Utilization of Plant Genetic Resources of Bambara Groundnut Conserved Ex Situ and Genetic Diversification of Its Primary Genepool for Semi-Arid Production
Abstract
:1. Introduction
2. Centers of Origin of Plant Genetic Resources of Bambara Groundnut
3. Traits of Importance in Bambara Groundnut Improvement
4. Strategies for Utilization of Ex Situ Germplasm in Pre-Breeding Programs
4.1. A Core Collection or Core Set Approach
4.2. Focused Identification of Germplasm Strategy
4.3. Genomic-Enabled Conservation and Utilization of PGRs
4.4. Information Management and User Feedback
5. Widening the Genetic Variability of the Bambara Groundnut Primary Genepool
5.1. Hybridization
5.2. Mutation Breeding
5.3. Plant Introductions as a Breeding Strategy for Variety Development
6. Breeding for Drought Adaptation
6.1. Selection for Drought Tolerance
6.2. Drought Response Mechanisms
7. Future Work and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosegrant, M.W.; Koo, J.; Cenacchi, N.; Ringler, C.; Robertson, R.D.; Fisher, M.; Cox, C.M.; Garrett, K.; Perez, N.D.; Sabbagh, P. Food Security in a World of Natural Resource Scarcity: The Role of Agricultural Technologies; International Food Policy Research Institute: Washington, DC, USA, 2014; p. 250. [Google Scholar] [CrossRef]
- Bernard, B.; Lux, A. How to feed the world sustainably: An overview of the discourse on agroecology and sustainable intensification. Reg. Environ. Chang. 2016, 17, 1279–1290. [Google Scholar] [CrossRef]
- Tan, X.L.; Azam-Ali, S.; Von Goh, E.; Mustafa, M.; Chai, H.H.; Ho, W.K.; Mayes, S.; Mabhaudhi, T.; Azam-Ali, S.; Massawe, F. Bambara Groundnut: An Underutilized Leguminous Crop for Global Food Security and Nutrition. Front. Nutr. 2020, 7, 276. [Google Scholar] [CrossRef]
- Mustafa, M.A.; Mayes, S.; Massawe, F. Crop Diversification through a Wider Use of Underutilised Crops: A Strategy to Ensure Food and Nutrition Security in the Face of Climate Change. In Sustainable, Solutions for Food Security: Combating Climate Change by Adaptation; Sarkar, A., Sensarma, S.R., van Loon, G.W., Eds.; Springer Nature: Cham, Swizerland, 2019; pp. 125–149. [Google Scholar] [CrossRef]
- Padulosi, S.; Cawthorn, D.-M.; Meldrum, G.; Flore, R.; Halloran, A.; Mattei, F. Leveraging Neglected and Underutilized Plant, Fungi, and Animal Species for More Nutrition Sensitive and Sustainable Food Systems. Encycl. Food Secur. Sustain. 2018, 3, 361–370. [Google Scholar] [CrossRef]
- Kearney, J. Food consumption trends and drivers. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2793–2807. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Ji, M.; Xie, Y.; Wang, S.; He, Y.; Ran, J. Global semi-arid climate change over last 60 years. Clim. Dyn. 2015, 46, 1131–1150. [Google Scholar] [CrossRef] [Green Version]
- Mulungu, K.; Ng’Ombe, J.N. Climate Change Impacts on Sustainable Maize Production in Sub-Saharan Africa: A Review. Maize Prod. Use 2020, 143. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, I.; Rafii, M.Y.; Ramlee, S.I.; Nazli, M.H.; Harun, A.R.; Oladosu, Y.; Musa, I.; Arolu, F.; Chukwu, S.C.; Haliru, B.S.; et al. Exploration of Bambara Groundnut (Vigna subterranea (L.) Verdc, an Underutilized Crop, To Aid Global Food Security: Varietal Improvement, Genetic Diversity and Processing. Agronomy 2022, 10, 766. [Google Scholar] [CrossRef]
- Khan, M.H.; Rafii, M.; Ramlee, S.; Jusoh, M.; Mamun, A. Bambara Groundnut (Vigna subterranean L. Verdc): A Crop for the New Millennium, Its Genetic Diversity, and Improvements to Mitigate Future Food and Nutritional Challenges. Sustainability 2021, 13, 5530. [Google Scholar] [CrossRef]
- Murevanhema, Y.Y.; Jideani, V.A. Potential of Bambara groundnut (Vigna subterranea (L.) Verdc) milk as a probiotic beverage-a review. Crit. Rev. Food Sci. Nutr. 2013, 53, 954–967. [Google Scholar] [CrossRef]
- Mubaiwa, J.; Fogliano, V.; Chidewe, C.; Bakker, E.J.; Linnemann, A.R. Utilization of bambara groundnut (Vigna subterranea (L.) Verdc.) for sustainable food and nutrition security in semi-arid regions of Zimbabwe. PLoS ONE 2018, 13, e0204817. [Google Scholar] [CrossRef] [Green Version]
- Massawe, F.J.; Mwale, S.S.; Azam-Ali, S.N.; Roberts, J.A. Breeding in bambara groundnut (Vigna subterranea (L.) Verdc.): Strategic considerations. Afr. J. Biotechnol. 2005, 4, 463–471. [Google Scholar]
- Gregory, P.J.; Mayes, S.; Hui, C.H.; Jahanshiri, E.; Julkifle, A.; Kuppusamy, G.; Kuan, H.W.; Lin, T.X.; Massawe, F.; Suhairi, T.A.S.T.M.; et al. Crops For the Future (CFF): An overview of research efforts in the adoption of underutilised species. Planta 2019, 250, 979–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, N.S.; Chai, H.H.; Basu, S.; Sri Redjeki, E.; Moreton, J.; Mayes, K.; Ho, W.K.; Massawe, F.; Mayes, S. Exploring the domestication of bambara groundnut. In Proceedings of the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): IV International Symposium on Plant Genetic Resources, Brisbane, Australia, 17–22 August 2014; pp. 183–190. [Google Scholar] [CrossRef]
- Mayes, S.; Ho, W.K.; Chai, H.H.; Gao, X.; Kundy, A.C.; Mateva, K.I.; Zahrulakmal, M.; Hahiree, M.K.I.M.; Kendabie, P.; Licea, L.C.S.; et al. Bambara groundnut: An exemplar underutilised legume for resilience under climate change. Planta 2019, 250, 803–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPGRI; IITA; BAMNET. Descriptors for Bambara Groundnut (Vigna Subterranea); International Plant Genetic Resources Institute: Rome, Italy; International Institute of Tropical Agriculture: Ibadan, Nigeria; The International Bambara Groundnut Network: Hamburg, Germany, 2000. [Google Scholar]
- Halewood, M.; Jamora, N.; Noriega, I.L.; Anglin, N.L.; Wenzl, P.; Payne, T.; Ndjiondjop, M.-N.; Guarino, L.; Kumar, P.L.; Yazbek, M.; et al. Germplasm Acquisition and Distribution by CGIAR Genebanks. Plants 2020, 9, 1296. [Google Scholar] [CrossRef]
- Fu, Y.-B. The Vulnerability of Plant Genetic Resources Conserved Ex Situ. Crop Sci. 2017, 57, 2314–2328. [Google Scholar] [CrossRef] [Green Version]
- Haupt, M.; Schmid, K. Combining focused identification of germplasm and core collection strategies to identify genebank accessions for central European soybean breeding. Plant. Cell Environ. 2020, 43, 1421–1436. [Google Scholar] [CrossRef] [Green Version]
- Basu, S.; Mayes, S.; Davey, M.; Roberts, J.A.; Azam-Ali, S.N.; Mithen, R.; Pasquet, R.S. Inheritance of ‘domestication’traits in bambara groundnut (Vigna subterranea (L.) Verdc.). Euphytica 2007, 157, 59–68. [Google Scholar] [CrossRef]
- Hillocks, R.J.; Bennett, C.; Mponda, O.M. Bambara nut: A review of utilisation, market potential and crop improvement. Afr. Crop. Sci. J. 2012, 20, 1–16. [Google Scholar]
- Rungnoi, O.-U.; Suwanprasert, J.; Somta, P.; Srinives, P. Molecular Genetic Diversity of Bambara Groundnut (Vigna subterranea L. Verdc.) Revealed by RAPD and ISSR Marker Analysis. SABRAO J. Breed. Genet. 2012, 44, 87–101. [Google Scholar]
- Molosiwa, O.O.; Aliyu, S.; Stadler, F.; Mayes, K.; Massawe, F.; Kilian, A.; Mayes, S. SSR marker development, genetic diversity and population structure analysis of Bambara groundnut [Vigna subterranea (L.) Verdc.] landraces. Genet. Resour. Crop. Evol. 2015, 62, 1225–1243. [Google Scholar] [CrossRef]
- Díez, M.J.; Rosa, L.D.; Martin, I.; Guasch, L.; Cartea, M.E.; Mallor, C.; Casals, J.; Simo, J.; Rivera, A.; Anastasio, G.; et al. Plant genebanks: Present situation and proposals for their improvement. the case of the Spanish network. Front. Plant. Sci. 2018, 9, 1794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snook, L.K.; Dulloo, M.E.; Jarvis, A.; Scheldeman, X.; Kneller, M. Crop Germplasm Diversity: The Role of Gene Bank Collections in Facilitating Adaptation to Climate Change. Crop. Adapt. Clim. Chang. 2011, 1, 495–506. [Google Scholar] [CrossRef]
- Ouedraogo, M.; Ouedraogo, J.T.; Tignere, J.B.; Bilma, D.; Dabire, C.B.; Konate, G. Characterization and evaluation of accessions of Bambara groundnut (Vigna subterranea (L.) Verdcourt) from Burkina Faso. Sci. Nat. 2008, 5, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Pasquet, R.S.; Fotso, M. Bambara groundnut [Vigna subterranea (L.) Verdc]. In Bambara Groundnut [Vigna subterranea (L.) Verdc]; Heller, J., Begemann, F., Mushonga, J., Eds.; International Plant Genetic Resources Institute: Rome, Italy, 1997; pp. 124–129. Available online: https://cgspace.cgiar.org/handle/10568/104199 (accessed on 3 January 2022).
- Majola, N.; Gerrano, A.; Shimelis, H. Bambara Groundnut (Vigna subterranean [L.] Verdc.) Production, Utilisation and Genetic Improvement in Sub-Saharan Africa. Agronomy 2021, 11, 1345. [Google Scholar] [CrossRef]
- Paliwal, R.; Abberton, M.; Faloye, B.; Olaniyi, O. Developing the role of legumes in West Africa under climate change. Curr. Opin. Plant. Biol. 2020, 56, 242–258. [Google Scholar] [CrossRef]
- Aliyu, S.; Massawe, F.; Mayes, S. Genetic diversity and population structure of Bambara groundnut (Vigna subterranea (L.) Verdc.): Synopsis of the past two decades of analysis and implications for crop improvement programmes. Genet. Resour. Crop. Evol. 2016, 63, 925–943. [Google Scholar] [CrossRef] [Green Version]
- Aliyu, S.; Massawe, F.; Mayes, S. Beyond landraces: Developing improved germplasm resources for underutilized species–A case for Bambara groundnut. Biotechnol. Genet. Eng. Rev. 2014, 30, 127–141. [Google Scholar] [CrossRef]
- Sharma, S. Prebreeding Using Wild Species for Genetic Enhancement of Grain Legumes at ICRISAT. Crop Sci. 2017, 57, 1132–1144. [Google Scholar] [CrossRef] [Green Version]
- Atoyebi, J.O.; Oyatomi, O.; Osilesi, O.; Adebawo, O.; Abberton, M. Morphological characterisation of selected African accessions of bambara groundnut (Vigna subterranea (L.) verdc.). Int. J. Plant Res. 2017, 7, 29–35. [Google Scholar]
- Gonné, S.; Félix-Alain, W.; Benoît, K.B. Assessment of twenty bambara groundnut (Vigna subterranea (L.) Verdcourt) landraces using quantitative morphological traits. Int. J. Plant Res. 2013, 3, 39–45. [Google Scholar]
- Khan, F.; Azman, R.; Chai, H.; Mayes, S.; Lu, C. Genomic and transcriptomic approaches towards the genetic improvement of an underutilised crops: The case of Bambara groundnut. Afr. Crop. Sci. J. 2016, 24, 429. [Google Scholar] [CrossRef] [Green Version]
- Kendabie, P.; Jørgensen, S.T.; Massawe, F.; Fernandez, J.; Azam-Ali, S.; Mayes, S. Photoperiod control of yield and sink capacity in Bambara groundnut (Vigna subterranea) genotypes. Food Energy Secur. 2020, 9, e240. [Google Scholar] [CrossRef]
- Unigwe, A.; Doria, E.; Adebola, P.; Gerrano, A.S.; Pillay, M. Anti-nutrient analysis of 30 Bambara groundnut (Vigna subterranea) accessions in South Africa. J. Crop. Improv. 2017, 32, 208–224. [Google Scholar] [CrossRef]
- Mabhaudhi, T.; Modi, A.T. Growth, phenological and yield responses of a bambara groundnut (Vigna subterranea (L.) Verdc.) landrace to imposed water stress under field conditions. S. Afr. J. Plant. Soil 2013, 30, 69–79. [Google Scholar] [CrossRef]
- Mohammed, M.; Shimelis, H. Laing Preliminary investigation of the crossing of bambara nut (Vigna subterranea [L.] Verdc.). Bayero J. Pure Appl. Sci. 2016, 8, 225. [Google Scholar] [CrossRef] [Green Version]
- Panguluri, S.K.; Kumar, A.A. Phenotyping for Plant Breeding; Springer: New York, NY, USA, 2016. [Google Scholar]
- Frankel, O.H. Genetic perspective of germplasm conservation. In Genetic Manipulations: Impact on Man and Society; Arber, W., Limensee, K., Peacock, W.J., Stralinger, P., Eds.; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Khazaei, H.; Street, K.; Bari, A.; Mackay, M.; Stoddard, F.L. The FIGS (Focused Identification of Germplasm Strategy) Approach Identifies Traits Related to Drought Adaptation in Vicia faba Genetic Resources. PLoS ONE 2013, 8, e63107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco-Duran, J.; Crossa, J.; Chen, J.; Hearne, S.J. The impact of sample selection strategies on genetic diversity and representativeness in germplasm bank collections. BMC Plant Biol. 2019, 19, 520. [Google Scholar] [CrossRef]
- Kim, K.-W.; Chung, H.-K.; Cho, G.-T.; Ma, K.-H.; Chandrabalan, D.; Gwag, J.-G.; Kim, T.-S.; Cho, E.-G.; Park, Y.-J. PowerCore: A program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics 2007, 23, 2155–2162. [Google Scholar] [CrossRef] [Green Version]
- Soleimani, B.; Lehnert, H.; Keilwagen, J.; Plieske, J.; Ordon, F.; Rad, S.N.; Ganal, M.; Beier, S.; Perovic, D. Comparison Between Core Set Selection Methods Using Different Illumina Marker Platforms: A Case Study of Assessment of Diversity in Wheat. Front. Plant Sci. 2020, 11, 1040. [Google Scholar] [CrossRef]
- Upadhyaya, H.; Dronavalli, N.; Dwivedi, S.; Kashiwagi, J.; Krishnamurthy, L.; Pande, S.; Sharma, H.; Vadez, V.; Singh, S.; Varshney, R.; et al. Mini Core Collection as a Resource to Identify New Sources of Variation. Crop Sci. 2013, 53, 2506–2517. [Google Scholar] [CrossRef] [Green Version]
- Mahmoodi, R.; Dadpour, M.R.; Hassani, D.; Zeinalabedini, M.; Vendramin, E.; Leslie, C.A. Composite core set construction and diversity analysis of Iranian walnut germplasm using molecular markers and phenotypic traits. PLoS ONE 2021, 16, e0248623. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Upadhyaya, H.D.; Varshney, R.K.; Gowda, C.L.L. Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes. Front. Plant Sci. 2013, 4, 309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.; Bamba, A.S.A.; Kundy, A.C.; Mateva, K.I.; Chai, H.H.; Ho, W.K.; Musa, M.; Mayes, S.; Massawe, F. Variation of Phenotypic Traits in Twelve Bambara Groundnut (Vigna subterranea (L.) Verdc.) Genotypes and Two F2 Bi-Parental Segregating Populations. Agronomy 2020, 10, 1451. [Google Scholar] [CrossRef]
- Anglin, N.L.; Amri, A.; Kehel, Z.; Ellis, D. A Case of Need: Linking Traits to Genebank Accessions. Biopreserv. Biobank. 2018, 16, 337–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weise, S.; Lohwasser, U.; Oppermann, M. Document or Lose It—On the Importance of Information Management for Genetic Resources Conservation in Genebanks. Plants 2020, 9, 1050. [Google Scholar] [CrossRef] [PubMed]
- Bhat, J.A.; Ali, S.; Salgotra, R.K.; Mir, Z.A.; Dutta, S.; Jadon, V.; Tyagi, A.; Mushtaq, M.; Jain, N.; Singh, P.K.; et al. Genomic Selection in the Era of Next Generation Sequencing for Complex Traits in Plant Breeding. Front. Genet. 2016, 7, 221. [Google Scholar] [CrossRef] [Green Version]
- Nadeem, M.A.; Nawaz, M.A.; Shahid, M.Q.; Doğan, Y.; Comertpay, G.; Yıldız, M.; Hatipoğlu, R.; Ahmad, F.; Alsaleh, A.; Labhane, N.; et al. DNA molecular markers in plant breeding: Current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotechnol. Equip. 2017, 32, 261–285. [Google Scholar] [CrossRef] [Green Version]
- Muktar, M.; Teshome, A.; Hanson, J.; Negawo, A.T.; Habte, E.; Entfellner, J.-B.D.; Lee, K.-W.; Jones, C.S. Genotyping by sequencing provides new insights into the diversity of Napier grass (Cenchrus purpureus) and reveals variation in genome-wide LD patterns between collections. Sci. Rep. 2019, 9, 6936. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Zhao, X.; Laroche, A.; Lu, Z.-X.; Liu, H.K.; Li, Z. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front. Plant Sci. 2014, 5, 484. [Google Scholar] [CrossRef] [Green Version]
- Ray, S.; Satya, P. Next generation sequencing technologies for next generation plant breeding. Front. Plant Sci. 2014, 5, 367. [Google Scholar] [CrossRef] [Green Version]
- Ho, W.K.; Chai, H.H.; Kendabie, P.; Ahmad, N.S.; Jani, J.; Massawe, F.; Kilian, A.; Mayes, S. Integrating genetic maps in bambara groundnut [Vigna subterranea (L) Verdc.] and their syntenic relationships among closely related legumes. BMC Genom. 2017, 18, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y. Molecular Plant Breeding; Cabi: Surrey, UK, 2010. [Google Scholar]
- Alqudah, A.M.; Sallam, A.; Baenziger, P.S.; Börner, A. GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: Lessons from Barley–A review. J. Adv. Res. 2020, 22, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Liu, H.; Liu, M.; Liao, X.; Sahu, S.K.; Fu, Y.; Song, B.; Cheng, S.; Kariba, R.; Muthemba, S.; et al. The draft genomes of five agriculturally important African orphan crops. GigaScience 2019, 8, 152. [Google Scholar] [CrossRef] [PubMed]
- Rellstab, C.; Gugerli, F.; Eckert, A.J.; Hancock, A.M.; Holderegger, R. A practical guide to environmental association analysis in landscape genomics. Mol. Ecol. 2015, 24, 4348–4370. [Google Scholar] [CrossRef] [Green Version]
- Shim, J.; Bandillo, N.; Angeles-Shim, R. Finding Needles in a Haystack: Using Geo-References to Enhance the Selection and Utilization of Landraces in Breeding for Climate-Resilient Cultivars of Upland Cotton (Gossypium hirsutum L.). Plants 2021, 10, 1300. [Google Scholar] [CrossRef]
- Massawe, F.J.; Schenkel, W.; Basu, S.; Temba, E.M. Artificial hybridisation in bambara groundnut (Vigna subterranea (L.) Verdc.). In Proceedings of the International Bambara Groundnut Symposium, Botswana College of Agriculture, Gaborone, Botswana, 8–12 September 2013. [Google Scholar]
- Bohra, A.; Kilian, B.; Sivasankar, S.; Caccamo, M.; Mba, C.; McCouch, S.R.; Varshney, R.K. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 2021. [Google Scholar] [CrossRef]
- Heller, J.; Begemann, F.; Mushonga, J. Bambara groundnut, Vigna subterranea (L.) Verdc; IPGRI: Rome, Italy, 1997. [Google Scholar]
- Mohammed, M.S.; Shimelis, H.A.; Laing, M.D. Preliminary morphological characterization and evaluation of selected Bambara groundnut [Vigna subterranea (L.) Verdc.] genotypes for yield and yield related traits. Legum. Res. Int. J. 2020, 43, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Goli, A.E. Conservation and Improvement of Bambara groundnut (Vigna subterranea [L.] Verdc). In Bibliographical Review, Proceedings of an International Workshop Held at Harare; IPK/IPGRI: Harare, Zimbabwe, 1997. [Google Scholar]
- Smýkal, P.; Varshery, R.K.; Singh, V.K.; Coyne, C.J.; Domoney, C.; Kejnovsky, E.; Warkentin, T. From Mendel’s discovery on pea to today’s plant genetics and breeding. Theor. Appl. Genet. 2016, 129, 2267–2280. [Google Scholar] [CrossRef]
- Kendabie, P.; Jorgensen, S.T.; Massawe, F.; Azam-Ali, S.; Mayes, S. Daylength effects on growth and seed production efficiency in Bambara groundnut (Vigna subterranea L.). In Proceedings of the 3rd International Conference on Neglectedand Underutilized Species (NUS): For a Food-Secure Africa, Accra, Ghana, 25–27 September 2013. [Google Scholar]
- Xu, Y.; Li, P.; Yang, Z.; Xu, C. Genetic mapping of quantitative trait loci in crops. Crop J. 2017, 5, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Spencer-Lopes, M.M.; Forster, B.P.; Jankuloski, L. Manual on Mutation Breeding, 3rd ed.; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2018. [Google Scholar]
- Pasupuleti, J.; Nigam, S.N. Phenotyping for groundnut (Arachis hypogaea L.) improvement. In Phenotyping for Plant Breeding; Springer: New York, NY, USA, 2013; pp. 129–167. [Google Scholar]
- Smita Subhash, V. Studies on Genetic Variability in M3 Generation of Bambara Groundnut (Vigna subterranea (L.) Verdc.) Treated with Gamma Rays. Master’s Thesis, University of Agricultural Sciences GKVK, Bangalore, India, 2012. [Google Scholar]
- Spreeth, M.H.; Slabbert, M.M.; Ronde, J.; Heever, E.; Ndou, A. Screening of Cowpea, Bambara Groundnut and Amaranthus Germplasm for Drought Tolerance and Testing of the Selected Plant Material in Particpatation [sic] with Targeted Communities; Water Research Commission: Pretoria, South Africa, 2004; p. 150. [Google Scholar]
- Bado, S.; Forster, B.P.; Nielen, S.; Ali, A.M.; Lagoda, P.J.L.; Till, B.K. Plant mutation breeding: Current progress and future assessment. Plant. Breed. Rev. 2015, 39, 23–88. [Google Scholar]
- Till, B.; Zerr, T.; Comai, L.; Henikoff, S. A protocol for TILLING and Ecotilling in plants and animals. Nat. Protoc. 2006, 1, 2465–2477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurowska, M.; Daszkowska-Golec, A.; Gruszka, D.; Marzec, M.; Szurman, M.; Szarejko, I.; Maluszynski, M. TILLING-a shortcut in functional genomics. J. Appl. Genet. 2011, 52, 371–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNally, K.L.; Naredo, M.E.; Cairns, J. SNP discovery at candidate genes for drought responsiveness in rice. In Drought Frontiers in Rice: Crop Improvement for Increased Rainfed Production; World Scientific: Singapore, 2009; pp. 311–324. [Google Scholar] [CrossRef]
- Maxted, N.; Kell, S.; Brehm, J.M.; Jackson, M.; Ford-Lloyd, B.; Parry, M. Crop wild relatives and climate change. Plant. Genet. Resour. Clim. Chang. 2013, 291, 141. [Google Scholar]
- Azam-Ali, S.; Azam-Ali, S.N.; Aguilar-Manjarrez, J.; Bannayan-Avval, M. A Global Mapping System for Bambara Groundnut Production; Food & Agriculture Org: Rome, Italy, 2001; Volume 1, p. 55. [Google Scholar]
- Chai, H.H.; Massawe, F.; Mayes, S. Effects of mild drought stress on the morpho-physiological characteristics of a bambara groundnut segregating population. Euphytica 2015, 208, 225–236. [Google Scholar] [CrossRef]
- Vurayai, R.; Emongor, V.; Moseki, B. Physiological responses of bambara groundnut (Vigna subterranea L. Verdc) to short periods of water stress during different developmental stages. Asian J. Agric. Sci. 2011, 3, 37–43. [Google Scholar]
- Ganjeali, A.; Porsa, H.; Bagheri, A. Assessment of Iranian chickpea (Cicer arietinum L.) germplasms for drought tolerance. Agric. Water Manag. 2011, 98, 1477–1484. [Google Scholar] [CrossRef]
- Beebe, S.E.; Rao, I.M.; Blair, M.W.; Acosta-Gallegos, J.A. Phenotyping common beans for adaptation to drought. Front. Physiol. 2013, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- Karikari, S.; Tabona, T. Constitutive traits and selective indices of Bambara groundnut (Vigna subterranea (L) Verdc) landraces for drought tolerance under Botswana conditions. Phys. Chem. Earth Parts A/B/C 2004, 29, 1029–1034. [Google Scholar] [CrossRef]
- Fischer, K.S.; Fukai, S.; Kumar, A.; Leung, H.; Jongdee, B. Field Phenotyping Strategies and Breeding for Adaptation of Rice to Drought†. Front. Physiol. 2012, 3, 282. [Google Scholar] [CrossRef] [Green Version]
- Mateva, K.I.; Chai, H.H.; Mayes, S.; Massawe, F. Root Foraging Capacity in Bambara Groundnut (Vigna Subterranea (L.) Verdc.) Core Parental Lines Depends on the Root System Architecture during the Pre-Flowering Stage. Plants 2020, 9, 645. [Google Scholar] [CrossRef]
- Khan, F.; Chai, H.H.; Ajmera, I.; Hodgman, C.; Mayes, S.; Lu, C. A Transcriptomic Comparison of Two Bambara Groundnut Landraces under Dehydration Stress. Genes 2017, 8, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abejide, D.R.; Falusi, A.O.; Adebola, M.O.; Gana, A.S.; Muhammad, L.M.; Gado, A.A. Evaluation of drought tolerance indices in some nigerian bambara groundnut (Vigna subterranea L. VERDC.) landraces. Int. J. Adv. Biotechnol. Res. 2017, 8, 142–148. [Google Scholar]
- Ahmad, N.S.; Basu, S.M.; Redjeki, E.S.; Murchie, E.; Massawe, F.; Azam-Ali, S.; Kilian, A.; Mayes, S. Developing genetic mapping and marker-assisted breeding techniques in Bambara groundnut (Vigna subterranea L.). Acta Hortic. 2013, 979, 437–450. [Google Scholar] [CrossRef]
- Falk, K.G.; Jubery, T.Z.; Mirnezami, S.V.; Parmley, K.A.; Sarkar, S.; Singh, A.; Ganapathysubramanian, B.; Singh, A.K. Computer vision and machine learning enabled soybean root phenotyping pipeline. Plant. Methods 2020, 16, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Tuberosa, R. Phenotyping for drought tolerance of crops in the genomics era. Front. Physiol. 2012, 3, 347. [Google Scholar] [CrossRef] [Green Version]
Institution Name | Accession No. | % of Total | PGR Type % | |||
---|---|---|---|---|---|---|
Landrace | Wild Type | Unknown | ||||
1 | IITA-GRC—Nigeria | 2031 | 33 | 100 | <1 | * |
2 | ORSTOM—France | 1416 | 23 | 100 | * | * |
3 | Department of Agriculture | 338 | 6 | 2 | * | 98 |
4 | Plant Genetic Resources Research Institute—Ghana | 296 | 5 | * | * | 100 |
5 | National Plant Genetic Resource Centre—Tanzania | 283 | 5 | 81 | <1 | 18 |
6 | National Plant Genetic Resource Centre—Zambia | 232 | 4 | 100 | * | * |
7 | Unspecified * | 1549 | 25 | 59 | 1 | 40 |
Total | 6145 | 100 |
Initial Accession No. | Core Subset Accession No. | Traits | Marker/Breeding System | References | |
---|---|---|---|---|---|
1 | 223 | 24 | Not indicated | AFLP | |
2 | 123 | 24 | Not indicated | SSR | [24] |
3 | Not indicated | 12 | Plant architecture, drought, photoperiod | SSD | [50] |
Population | Marker | Application | References |
---|---|---|---|
Bi-parental (VSSP11 × Dip C) | 67 AFLPs and 1 SSR marker | Construct first linkage map of 516 cM and 20 linkage groups | Basu et al. (2007) |
Bi-parental population | marker bgPabg-596774 | MAS for yield-related components | Ahmad et al. (2011) |
- | SSR and DArT | Genetic diversity and linkage map construction. | Khan et al. (2016) |
Bi-parental F5 (DipC × Tiga Nicuru) | 165 gene expression markers | Map construction (920.3 cM) for domestication traits | Chai (2014) |
F2 (IITA686 × Ankpa4) | SSR and DArT | Ho et al. (2017) | |
F3 (Tiga Necaru × DipC) | SSR and DArT | Khan et al. (2016) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasipanodya, J.T.; Horn, L.N.; Achigan-Dako, E.G.; Musango, R.; Sibiya, J. Utilization of Plant Genetic Resources of Bambara Groundnut Conserved Ex Situ and Genetic Diversification of Its Primary Genepool for Semi-Arid Production. Agriculture 2022, 12, 492. https://doi.org/10.3390/agriculture12040492
Pasipanodya JT, Horn LN, Achigan-Dako EG, Musango R, Sibiya J. Utilization of Plant Genetic Resources of Bambara Groundnut Conserved Ex Situ and Genetic Diversification of Its Primary Genepool for Semi-Arid Production. Agriculture. 2022; 12(4):492. https://doi.org/10.3390/agriculture12040492
Chicago/Turabian StylePasipanodya, Josephine Tafadzwa, Lydia Ndinelao Horn, Enoch Gbenato Achigan-Dako, Rudo Musango, and Julia Sibiya. 2022. "Utilization of Plant Genetic Resources of Bambara Groundnut Conserved Ex Situ and Genetic Diversification of Its Primary Genepool for Semi-Arid Production" Agriculture 12, no. 4: 492. https://doi.org/10.3390/agriculture12040492
APA StylePasipanodya, J. T., Horn, L. N., Achigan-Dako, E. G., Musango, R., & Sibiya, J. (2022). Utilization of Plant Genetic Resources of Bambara Groundnut Conserved Ex Situ and Genetic Diversification of Its Primary Genepool for Semi-Arid Production. Agriculture, 12(4), 492. https://doi.org/10.3390/agriculture12040492