Chr8:18814405…27386064 | ST30 | ** | * | ** | ** | ** | ** | ** | ** | ** | ||
Chr8:26315198…28231436 | ST31 | ** | ** | ** | ** | ** | ** | ** | ||||
Chr9:99249…16620834 | ST32 | ** | ** | ** | ** | |||||||
Chr10:33968…11221582 | ST34 | * | ** | |||||||||
Chr10:11221543…22561956 | ST35 | ** | ** | ** | ** | |||||||
Chr11:305169…8024755 | ST36 | ** | ** | |||||||||
Chr11:8024726…19439119 | ST37 | ** | ** | ** | ** | ** | ** | ** | ||||
Chr11:17076271…28322996 | ST38 | * | ** | * | * | |||||||
Chr12:976022…7425080 | ST39 | ** | * | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, J.; Zhao, X.; Yu, Y.; Zhang, W.; Kong, X.; Sun, J.; Chen, W. Genetic Effects of Indica Lineage Introgression on Amylopectin Chain Length Distribution in Japonica Milled Rice. Agriculture 2022, 12, 472. https://doi.org/10.3390/agriculture12040472
Cui J, Zhao X, Yu Y, Zhang W, Kong X, Sun J, Chen W. Genetic Effects of Indica Lineage Introgression on Amylopectin Chain Length Distribution in Japonica Milled Rice. Agriculture. 2022; 12(4):472. https://doi.org/10.3390/agriculture12040472
Chicago/Turabian StyleCui, Juan, Xue Zhao, Yuejiao Yu, Wenxing Zhang, Ximan Kong, Jian Sun, and Wenfu Chen. 2022. "Genetic Effects of Indica Lineage Introgression on Amylopectin Chain Length Distribution in Japonica Milled Rice" Agriculture 12, no. 4: 472. https://doi.org/10.3390/agriculture12040472
APA StyleCui, J., Zhao, X., Yu, Y., Zhang, W., Kong, X., Sun, J., & Chen, W. (2022). Genetic Effects of Indica Lineage Introgression on Amylopectin Chain Length Distribution in Japonica Milled Rice. Agriculture, 12(4), 472. https://doi.org/10.3390/agriculture12040472