Real Drivers and Spatial Characteristics of CO2 Emissions from Animal Husbandry: A Regional Empirical Study of China
Abstract
:1. Introduction
2. Description of the Data Sources
3. Model Designation
3.1. Carbon Emission Accounting of Animal Husbandry
3.2. Driving Factor Decomposition
3.3. LMDI Decomposition
- (1)
- Additive Decomposition:
- (2)
- Additive Decomposition:
- (3)
- Additive Decomposition of Animal Husbandry:
- (4)
- Multiplicative Decomposition of Animal Husbandry:
4. Results and Analysis
4.1. Animal Husbandry CO2 eq Emissions and Driving Factor Decomposition
4.2. Accounting of Total Carbon Emissions by Provinces and Decomposition of Driving Factors
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Green, F.; Stern, N. China’s changing economy: Implications for its carbon dioxide emissions. Clim. Policy 2017, 17, 423–442. [Google Scholar] [CrossRef] [Green Version]
- Arora, V.; Vamvakidis, A. China’s economic growth: International spillovers. China World Econ. 2011, 19, 31–46. [Google Scholar] [CrossRef]
- Yu, B.; Zhao, G.; An, R.; Chen, J.; Tan, J.; Li, X. Research on China’s CO2 Emission Pathway under Carbon Neutral Target. J. Beijing Inst. Technol. Sci. Ed. 2021, 23, 17–24. [Google Scholar] [CrossRef]
- Beach, R.H.; DeAngelo, B.J.; Rose, S.; Li, C.; Salas, W.; DelGrosso, S.J. Mitigation potential and costs for global agricultural greenhouse gas emissions. Agric. Econ. 2008, 38, 109–115. [Google Scholar] [CrossRef]
- Wang, H.; Qiao, J. Decoupling and predictive analysis of greenhouse gas emission from animal husbandry in China. Chin. J. Eco-Agric. 2019, 27, 793–802. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, X.; Zhang, H.; Chen, G.; Wang, X. Carbon emission analysis of a residential building in China through life cycle assessment. Front. Environ. Sci. Eng. 2014, 10, 150–158. [Google Scholar] [CrossRef]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.N.; Luan, W.X.; Wang, H.; Yang, Y.J. Environmental and economic benefits of carbon emission reduction in animal husbandry via the circular economy: Case study of pig farming in Liaoning, China. J. Clean. Prod. 2019, 238, 117968. [Google Scholar] [CrossRef]
- Dennehy, C.; Lawlor, P.G.; Jiang, Y.; Gardiner, G.E.; Xie, S.; Nghiem, L.D.; Zhan, X. Greenhouse gas emissions from different pig manure management techniques: A critical analysis. Front. Environ. Sci. Eng. 2017, 11, 1–16. [Google Scholar] [CrossRef]
- Kumari, S.; Fagodiya, R.K.; Hiloidhari, M.; Dahiya, R.P.; Kumar, A. Methane production and estimation from livestock husbandry: A mechanistic understanding and emerging mitigation options. Sci. Total Environ. 2020, 709, 136135. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Henderson, B.; Havlík, P.; Thornton, P.K.; Conant, R.T.; Smith, P.; Wirsenius, S.; Hristov, A.N.; Gerber, P.; Gill, M.; et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Chang. 2016, 6, 452–461. [Google Scholar] [CrossRef] [Green Version]
- Yao, C.; Qian, S.; Mao, Y.; Li, Z. Decomposition of impacting factors of animal husbandry carbon emissions change and its spatial differences in China. Trans. Chin. Soc. Agric. Eng. 2017, 33, 10–19. [Google Scholar]
- Bai, Z.; Ma, W.; Ma, L.; Velthof, G.L.; Wei, Z.; Havlík, P.; Oenema, O.; Lee, M.R.F.; Zhang, F. China’s livestock transition: Driving forces, impacts, and consequences. Sci. Adv. 2018, 4, eaar8534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, X.W.; Zhanli, S.U.; Müller, D. Driving factors of direct greenhouse gas emissions from China’s pig industry from 1976 to 2016. J. Integr. Agric. 2021, 20, 319–329. [Google Scholar] [CrossRef]
- You, W.; Lv, Z. Spillover effects of economic globalization on CO2 emissions: A spatial panel approach. Energy Econ. 2018, 73, 248–257. [Google Scholar] [CrossRef]
- Hao, Y.; Ba, N.; Ren, S.; Wu, H. How does international technology spillover affect China’s carbon emissions? A new perspective through intellectual property protection. Sustain. Prod. Consum. 2021, 25, 577–590. [Google Scholar] [CrossRef]
- Philippe, F.X.; Nicks, B. Review on greenhouse gas emissions from pig houses: Production of carbon dioxide, methane and nitrous oxide by animals and manure. Agric. Ecosyst. Environ. 2015, 199, 10–25. [Google Scholar] [CrossRef] [Green Version]
- Shanmugam, S.; Dalal, R.C.; Joosten, H.; Raison, R.J.; Joo, G.K. SOC stock changes and greenhouse gas emissions following tropical land use conversions to plantation crops on mineral soils, with a special focus on oil palm and rubber plantations. Agric. 2018, 8, 133. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Wang, J. Estimation of livestock greenhouse gases discharge in China. Nongye Gongcheng Xuebao/Transactions Chinese Soc. Agric. Eng. 2010, 26, 247–252. [Google Scholar] [CrossRef]
- Ortega-Ruiz, G.; Mena-Nieto, A.; García-Ramos, J.E. Is India on the right pathway to reduce CO2 emissions? Decomposing an enlarged Kaya identity using the LMDI method for the period 1990–2016. Sci. Total Environ. 2020, 737, 139638. [Google Scholar] [CrossRef]
- Ang, B.W. LMDI decomposition approach: A guide for implementation. Energy Policy 2015, 86, 233–238. [Google Scholar] [CrossRef]
- Ang, B.W. The LMDI approach to decomposition analysis: A practical guide. Energy Policy 2005, 33, 867–871. [Google Scholar] [CrossRef]
- Li, L.; Hong, X.; Peng, K. A spatial panel analysis of carbon emissions, economic growth and high-technology industry in China. Struct. Chang. Econ. Dyn. 2019, 49, 83–92. [Google Scholar] [CrossRef]
- Berhanu, Y.; Angassa, A.; Aune, J.B. A system analysis to assess the effect of low-cost agricultural technologies on productivity, income and GHG emissions in mixed farming systems in southern Ethiopia. Agric. Syst. 2021, 187, 102988. [Google Scholar] [CrossRef]
- Yang, J.; Chen, B. Using LMDI method to analyze the change of industrial CO2 emission from energy use in Chongqing. Front. Earth Sci. 2011, 5, 103–109. [Google Scholar] [CrossRef]
- Yu, Y.; Jiang, T.; Li, S.; Li, X.; Gao, D. Energy-related CO2 emissions and structural emissions’ reduction in China’s agriculture: An input–output perspective. J. Clean. Prod. 2020, 276, 124169. [Google Scholar] [CrossRef]
- Todde, G.; Caria, M.; Gambella, F.; Pazzona, A. Energy and carbon impact of precision livestock farming technologies implementation in the milk chain: From dairy farm to cheese factory. Agriculture 2017, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- Agras, J.; Chapman, D. A dynamic approach to the Environmental Kuznets Curve hypothesis. Ecol. Econ. 1999, 28, 267–277. [Google Scholar] [CrossRef]
- Lu, C.; Venevsky, S.; Shi, X.; Wang, L.; Wright, J.S.; Wu, C. Econometrics of the environmental Kuznets curve: Testing advancement to carbon intensity-oriented sustainability for eight economic zones in China. J. Clean. Prod. 2021, 283, 124561. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Z.M.; Xiao, H.; Yang, W.; Liu, D.; Chen, B. Driving factors of carbon dioxide emissions in China: An empirical study using 2006-2010 provincial data. Front. Earth Sci. 2017, 11, 156–161. [Google Scholar] [CrossRef]
- Zhang, L.; Pang, J.; Chen, X.; Lu, Z. Carbon emissions, energy consumption and economic growth: Evidence from the agricultural sector of China’s main grain-producing areas. Sci. Total Environ. 2019, 665, 1017–1025. [Google Scholar] [CrossRef]
- Panchasara, H.; Samrat, N.H.; Islam, N. Greenhouse gas emissions trends and mitigation measures in australian agriculture sector—A review. Agriculture 2021, 11, 85. [Google Scholar] [CrossRef]
- Shen, H.; Tao, S.; Chen, Y.Y.; Ciais, P.; Güneralp, B.; Ru, M.; Zhong, Q.; Yun, X.; Zhu, X.; Huang, T.; et al. Effect of Paddy-Upland Rotation System on the Net Greenhouse Gas Balance as the Sum of Methane and Nitrous Oxide Emissions and Soil Carbon Storage: A Case in Western Japan. Agriculture 2021, 11, 52. [Google Scholar] [CrossRef]
- Zhao, B.; Xu, J.; Hao, J. Impact of energy structure adjustment on air quality: A case study in Beijing, China. Front. Environ. Sci. Eng. China 2011, 5, 378–390. [Google Scholar] [CrossRef]
- Wang, C.; Zhan, J.; Bai, Y.; Chu, X.; Zhang, F. Measuring carbon emission performance of industrial sectors in the Beijing–Tianjin–Hebei region, China: A stochastic frontier approach. Sci. Total Environ. 2019, 685, 786–794. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Imura, H.; Chang, M.; Shi, F.; Tanikawa, H. Analysis of driving forces behind diversified carbon dioxide emission patterns in regions of the mainland of China. Front. Environ. Sci. Eng. China 2011, 5, 445–458. [Google Scholar] [CrossRef]
- Madden, S.M.; Ryan, A.; Walsh, P. Exploratory Study on Modelling Agricultural Carbon Emissions in Ireland. Agriculture 2022, 12, 34. [Google Scholar] [CrossRef]
- Wangui, J.C.; Kenyon, P.R.; Tozer, P.R.; Millner, J.P.; Pain, S.J. Bioeconomic modelling to assess the impacts of using native shrubs on the marginal portions of the sheep and beef hill country farms in new zealand. Agriculture 2021, 11, 1019. [Google Scholar] [CrossRef]
- Müller, C.; Robertson, R.D. Projecting future crop productivity for global economic modeling. Agric. Econ. 2014, 45, 37–50. [Google Scholar] [CrossRef]
- Xiao, H.; Zhou, Y.; Zhang, N.; Wang, D.; Shan, Y.; Ren, J. CO2 emission reduction potential in China from combined effects of structural adjustment of economy and efficiency improvement. Resour. Conserv. Recycl. 2021, 174, 105760. [Google Scholar] [CrossRef]
- Ge, S.; Yang, D.T.; Zhang, J. Population policies, demographic structural changes, and the Chinese household saving puzzle. Eur. Econ. Rev. 2018, 101, 181–209. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Wei, X.; Liu, J.; He, L.; Gao, M. Impact of high-speed rail on population mobility and urbanisation: A case study on Yangtze River Delta urban agglomeration, China. Transp. Res. Part A 2019, 127, 99–114. [Google Scholar] [CrossRef]
- Qi, W.; Li, G. Residential carbon emission embedded in China’s inter-provincial population migration. Energy Policy 2020, 136, 111065. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Bae, J. The impact of renewable energy and agriculture on carbon dioxide emissions: Investigating the environmental Kuznets curve in four selected ASEAN countries. J. Clean. Prod. 2017, 164, 1239–1247. [Google Scholar] [CrossRef]
Species | Enteric Fermentation CH4 Emission Coefficient | Reference Source |
---|---|---|
Dairy cows | 92.23 | The Provincial Greenhouse Gas Inventory Preparation Guidelines (Trial) |
Non-dairy cow | 68.70 | The Provincial Greenhouse Gas Inventory Preparation Guidelines (Trial) |
Sheep | 5.00 | The 2006 IPCC National Greenhouse Gas Inventory Guidelines |
Goats | 5.00 | The 2006 IPCC National Greenhouse Gas Inventory Guidelines |
Hogs | 1.00 | The Provincial Greenhouse Gas Inventory Preparation Guidelines (Trial) |
Horses | 18.00 | Institute of Agricultural Economics and Development, Chinese Academy of Agricultural Sciences [19] |
Donkeys | 10.00 | Institute of Agricultural Economics and Development, Chinese Academy of Agricultural Sciences |
Mules | 10.00 | Institute of Agricultural Economics and Development, Chinese Academy of Agricultural Sciences |
Region | Dairy Cows | Non-Dairy Cow | Sheep | Goats | Pigs | Horses | Donkeys/Mules |
---|---|---|---|---|---|---|---|
North China | 7.46 | 2.87 | 0.15 | 0.17 | 3.12 | 1.09 | 0.60 |
Northeast China | 2.23 | 1.02 | 0.15 | 0.16 | 1.12 | 1.09 | 0.60 |
East China | 8.33 | 3.31 | 0.26 | 0.28 | 5.08 | 1.64 | 0.90 |
South China | 8.45 | 4.72 | 0.34 | 0.31 | 5.85 | 1.64 | 0.90 |
Southwest China | 6.51 | 3.21 | 0.48 | 0.53 | 4.18 | 1.64 | 0.90 |
Northwest China | 5.93 | 1.86 | 0.28 | 0.32 | 1.38 | 1.09 | 0.60 |
Region | Dairy Cows | Non-Dairy Cow | Sheep | Goats | Pigs | Horses | Donkeys/Mules |
---|---|---|---|---|---|---|---|
North China | 1.86 | 0.79 | 0.09 | 0.09 | 0.23 | 0.33 | 0.19 |
Northeast China | 1.10 | 0.91 | 0.06 | 0.06 | 0.27 | ||
East China | 2.07 | 0.85 | 0.11 | 0.11 | 0.18 | ||
South China | 1.71 | 0.80 | 0.11 | 0.11 | 0.16 | ||
Southwest China | 1.88 | 0.69 | 0.06 | 0.06 | 0.16 | ||
Northwest China | 1.45 | 0.55 | 0.07 | 0.07 | 0.19 |
Province | 2001 | 2004 | 2007 | 2010 | 2013 | 2016 | 2019 |
---|---|---|---|---|---|---|---|
China | 43,536.67 | 42,748.72 | 40,976.61 | 39,417.81 | 37,516.41 | 36,652.90 | 35,210.42 |
Beijing | 135.27 | 151.57 | 104.72 | 96.83 | 96.73 | 82.31 | 26.33 |
Tianjin | 119.32 | 173.44 | 100.85 | 111.80 | 114.79 | 117.53 | 94.12 |
Hebei | 2757.09 | 3077.29 | 1910.18 | 1672.86 | 1663.54 | 1635.14 | 1395.53 |
Shanxi | 884.89 | 849.62 | 529.61 | 483.67 | 532.62 | 558.77 | 542.33 |
Inner Mongolia | 1783.05 | 2714.54 | 2886.51 | 3104.39 | 2939.71 | 3099.89 | 3091.98 |
Liaoning | 995.79 | 1375.92 | 1270.63 | 1395.90 | 1399.86 | 1454.38 | 1032.60 |
Jilin | 1398.66 | 1527.09 | 1655.20 | 1419.62 | 1370.05 | 1337.96 | 1050.21 |
Heilongjiang | 1519.66 | 1822.14 | 1711.66 | 1777.19 | 1662.29 | 1654.26 | 1560.22 |
Shanghai | 69.07 | 26.29 | 41.90 | 51.80 | 52.08 | 36.36 | 24.50 |
Jiangsu | 751.43 | 772.19 | 455.07 | 479.93 | 474.69 | 458.09 | 250.83 |
Zhejiang | 349.48 | 348.49 | 253.97 | 287.30 | 287.65 | 159.88 | 132.85 |
Anhui | 1799.53 | 1699.33 | 706.08 | 756.79 | 799.47 | 818.53 | 531.58 |
Fujian | 484.58 | 507.14 | 394.71 | 414.10 | 417.24 | 361.34 | 207.09 |
Jiangxi | 1161.73 | 1173.44 | 799.88 | 957.91 | 1045.58 | 1032.82 | 831.28 |
Shandong | 3677.56 | 3788.83 | 2425.11 | 2171.20 | 2246.04 | 2216.16 | 1704.66 |
Henan | 4689.49 | 5176.26 | 3729.11 | 3723.77 | 3427.90 | 3359.32 | 1937.87 |
Hubei | 1378.20 | 1456.91 | 1235.24 | 1319.70 | 1393.91 | 1400.33 | 1005.35 |
Hunan | 1957.57 | 2336.99 | 1766.51 | 1882.74 | 1911.33 | 1923.54 | 1639.20 |
Guangdong | 1442.88 | 1319.15 | 941.11 | 956.30 | 983.98 | 939.64 | 545.85 |
Guangxi | 2503.71 | 2366.22 | 1406.79 | 1576.39 | 1613.68 | 1471.66 | 1165.54 |
Hainan | 444.39 | 446.72 | 260.62 | 314.94 | 297.64 | 269.92 | 169.88 |
Chongqing | 739.66 | 764.65 | 504.58 | 621.35 | 636.96 | 647.23 | 487.44 |
Sichuan | 3765.22 | 4081.64 | 3791.09 | 3706.71 | 3641.39 | 3649.30 | 2989.83 |
Guizhou | 2083.97 | 2361.55 | 1635.99 | 1719.84 | 1521.60 | 1653.24 | 1512.93 |
Yunnan | 2641.12 | 2645.62 | 2456.69 | 2572.88 | 2525.46 | 2679.30 | 2762.42 |
Tibet | 1803.65 | 1973.17 | 1969.62 | 1928.57 | 1919.83 | 1870.56 | 1796.81 |
Shaanxi | 912.15 | 1101.50 | 718.40 | 712.56 | 660.97 | 670.14 | 699.24 |
Gansu | 1295.50 | 1409.70 | 1537.47 | 1623.67 | 1643.01 | 1685.48 | 1698.72 |
Qinghai | 1423.67 | 1400.17 | 1483.36 | 1499.77 | 1493.96 | 1555.01 | 1546.27 |
Ningxia | 270.85 | 353.40 | 346.71 | 350.97 | 386.19 | 429.30 | 495.48 |
Xinjiang | 1967.97 | 2328.63 | 1949.93 | 1641.25 | 1908.48 | 2052.84 | 2284.11 |
Province | CO2T | CO2S1 | CO2S2 | CO2L | CO2P | Province | CO2T | CO2S1 | CO2S2 | CO2L | CO2P |
---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 97 | 96 | 88 | 113 | 103 | Hubei | 91 | 99 | 97 | 115 | 99 |
Tianjin | 96 | 98 | 94 | 110 | 103 | Hunan | 93 | 100 | 96 | 114 | 100 |
Hebei | 91 | 99 | 97 | 111 | 101 | Guangdong | 89 | 99 | 95 | 112 | 102 |
Shanxi | 89 | 101 | 97 | 114 | 101 | Guangxi | 89 | 98 | 97 | 114 | 100 |
Inner Mongolia | 93 | 101 | 96 | 116 | 100 | Hainan | 87 | 100 | 97 | 113 | 101 |
Liaoning | 92 | 101 | 99 | 110 | 100 | Chongqing | 91 | 99 | 95 | 117 | 99 |
Jilin | 90 | 103 | 97 | 112 | 100 | Sichuan | 91 | 100 | 96 | 115 | 99 |
Heilongjiang | 90 | 100 | 105 | 109 | 99 | Guizhou | 88 | 99 | 97 | 118 | 99 |
Shanghai | 102 | 96 | 90 | 110 | 102 | Yunnan | 90 | 101 | 97 | 115 | 101 |
Jiangsu | 90 | 98 | 95 | 114 | 101 | Tibet | 92 | 102 | 93 | 114 | 102 |
Zhejiang | 92 | 98 | 94 | 112 | 101 | Shaanxi | 89 | 100 | 96 | 117 | 100 |
Anhui | 87 | 101 | 94 | 115 | 100 | Gansu | 93 | 100 | 97 | 113 | 100 |
Fujian | 88 | 101 | 95 | 114 | 101 | Qinghai | 90 | 101 | 98 | 114 | 101 |
Jiangxi | 92 | 100 | 94 | 115 | 101 | Ningxia | 93 | 101 | 96 | 115 | 101 |
Shandong | 89 | 100 | 96 | 112 | 101 | Xinjiang | 91 | 101 | 98 | 112 | 102 |
Henan | 89 | 100 | 95 | 114 | 99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, X.; Wu, X.; Chen, Y.; He, Y.; Wang, F.; Liu, Y. Real Drivers and Spatial Characteristics of CO2 Emissions from Animal Husbandry: A Regional Empirical Study of China. Agriculture 2022, 12, 510. https://doi.org/10.3390/agriculture12040510
Dai X, Wu X, Chen Y, He Y, Wang F, Liu Y. Real Drivers and Spatial Characteristics of CO2 Emissions from Animal Husbandry: A Regional Empirical Study of China. Agriculture. 2022; 12(4):510. https://doi.org/10.3390/agriculture12040510
Chicago/Turabian StyleDai, Xiaowen, Xin Wu, Yi Chen, Yanqiu He, Fang Wang, and Yuying Liu. 2022. "Real Drivers and Spatial Characteristics of CO2 Emissions from Animal Husbandry: A Regional Empirical Study of China" Agriculture 12, no. 4: 510. https://doi.org/10.3390/agriculture12040510
APA StyleDai, X., Wu, X., Chen, Y., He, Y., Wang, F., & Liu, Y. (2022). Real Drivers and Spatial Characteristics of CO2 Emissions from Animal Husbandry: A Regional Empirical Study of China. Agriculture, 12(4), 510. https://doi.org/10.3390/agriculture12040510