Crayfish–Fish Aquaculture Ponds Exert Reduced Climatic Impacts and Higher Economic Benefits than Traditional Wheat–Rice Paddy Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Field Experiment Management
2.2.1. Winter Wheat–Rice Rotation Cropping System
2.2.2. Freshwater Crayfish Farming Aquaculture System
2.3. CH4 and N2O Flux Measurements
2.4. GWP and NEEB Calculation
2.5. Other Data Measurements
2.6. Statistical Analyses
3. Results
3.1. CH4 Emissions
3.2. N2O Emissions
3.3. GWP and NEEB
4. Discussion
4.1. Impact of Aquatic Vegetation on CH4 and N2O Emissions
4.2. Effect of Aquaculture Parameters on CH4 and N2O Fluxes
4.3. Comparison of GWP and NEEB from Agricultural Land Use Conversion
4.4. Limitations of This Study and Future Research Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, S.W.; Hu, Z.Q.; Wu, S.; Li, S.Q.; Li, Z.F.; Zou, J.W. Methane and nitrous oxide emissions reduced following conversion of rice paddies to inland crab-fish aquaculture in Southeast China. Environ. Sci. Technol. 2016, 50, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Hu, Z.; Hu, T.; Chen, J.; Yu, K.; Zou, J.; Liu, S. Annual methane and nitrous oxide emissions from rice paddies and inland fish aquaculture wetlands in southeast China. Atmos. Environ. 2018, 175, 135–144. [Google Scholar] [CrossRef]
- Saha, M.K.; Mia, S.; Biswas, A.A.A.; Sattar, M.A.; Kader, M.A.; Jiang, Z. Potential methane emission reduction strategies from rice cultivation systems in Bangladesh: A critical synthesis with global meta-data. J. Environ. Manag. 2022, 310, 114755. [Google Scholar] [CrossRef] [PubMed]
- Frolking, S.; Qiu, J.J.; Boles, S.; Xiao, X.M.; Liu, J.Y.; Zhuang, Y.H.; Li, C.S.; Qin, X.G. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Glob. Biogeochem. Cycles 2002, 16, 1180–1196. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Yu, Y.Q.; Huang, Y.; Li, T.; Wang, P. Modeling methane emissions from irrigated rice cultivation in China from 1960 to 2050. Glob. Chang. Biol. 2011, 17, 3511–3523. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, W.; Zheng, X.H.; Li, J.; Yu, Y. Modeling methane emission from rice paddies with various agricultural practices. J. Geophys. Res. Atmos. 2004, 109, D08113. [Google Scholar] [CrossRef]
- Gao, B.; Ju, X.T.; Zhang, Q.; Christie, P.; Zhang, F.S. New estimates of direct N2O emissions from Chinese croplands from 1980 to 2007 using localized emission factors. Biogeosciences 2011, 8, 3011–3024. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.Y.; Akiyama, H.; Yagi, K.; Akimoto, H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Glob. Biogeochem. Cycles 2009, 23, GB2002. [Google Scholar] [CrossRef]
- Zou, J.W.; Huang, Y.; Qin, Y.M.; Liu, S.W.; Shen, Q.R.; Pan, G.X.; Lu, Y.Y.; Liu, Q.H. Changes in fertilizer-induced direct N2O emissions from paddy fields during rice-growing season in China between 1950s and 1990s. Glob. Chang. Biol. 2009, 15, 229–242. [Google Scholar] [CrossRef]
- Zhou, F.; Shang, Z.; Zeng, Z.; Piao, S.; Ciais, P.; Raymond, P.; Wang, X.; Wang, R.; Chen, M.; Yang, C.; et al. New model for capturing the variations of fertilizer-induced emission factors of N2O. Glob. Biogeochem. Cycles 2015, 29, 885–897. [Google Scholar] [CrossRef]
- Hiraishi, T.; Krug, T.; Tanabe, K. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2014. [Google Scholar]
- Hu, Z.Q.; Wu, S.; Ji, C.; Zou, J.W.; Zhou, Q.S.; Liu, S.W. A comparison of methane emissions following rice paddies conversion to crab-fish farming wetlands in southeast China. Environ. Sci. Pollut. Res. 2016, 23, 1505–1515. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.C.; Sun, L.Y.; Liu, C.Y.; Yang, X.Y.; Zhou, W.; Yang, B.; Schwenke, G.; Liu, D.L. A comparison of methane and nitrous oxide emissions from inland mixed-fish and crab aquaculture ponds. Sci. Total Environ. 2018, 637–638, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Food and Agricultural Organization (FAO). The State of World Fisheries and Aquaculture; Food and Agricultural Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Ministry of Agriculture of P.R. China (MOA). China Fisheries Yearbook 2013. The Fishery Bureau; Ministry of Agriculture of P.R. China, Chinese Agriculture Press: Beijing, China, 2014.
- Ministry of Agriculture of P.R. China (MOA). Development Report of Crayfish Industry in China 2020; The Fishery Bureau, Ministry of Agriculture of P.R. China, Chinese Agriculture Press: Beijing, China, 2021.
- Mosier, A.R.; Halvorson, A.D.; Reule, C.A.; Liu, X.J. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in Northeastern Colorado. J. Environ. Qual. 2006, 35, 1584–1598. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.; Martino, D.; Cai, Z.C.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Philos. T. R. Soc. B. 2008, 363, 789–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Sun, W.J.; Zhang, W.; Yu, Y.Q.; Su, Y.H.; Song, C.C. Marshland conversion to cropland in northeast China from 1950 to 2000 reduced the greenhouse effect. Glob. Chang. Biol. 2010, 16, 680–695. [Google Scholar] [CrossRef]
- Ding, W.X.; Cai, Z.C.; Tsuruta, H. Plant species effects on methane emissions from freshwater marshes. Atmos. Environ. 2005, 39, 3199–3207. [Google Scholar] [CrossRef]
- Zou, J.W.; Huang, Y.; Jiang, J.Y.; Zheng, X.H.; Sass, R. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effect of water regime, crop residue, and fertilizer application. Glob. Biogeochem. Cycles 2005, 19, GB2021. [Google Scholar] [CrossRef]
- Liu, S.W.; Zhang, Y.J.; Lin, F.; Zhang, L.; Zou, J.W. Methane and nitrous oxide emissions from direct-seeded and seedling-transplanted rice paddies in southeast China. Plant Soil 2014, 374, 285–297. [Google Scholar] [CrossRef]
- Ding, W.X.; Zhang, Y.H.; Cai, Z.C. Impact of permanent inundation on methane emissions from a Spartina alterniflora coastal salt marsh. Atmos. Environ. 2010, 44, 3894–3900. [Google Scholar] [CrossRef]
- Lashof, D.A.; Ahuja, D.R. Relative contributions of greenhouse gas emissions to global warming. Nature 1990, 344, 529–553. [Google Scholar] [CrossRef]
- Robertson, G.; Grace, P. Greenhouse gas fluxes in tropical and temperate agriculture: The need for a full-cost accounting of global warming potentials. Environ. Dev. Sustain. 2004, 6, 51–63. [Google Scholar] [CrossRef]
- Qin, Y.M.; Liu, S.W.; Guo, Y.Q.; Liu, Q.H.; Zou, J.W. Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China. Biol. Fert. Soils 2010, 46, 825–834. [Google Scholar] [CrossRef]
- Shang, Q.Y.; Yang, X.X.; Gao, C.M.; Wu, P.P.; Liu, J.J.; Xu, Y.C.; Shen, Q.R.; Zou, J.W.; Guo, S.W. Net global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments. Glob. Chang. Biol. 2011, 17, 2196–2210. [Google Scholar] [CrossRef]
- Neubauer, S.; Megonigal, J. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 2015, 18, 1000–1013. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Fan, C.H.; Zhang, H.; Chen, Z.Z.; Sun, L.Y.; Xiong, Z.Q. Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China. Atmos. Environ. 2015, 100, 10–19. [Google Scholar] [CrossRef]
- Sun, Z.C.; Guo, Y.; Li, C.F.; Cao, C.G.; Yuan, P.L.; Zou, F.L.; Wang, J.H.; Jia, P.A.; Wang, J.P. Effects of straw returning and feeding on greenhouse gas emissions from integrated rice-crayfish farming in Jianghan Plain, China. Environ. Sci. Pollut. Res. 2019, 26, 11710–11718. [Google Scholar] [CrossRef]
- Lu, R.K. Methods of Soil and Agro-Chemical Analysis; China Agricultural Science & Technology Press: Beijing, China, 2000. [Google Scholar]
- Qin, W.; Zhou, X.; Xu, Z.H.; Liu, G.F.; Zhang, P.; Bai, A.X. Characteristics of Flora Community in Sediment in Red Swamp Crayfish Procambarus clarkii Ponds with Different Stocking Density and Aquatic Vegetation. Fish. Sci. 2015, 34, 621–628. [Google Scholar]
- Wang, H.J.; Liu, J.W.; Wang, W.D.; Yang, L.Y.; Yin, C.Q. Methane fluxes from the littoral zone of hypereutrophic Taihu Lake, China. J. Geophys. Res. Atmos. 2006, 111, D17109. [Google Scholar] [CrossRef]
- Wang, Y.H.; Yang, H.; Ye, C.; Chen, X.; Xie, B.; Huang, C.C.; Zhang, J.X.; Xu, M.N. Effects of plant species on soil microbial processes and CH4 emission from constructed wetlands. Environ. Pollut. 2013, 174, 273–278. [Google Scholar] [CrossRef]
- Bhullar, G.; Edwards, P.J.; Venterink, H.O. Influence of different plant species on methane emissions from soil in a restored Swiss wetland. PLoS ONE 2014, 9, e89588. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.C.; Kong, X.W.; Yang, B.; Zhang, X.L.; Yan, X.Y.; Yang, J.C.; Xiong, Z.Q. Net global warming potential and greenhouse gas intensity of annual rice-wheat rotations with integrated soil-crop system management. Agric. Ecosyst. Environ. 2013, 164, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Maucieri, C.; Barbera, A.; Vymazal, J.; Borin, M. A review on the main affecting factors of greenhouse gases emission in constructed wetlands. Agric. For. Meteorol. 2017, 236, 175–193. [Google Scholar] [CrossRef]
- Stadmark, J.; Leonardson, L. Emissions of greenhouse gases from ponds constructed for nitrogen removal. Ecol. Eng. 2005, 25, 542–551. [Google Scholar] [CrossRef]
- Frei, M.; Razzak, M.A.; Hossain, M.M.; Oehme, M.; Dewan, S.; Becher, K. Methane emissions and related physicochemical soil and water parameters in rice-fish systems in Bangladesh. Agric. Ecosyst. Environ. 2007, 120, 391–398. [Google Scholar] [CrossRef]
- Akter, M.; Deroo, H.; Kamal, A.M.; Kader, M.A.; Verhoeven, E.; Decock, C.; Boeckx, P.; Sleutel, S. Impact of irrigation management on paddy soil N supply and depth distribution of abiotic drivers. Agric. Ecosyst. Environ. 2018, 261, 12–24. [Google Scholar] [CrossRef]
- Yang, P.; Bastviken, D.; Lai, D.; Jin, B.S.; Mou, X.J.; Tong, C.; Yao, Y.C. Effects of coastal marsh conversion to shrimp aquaculture ponds on CH4 and N2O emissions. Estuar. Coast. Shelf S. 2017, 199, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.W.; Qin, Y.M.; Zou, J.W.; Liu, Q.H. Effects of water regime during rice-growing season on annual direct N2O emissions in a paddy rice-winter wheat rotation system in southeast China. Sci. Total Environ. 2010, 408, 906–913. [Google Scholar] [CrossRef]
- Paudel, S.R.; Choi, O.; Khanal, S.K.; Chandran, K.; Kim, S.; Lee, J.W. Effects of temperature on nitrous oxide (N2O) emission from intensive aquaculture system. Sci. Total Environ. 2015, 518–519, 16–23. [Google Scholar] [CrossRef]
- Huttunen, J.T.; Väisänen, T.S.; Hellsten, S.K.; Martikainen, P.J. Methane fluxes at the sediment-water interface in some boreal lakes and reservoirs. Boreal Environ. Res. 2006, 11, 27–34. [Google Scholar]
- Bastviken, D.; Ejlertsson, J.; Tranvik, L. Measurement of methane oxidation in lakes: A comparison of methods. Environ. Sci. Technol. 2002, 36, 3354–3361. [Google Scholar] [CrossRef]
- Schrier-Uijl, A.; Veraart, A.; Leffelaar, P.; Veenendaal, E. Release of CO2 and CH4 from lakes and drainage ditches in temperate wetlands. Biogeochemistry 2011, 102, 265–279. [Google Scholar] [CrossRef] [Green Version]
- Barnes, J.; Owens, N.J.P. Denitrification and nitrous oxide concentrations in the Humber Estuary, UK, and adjacent coastal zones. Mar. Pollut. Bull. 1999, 37, 247–260. [Google Scholar] [CrossRef]
- Yagi, K.; Minami, K. Effect of organic matter application on methane emission from some Japanese paddy fields. Soil Sci. Plant Nutr. 1990, 36, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Kulshreshtha, K.; Agnihotri, S. Seasonal dynamics of methane emission from wetlands. Chemosphere Glob. Chang. Sci. 2000, 2, 39–46. [Google Scholar] [CrossRef]
- Hu, Z.; Lee, J.W.; Chandran, K.; Kim, S.; Sharma, K.; Khanal, S.K. Influence of carbohydrate addition on nitrogen transformations and greenhouse gas emissions of intensive aquaculture system. Sci. Total Environ. 2014, 470, 193–200. [Google Scholar] [CrossRef]
- Jarusutthirak, C.; Amy, G. Role of soluble microbial products (SMP) in membrane fouling and flux decline. Environ. Sci. Technol. 2006, 40, 969–974. [Google Scholar] [CrossRef]
- Garcia-Ruiz, R.; Pattinson, S.; Whitton, B. Denitrification in river sediments: Relationship between process rate and properties of water and sediment. Freshw. Biol. 1998, 39, 467–476. [Google Scholar] [CrossRef]
- Barnes, J.; Upstill-Goddard, R.C. N2O seasonal distributions and air-sea exchange in UK estuaries: Implications for the tropospheric N2O source from European coastal waters. J. Geophys. Res. 2011, 116, G01006. [Google Scholar] [CrossRef]
- Cole, J.J.; Bade, D.L.; Bastviken, D.; Pace, M.L.; Van de Bogert, M. Multiple approaches to estimating air-water gas exchange in small lakes. Limnol. Oceanogr. Meth. 2010, 8, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Song, D.Y.; Zhang, J.X.; Li, X.J.; Chen, Y.; Zhang, J.C. Design of Procambarus clarkia culture pond and feeding management. Hennan Fish. 2018, 6, 4–6. [Google Scholar]
- Hirota, M.; Tang, Y.H.; Hu, Q.W.; Hirata, S.; Kato, T.; Mo, W.H.; Cao, G.M.; Mariko, S. Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland. Soil Biol. Biochem. 2004, 36, 737–748. [Google Scholar] [CrossRef]
- Bastviken, D.; Cole, J.J.; Pace, M.L.; van de Bogert, M.C. Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4 emissions. J. Geophys. Res. 2008, 113, 61–74. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, Q.A.; Peng, C.H.; Wu, N.; Wang, Y.F.; Fang, X.Q.; Jiang, H.; Xiang, W.H.; Chang, J.; Deng, X.W.; et al. Methane emissions from rice paddies, natural wetlands, lakes in China: Synthesis new estimate. Glob. Chang. Biol. 2013, 19, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.F.; Gu, X.H.; Chen, X.; Mao, Z.G. The impact of Chinese mitten crab culture on water quality, sediment and the pelagic and macrobenthic community in the reclamation area of Guchenghu Lake. Fish. Sci. 2013, 79, 689–697. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Guo, L.J.; Liu, T.Q.; Li, C.F.; Cao, C.G. Effects of tillage practices and straw returning methods on greenhouse gas emissions and net ecosystem economic budget in rice–wheat cropping systems in central China. Atmos. Environ. 2015, 122, 636–644. [Google Scholar] [CrossRef]
Agroecosystem | pH | Bulk Density g cm−3 | Dissolved Organic Carbon mg kg−1 | Total Nitrogen g kg−1 | Total Organic Carbon g kg−1 |
---|---|---|---|---|---|
Winter wheat–rice paddy | 6.8 ± 0.05 | 1.10 ± 0.16 | 218.5 ± 13.1 | 1.71 ± 0.15 | 16.1 ± 1.09 |
Crayfish farming wetland | 7.0 ± 0.02 | 1.25 ± 0.26 | 190.6 ± 8.8 | 1.42 ± 0.14 | 14.0 ± 0.68 |
Winter Wheat–Rice Rotation | Freshwater Crayfish–Fish Aquaculture | ||
---|---|---|---|
Date | Key Practice Involved | Date | Key Practice Involved |
12 November 2019 | Basal fertilizing (45%) | 13 November 2019 | Drying pond |
13 November 2019 | Wheat sowing | 13 December 2019 | Pond dredging and sunning |
17 December 2019 | Fertilizing at turning-green stage (30%) | 5 March 2020 | Pond flooding |
27 March 2020 | Fertilizing at booting stage (25%) | 7 March 2020 | Pond disinfection |
2 June 2020 | Harvest | 22 March 2020 | Planting Elodea canadensis |
3 June 2020–23 June 2020 | Wheat−rice fallow | 2 April 2020 | Freshwater crayfish stocking |
24 June 2020 | Basal fertilizing (40%) | 18 April 2020 | Planting Hydrilla verticillata |
25 June 2020 | Rice transplanting | 20 April 2020 | Snail stocking |
7 July 2020 | Fertilizing at tillering stage (40%) | 25 April 2020 | Planting Vallisneria natans |
2 August 2020 | Drainage initiated | 28 April 2020 | Bighead carp stocking |
12 August 2020 | Fertilizing at heading stage (20%) | 1 May 2020 | Mandarin fish stocking |
23 October 2020 | Harvest | 5 June 2020 | Freshwater crayfish and fish harvest |
24 October 2020–11 November 2020 | Rice−wheat fallow | 12 November 2020 | Drying ponds again |
5 November 2020–10 November 2020 | Fish harvest |
Wetlands a | CH4 (kg ha−1) | N2O (kg ha−1) | GWP b (kg CO2-eq ha−1 yr−1) | NEEB c (CNY ha−1) | ||||
---|---|---|---|---|---|---|---|---|
Wheat Season/ Drainage Period | Rice Season/ Flooding Period | Annual | Wheat Season/ Drainage Period | Rice Season/ Flooding Period | Annual | |||
Winter wheat–rice rotation | 4.56 ± 0.69 a | 54.42 ± 8.79 a | 58.80 ± 9.45 a | 7.50 ± 1.82 a | 4.78 ± 1.16 a | 12.28 ± 2.98 a | 5962 ± 1221 a | 15.28 ± 1.25 a |
Freshwater crayfish–fish aquaculture d | 1.36 ± 0.36 b | 30.14 ± 8.35 bc | 31.50 ± 8.70 bc | 1.95 ± 0.54 b | 2.04 ± 0.58 b | 3.99 ± 1.11 b | 2494 ± 691 b | 89.38 ± 12.7 b |
WAV | 1.46 ± 0.44 b | 38.13 ± 11.60 ab | 39.59 ± 12.04 b | 1.74 ± 0.52 b | 2.07 ± 0.62 b | 3.81 ± 1.13 b | 2810 ± 844 b | |
OAV | 1.21 ± 0.23 b | 18.15 ± 3.50 c | 19.36 ± 3.73 c | 2.26 ± 0.58 b | 1.99 ± 0.51 b | 4.25 ± 1.08 b | 2019 ± 461 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Gu, C.; Maucieri, C.; Shi, F.; Zhao, Y.; Feng, C.; Cao, Y.; Zhang, Y. Crayfish–Fish Aquaculture Ponds Exert Reduced Climatic Impacts and Higher Economic Benefits than Traditional Wheat–Rice Paddy Cultivation. Agriculture 2022, 12, 515. https://doi.org/10.3390/agriculture12040515
Hu Z, Gu C, Maucieri C, Shi F, Zhao Y, Feng C, Cao Y, Zhang Y. Crayfish–Fish Aquaculture Ponds Exert Reduced Climatic Impacts and Higher Economic Benefits than Traditional Wheat–Rice Paddy Cultivation. Agriculture. 2022; 12(4):515. https://doi.org/10.3390/agriculture12040515
Chicago/Turabian StyleHu, Zhiqiang, Caiyun Gu, Carmelo Maucieri, Fei Shi, Yufei Zhao, Chenlong Feng, Yan Cao, and Yaojun Zhang. 2022. "Crayfish–Fish Aquaculture Ponds Exert Reduced Climatic Impacts and Higher Economic Benefits than Traditional Wheat–Rice Paddy Cultivation" Agriculture 12, no. 4: 515. https://doi.org/10.3390/agriculture12040515
APA StyleHu, Z., Gu, C., Maucieri, C., Shi, F., Zhao, Y., Feng, C., Cao, Y., & Zhang, Y. (2022). Crayfish–Fish Aquaculture Ponds Exert Reduced Climatic Impacts and Higher Economic Benefits than Traditional Wheat–Rice Paddy Cultivation. Agriculture, 12(4), 515. https://doi.org/10.3390/agriculture12040515