Online Detection and Classification of Moldy Core Apples by Vis-NIR Transmittance Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. The Apple Online Detection Equipment and the Spectrum Acquisition Unit
- T1:
- Stem–calyx was perpendicular to the plane of fruit cups and the fruit stem was facing up.
- T2:
- Stem–calyx was perpendicular to the direction of movement and parallel to the plane of fruit cups.
- T3:
- Stem–calyx was parallel to the plane of fruit cups and the fruit stem was facing the direction of movement.
2.3. Transmittance Spectrum Acquisition
2.4. Preprocessing of Spectral Data
2.5. Full-Spectrum and Multi-Spectrum Classification Model Establishment
3. Results and Discussion
3.1. Spectral Characteristics
3.1.1. Stationary Spectrum Analysis
3.1.2. Motion Spectrum Analysis
3.2. Classification Models for Moldy Core Disease with Full Spectrum
3.3. Establishment of a Simplified Model for Online Detection Using SPA
3.4. Simplified Model Performance Verification
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, Y.; Lu, R. Non-Destructive Defect Detection of Apples by Spectroscopic and Imaging Technologies: A Review. Trans. ASABE 2017, 60, 1765–1790. [Google Scholar] [CrossRef]
- Roger, H.; Anne, G.; Sara, R.J. The case for fruit quality: An interpretive review of consumer attitudes, and preferences for apples. Postharvest. Biol. Technol. 2003, 28, 333–347. [Google Scholar] [CrossRef]
- Tian, S.; Zhang, M.; Li, B.; Zhang, Z.; Zhao, J.; Zhang, Z.; Zhang, H.; Hu, J. Measurement orientation compensation and comparison of transmission spectroscopy for online detection of moldy apple core. Infrared Phys. Technol. 2020, 111, 103510. [Google Scholar] [CrossRef]
- Ali, S.; Abbasi, P.; Rehman, S.; Ellouze, W. First Report of Moldy Core of Sweet Tango Apples from New Zealand Caused by Alternaria arborescens. Plant Dis. 2021, 105. [Google Scholar] [CrossRef]
- Maria, A.P.; Marthe, D.B.; Arnau, V.; Facundo, I.; Hannes, M.; Benedikt, W.; Doris, M.; Sarah, D.S.; Andrea, P. Fate of free and modified Alternaria mycotoxins during the production of apple concentrates. Food Control 2020, 118, 107388. [Google Scholar] [CrossRef]
- Maria, A.P.; Paola, C.; Graciela, N.P.; Virginia, F.P.; Andrea, P. From field to process: How storage selects toxigenic Alternaria spp. causing mouldy core in Red Delicious apples. Int J. Food Microbiol. 2020, 322, 108575. [Google Scholar] [CrossRef]
- Huang, H.; Liu, L.; Michael, O.N. Recent Developments in Hyperspectral Imaging for Assessment of Food Quality and Safety. Sensors 2014, 14, 7248–7276. [Google Scholar] [CrossRef] [Green Version]
- Andrea, P. Fungi and mycotoxin problems in the apple industry. Curr. Opin. Food Sci. 2019, 29, 42–47. [Google Scholar] [CrossRef]
- van Dael, M.; Verboven, P.; Zanella, A.; Sijbers, J.; Nicolai, B. Combination of shape and X-ray inspection for apple internal quality control: In silico analysis of the methodology based on X-ray computed tomography. Postharvest. Biol. Technol. 2018, 148, 218–227. [Google Scholar] [CrossRef]
- Clark, C.J.; MacFall, J.S.; Bieleski, R.L. Loss of watercore from ‘fuji’ apple observed by magnetic resonance imaging. Sci. Hortic. 1998, 73, 213–227. [Google Scholar] [CrossRef]
- Varith, J.; Hyde, G.M.; Baritelle, A.L.; Fellman, J.K.; Sattabongkot, T. Non-contact bruise detection in apples by thermal imaging. Innov. Food Sci. Emerg. Technol. 2003, 4, 211–218. [Google Scholar] [CrossRef]
- Abbott, J.A. Quality measurement of fruits and vegetables. Postharvest. Biol. Technol. 1999, 15, 207–225. [Google Scholar] [CrossRef]
- Pourdarbani, R.; Sabzi, S.; Arribas, J.I. Nondestructive estimation of three apple fruit properties at various ripening levels with optimal Vis-NIR spectral wavelength regression data. Heliyon 2021, 7, e07942. [Google Scholar] [CrossRef] [PubMed]
- Malvandi, A.; Hao, F.; Kamruzzaman, M. Application of NIR spectroscopy and multivariate analysis for Non-destructive evaluation of apple moisture content during ultrasonic drying. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 269, 120733. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Wang, Q.; Tian, X.; Yang, G.; Xia, Y.; Li, J.; Huang, W. Non-destructive evaluation of soluble solids content of apples using a developed portable Vis/NIR device. Biosyst. Eng. 2020, 193, 138–148. [Google Scholar] [CrossRef]
- Ma, T.; Xia, Y.; Inagake, T.; Tsuchikawa, S. Rapid and nondestructive evaluation of soluble solids content (SSC) and firmness in apple using Vis–NIR spatially resolved spectroscopy. Postharvest. Biol. Technol. 2021, 173, 111417. [Google Scholar] [CrossRef]
- Mogollón, M.R.; Contreras, C.; de Freitas, S.T.; Zoffoli, J.P. NIR spectral models for early detection of bitter pit in asymptomatic ‘Fuji’ apples. Sci. Hortic. 2021, 280, 109945. [Google Scholar] [CrossRef]
- Clark, C.J.; Mcglone, V.A.; Jordan, R.B. Detection of Brownheart in ‘Braeburn’ apple by transmission NIR spectroscopy. Postharvest. Biol. Technol. 2003, 28, 87–96. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, R.; Chen, K. Detection of internal defect of apples by a multichannel Vis/NIR spectroscopic system. Postharvest. Biol. Technol. 2020, 161, 111065. [Google Scholar] [CrossRef]
- Fan, G.; Zha, J.; Du, R.; Gao, L. Determination of soluble solids and firmness of apples by Vis/NIR transmittance. J. Food Eng. 2009, 93, 416–420. [Google Scholar] [CrossRef]
- Fu, X.; Ying, Y.; Lu, H.; Xu, H. Comparison of diffuse reflectance and transmission mode of visible-near infrared spectroscopy for detecting brown heart of pear. J. Food Eng. 2007, 83, 317–323. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, M.; Akwasi, A.A.; Wu, J.; Chen, Q.; Zuo, M.; Hesham, R.E.; Tao, F.; Shi, J.; Ouyang, Q.; et al. Quantitative detection of apple watercore and soluble solids content by near infrared transmittance spectroscopy. J. Food Eng. 2020, 279, 109955. [Google Scholar] [CrossRef]
- Clara, S.; Itzhak, S.; Victor, A.; Haim, E.; Aharon, H.; Viacheslav, O.; Susan, L.; Ruth, B.A.; Zéev, S. NIRS Detection of Moldy Core in Apples. Food Bioproc Tech. 2010, 3, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Zhang, B.; Li, J.; Huang, W.; Wang, C. Effect of spectrum measurement position variation on the robustness of NIR spectroscopy models for soluble solids content of apple. Biosyst Eng. 2016, 143, 9–19. [Google Scholar] [CrossRef]
- Han, D.; Zhou, E.; Qi, S. Stray light reduction research on on-line detection of sugar content of apples. Trans Chin. Soc. Agricult. Mach. 2015, 46, 260–265. [Google Scholar] [CrossRef]
- Alyssa, A.; Mary, R.W.; Michael, E.S. Application of likelihood ratios and optimal decision thresholds in fire debris analysis based on a partial least squares discriminant analysis (PLS-DA) model. Forensic Chem. 2019, 16, 100188. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Mário, C.U.A.; Teresa, C.B.S.; Roberto, K.H.G.; Takashi, Y.; Henrique, C.C.; Valeria, V. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometr. Intell. Lab. Syst. 2001, 57, 65–73. [Google Scholar] [CrossRef]
- Paolo, O. Multivariate class modeling for the verification of food-authenticity claims. Trends Analyt. Chem. 2012, 35, 74–86. [Google Scholar] [CrossRef]
- Slaughter, D.C. Nondestructive determination of internal quality in peaches and nectarines. Trans. ASABE 1995, 38, 617–623. [Google Scholar] [CrossRef]
- Kawano, S.; Fujiwara, T.; Iwamoto, M. Nondestructive determination of sugar content in satsuma mandarin using near infrared (nir) transmittance. Engei Gakkai Zasshi. 1993, 62, 465–470. [Google Scholar] [CrossRef]
- Tian, S.; Zhang, J.; Zhang, Z.; Zhao, J.; Zhang, Z.; Zhang, H. Effective modification through transmission Vis/NIR spectra affected by fruit size to improve the prediction of moldy apple core. Infrared Phys. Technol. 2019, 100, 117–124. [Google Scholar] [CrossRef]
- Tian, X.; Wang, Q.; Huang, W.; Fan, S.; Li, J. Online detection of apples with moldy core using the vis/nir full-transmittance spectra. Postharvest. Biol. Technol. 2020, 168, 111269. [Google Scholar] [CrossRef]
Detection Orientation | Modeling Method | Preprocessed Method | Accuracy of Calibration Set (%) | Accuracy of Validation Set (%) | Sensitivity | Specificity |
---|---|---|---|---|---|---|
T1 | SVM | S–G | 67.5 | 65 | 1 | 0 |
PLS-DA | 96.25 | 85 | 0.824 | 0.869 | ||
SVM | S–G + Normalization | 100 | 92.5 | 0.975 | 0.975 | |
PLS-DA | 98.75 | 92.5 | 0.889 | 0.955 | ||
SVM | S–G + First derivative | 71.25 | 57.5 | 1 | 0 | |
PLS-DA | 98.75 | 92.5 | 0.917 | 0.929 | ||
T2 | SVM | S–G | 68.75 | 62.5 | 1 | 0 |
PLS-DA | 95 | 90 | 0.867 | 0.92 | ||
SVM | S–G + Normalization | 100 | 95 | 0.975 | 1 | |
PLS-DA | 98.75 | 92.5 | 0.889 | 0.955 | ||
SVM | S–G + First derivative | 70 | 60 | 1 | 0 | |
PLS-DA | 96.25 | 95 | 0.909 | 0.966 | ||
T3 | SVM | S–G | 71.25 | 57.5 | 1 | 0 |
PLS-DA | 97.5 | 92.5 | 0.867 | 0.92 | ||
SVM | S–G + Normalization | 97.5 | 97.5 | 0.975 | 0.975 | |
PLS-DA | 100 | 92.5 | 0.889 | 0.955 | ||
SVM | S–G + First derivative | 68.75 | 62.5 | 1 | 0 | |
PLS-DA | 96.25 | 92.5 | 0.929 | 0.923 |
Detection Orientation | Modeling Method | Pre-Processed Method | Accuracy of Calibration Set (%) | Accuracy of Validation Set (%) | Sensitivity | Specificity |
---|---|---|---|---|---|---|
T1 | SVM | S–G | 71.25 | 57.5 | 1 | 0 |
PLS-DA | 96.25 | 95 | 0.9753 | 0.9265 | ||
SVM | S–G + Normalization | 98.75 | 97.5 | 1 | 0.9524 | |
PLS-DA | 97.5 | 97.5 | 0.9753 | 0.9744 | ||
SVM | S–G + First derivative | 67.5 | 65 | 1 | 0 | |
PLS-DA | 96.25 | 92.5 | 0.9512 | 0.9474 | ||
T2 | SVM | S–G | 71.25 | 57.5 | 1 | 0 |
PLS-DA | 95 | 92.5 | 0.9383 | 0.8974 | ||
SVM | S–G + Normalization | 100 | 100 | 1 | 1 | |
PLS-DA | 97.5 | 97.5 | 0.9753 | 0.9744 | ||
SVM | S–G + First derivative | 72.5 | 55 | 1 | 0 | |
PLS-DA | 100 | 90 | 0.975 | 0.95 | ||
T3 | SVM | S–G | 68.75 | 62.5 | 1 | 0 |
PLS-DA | 97.5 | 92.5 | 0.9629 | 0.9487 | ||
SVM | S–G + Normalization | 100 | 92.5 | 0.9753 | 0.9744 | |
PLS-DA | 95 | 90 | 0.9639 | 1 | ||
SVM | S–G + First derivative | 70 | 60 | 1 | 0 | |
PLS-DA | 97.5 | 95 | 0.9629 | 0.9487 |
Model | Classification Accuracy (%) | ||
---|---|---|---|
T1 | T2 | T3 | |
Single-orientation model_T1 | 98.3 | 93.3 | 82.5 |
Single-orientation model_T2 | 93.3 | 100 | 99.2 |
Single-orientation model_T3 | 89.2 | 96.7 | 97.5 |
Generalized model | 99.2 | 100 | 98.3 |
Model | Selected Wavelength (nm) | Number of Variables | Classification Accuracy (%) | ||
---|---|---|---|---|---|
T1 | T2 | T3 | |||
Generalized model | 641.9, 658.0, 673.4, 682.9, 697.1, 704.8, 713.0, 725.4, 773.9, 839.8, 931.4, 1056.5 | 12 | 96.7 | 97.5 | 97.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Jiang, H.; Zhang, H.; Zhao, Z.; Yang, Y.; Guo, S.; Wang, W. Online Detection and Classification of Moldy Core Apples by Vis-NIR Transmittance Spectroscopy. Agriculture 2022, 12, 489. https://doi.org/10.3390/agriculture12040489
Zhang K, Jiang H, Zhang H, Zhao Z, Yang Y, Guo S, Wang W. Online Detection and Classification of Moldy Core Apples by Vis-NIR Transmittance Spectroscopy. Agriculture. 2022; 12(4):489. https://doi.org/10.3390/agriculture12040489
Chicago/Turabian StyleZhang, Kaixu, Hongzhe Jiang, Haicheng Zhang, Zequn Zhao, Yingjie Yang, Shudan Guo, and Wei Wang. 2022. "Online Detection and Classification of Moldy Core Apples by Vis-NIR Transmittance Spectroscopy" Agriculture 12, no. 4: 489. https://doi.org/10.3390/agriculture12040489
APA StyleZhang, K., Jiang, H., Zhang, H., Zhao, Z., Yang, Y., Guo, S., & Wang, W. (2022). Online Detection and Classification of Moldy Core Apples by Vis-NIR Transmittance Spectroscopy. Agriculture, 12(4), 489. https://doi.org/10.3390/agriculture12040489