Use of Botanical Pesticides in Agriculture as an Alternative to Synthetic Pesticides
Abstract
:1. Introduction
2. Status of Botanical Pesticides
Bioactive Compounds from Botanicals
3. Application of Botanical Pesticides
3.1. Insecticidal Activities
3.2. Fungi Management
3.3. Bacteria Management
3.4. Nematodes Management
3.5. Viruses Management
4. Challenges of Botanical Pesticides
5. Conclusions and Recommendations
- Considering the huge quantum of raw materials required to produce plant-based pesticides, intensive cultivation of plant sources should be done to ensure the availability of raw materials for industrial uses.
- Further studies to address the limitations confronted with botanical pesticides bordering on formulations, active ingredients, application rates, storage stability, and volatility under ultraviolet light may enhance the significant commercialization of botanical pesticides.
- In a bid to facilitate market penetration of botanical pesticides, there is a need for collaboration among researchers, investors, manufacturers, marketers, and farmers with the sole aim of sustainable benefits that must be established.
- Addressing the huge constraints of regulatory procedures might promote feasibility and affordability of businesses that would encourage entrepreneurs, public funding of agro-programs, investors, and large pesticide companies to enhance the enterprising of botanical pesticides.
- Regular training on easy production and application techniques by low-income farmers and extension workers to disseminate botanical pesticide usage is essential for better adoption.
- Considering the concerns for environmental safety across the globe, there is a need to promote intensive awareness by government agencies among farmers and manufacturers by sensitizing them to the importance of switching over to botanical pesticides for a sustainable pest management approach.
- Thus, various aspects bordering on constraints, prospects, and regulatory networks towards effective utilization, research, and development of botanical pesticides in sustainable agricultural production should be reviewed often.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grassini, P.; Eskridge, K.M.; Cassman, K.G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 2013, 4, 2918. [Google Scholar] [CrossRef] [PubMed]
- Archana Singh, S.K. Biopesticides for integrated crop management: Environmental and regulatory aspects. J. Biofertil. Biopestic. 2014, 5, e121. [Google Scholar] [CrossRef] [Green Version]
- Donatelli, M.; Magarey, R.D.; Bregaglio, S.; Willocquet, L.; Whish, J.P.M.; Savary, S. Modelling the impacts of pests and diseases on agricultural systems. Agric. Syst. 2017, 155, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Nkechi, E.F.; Ejike, O.G.; Ihuoma, N.J.; Maria-Goretti, O.C.; Francis, U.; Godwin, N.; Njokuocha, R. Effects of aqueous and oil leaf extracts of Pterocarpus santalinoides on the maize weevil, Sitophilus zeamais, pest of stored maize grains. Afr. J. Agric. Res. 2018, 13, 617–626. [Google Scholar] [CrossRef] [Green Version]
- Shabana, Y.M.; Abdalla, M.E.; Shahin, A.A.; El-Sawy, M.M.; Draz, I.S.; Youssif, A.W. Efficacy of plant extracts in controlling wheat leaf rust disease caused by Puccinia triticina. Egypt. J. Basic Appl. Sci. 2017, 1, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S. Biopesticides: A Need for Food and Environmental Safety. J. Biofertil. Biopestici. 2012, 3, e107. [Google Scholar] [CrossRef]
- Fountain, E.D.; Wratten, S.D. Conservation biological control and biopesticides in agricultural. Encycl. Ecol. 2013, 1, 377–381. [Google Scholar] [CrossRef]
- Lushchak, V.I.; Matviishyn, M.; Husak, V.V. Pesticide toxicity: A mechanistic approach. EXCLI J. 2018, 17, 1101. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Kumari, K.A.; Kumar, K.N.R.; Rao, C.N. Adverse effects of chemical fertilizers and pesticides on human health and environment. J. Chem. Pharm. Res. 2014, 3, 150–151. [Google Scholar]
- Damalas, C.A.; Koutroubas, S.D. Farmers’ exposure to pesticides: Toxicity types and ways of prevention. Toxics 2016, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilden, R.C.; Huffling, K.; Sattler, B. Pesticides and health risks. J. Obstet. Gynecol. Neonatal Nurs. 2010, 39, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, P.C.; Nyirenda, S.P.; Mvumi, B.M.; Sola, P.; Kamanula, J.F.; Sileshi, G.W.; Belmain, S.R. Pesticidal plants: A viable alternative insect pest management approach for resource-poor farming in Africa. In Botanicals in Environment and Food Security; Koul, O., Dhaliwal, G.S., Khokhar, S., Singh, R., Eds.; Scientific Publishers: Jodhpur, India, 2012; pp. 212–238. [Google Scholar]
- Belmain, S.R.; Haggar, J.; Holt, J.; Stevenson, P.C. Managing Legume Pests in Sub-Saharan Africa: Challenges and Prospects for Improving Food Security and Nutrition through Agro-Ecological Intensification; Natural Resources Institute, University of Greenwich: Chatham Maritime, UK, 2013; p. 34. [Google Scholar]
- Sande, D.; Mullen, J.; Wetzstein, M.; Houston, J. Environmental impacts from pesticide use: A case study of soil fumigation in Florida tomato production. Int. J. Environ. Res. Public Health 2011, 12, 4649–4661. [Google Scholar] [CrossRef] [PubMed]
- Wimalawansa, S.A.; Wimalawansa, S.J. Agrochemical-related environmental pollution: Effects on human health. Glob. J. Biol. Agric. Health Sci. 2014, 3, 72–83. [Google Scholar]
- Sola, P.; Mvumi, B.M.; Ogendo, J.O.; Mponda, O.; Kamanula, J.; Nyirenda, S.P.; Belmain, S.R.; Stevenson, P.C. Botanical pesticide production, trade and regulatory mechanisms in sub-Saharan Africa: Making a case for plant-based pesticidal products. Food Secur. 2014, 6, 369–384. [Google Scholar] [CrossRef]
- Williamson, S.; Ball, A.; Pretty, J. Trends in pesticide use and drivers for safer pest management in four African countries. Crop Prot. 2008, 27, 1327–1334. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). 2011. Available online: http://www.unep.org/chemicalsandwaste/UNEPsWork/Pesticides/tabid/298/Default.aspx (accessed on 20 September 2021).
- Mahmood, I.; Imadi, S.R.; Shazadi, K.; Gul, A.; Hakeem, K.R. Effects of pesticides on environment. In Plant, Soil and Microbes; Springer: Cham, Switzerland, 2016; pp. 253–269. [Google Scholar] [CrossRef]
- Hikal, W.M.; Baeshen, R.S.; Said-AlAhl, H.A. Botanical insecticide as simple extractives for pest control. Cogent Biol. 2017, 3, 1404274. [Google Scholar] [CrossRef]
- Stankovic, S.; Kostic, M.; Kostic, I.; Krnjajic, K. Practical Approaches to Pest Control: The Use of Natural Compounds. In Pests-Classification, Management and Practical Approaches; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Raja, N. Botanicals: Sources for eco-friendly biopesticides. J. Biofertil. Biopestic. 2014, 5, e122. [Google Scholar] [CrossRef] [Green Version]
- Nikkhah, M.; Hashemi, M.; Mohammad, B.; Habibi, N.; Farhoosh, R. Synergistic effects of some essential oils against fungal spoilage on pear fruit. Int. J. Food Microbiol. 2017, 257, 285–294. [Google Scholar] [CrossRef]
- Misra, H.P. Role of botanicals, biopesticides and bioagents in integrated pest management. Odisha Rev. 2014, 2, 62–67. [Google Scholar]
- Erenso, T.F.; Berhe, D.H. Effect of neem leaf and seed powders against adult maize weevil (Sitophilus zeamais Motschulsky) mortality. Agric. Res. 2016, 2, 90–94. [Google Scholar] [CrossRef] [Green Version]
- Jawalkar, N.; Zambare, S.; Zanke, S. Insecticidal property of Datura stramonium L. seed extracts against Sitophilus oryzae L. (Coleoptera: Curculionidae) in stored wheat grains. J. Entomol. Zool. Stud. 2016, 4, 92–96. [Google Scholar]
- Arnason, J.T.; Sims, S.R.; Scott, I.M. Natural products from plants as insecticides. Encycl. Life Support Syst. 2012, pp. 1–8. Available online: http://www.eolss.net/sample-chapters/c06/e6-151-13.pdf (accessed on 25 September 2021).
- Mkenda, P.A.; Stevenson, P.C.; Ndakidemi, P.; Farman, D.I.; Belmain, S.R. Contact and fumigant toxicity of five pesticidal plants against Callosobruchus maculatus (Coleoptera: Chrysomelidae) in stored cowpea (Vigna unguiculata). Int. J. Trop. Insect Sci. 2015, 35, 172–184. [Google Scholar] [CrossRef]
- Stevenson, P.C.; Isman, M.B.; Belmain, S.R. Pesticidal plants in Africa: A global vision of new biological control products from local uses. Indust. Crops Prod. 2017, 110, 2–9. [Google Scholar] [CrossRef]
- Feyisa, B.; Lencho, A.; Selvaraj, T.; Getaneh, G. Evaluation of some botanicals and Trichoderma harzianum for the management of tomato root-knot nematode (Meloidogyne incognita (Kofoid and White) Chit Wood). Adv. Crop Sci. Technol. 2015, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Waziri, H.M.A. Plants as antiviral agents. J. Plant Pathol. Microbiol. 2015, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Ansari, M.S.; Moraiet, M.A. Demographic changes in Helicoverpa armigera after exposure to neemazal (1%EC azadirachtin). Crop Prot. 2013, 50, 30–36. [Google Scholar] [CrossRef]
- Neeraj, G.S.; Kumar, A.; Ram, S.; Kumar, V. Evaluation of nematicidal activity of ethanolic extracts of medicinal plants to Meloidogyne incognita (kofoid and white) chitwood under lab conditions. Int. J. Pure Appl. Biosci. 2017, 1, 827–831. [Google Scholar] [CrossRef]
- Liu, X.L.; Li, L.; Sun, T.; Fu, S.J.; Hu, M.Y.; Zhong, G.H. Inhibition of Echinochloa crusgalli using bioactive components from the stems and leaves of Camellia oleifera. Int. J. Agric. Biol. 2017, 195, 1031–1038. [Google Scholar] [CrossRef]
- Roy, S.; Handique, G.; Muraleedharan, N.; Dashor, K.; Roy, S.M.; Mukhopadhyay, A.; Babu, A. Use of plant extracts for tea pest management in India. Appl. Microbiol. Biotechnol. 2016, 100, 4831–4844. [Google Scholar] [CrossRef]
- Yao, Y.; Cai, W.; Yang, C.; Hua, H. Supercritical fluid CO2 extraction of Acorus calamus L. (Arales: Araceae) and its contact toxicity to Sitophilus zeamais Motschusky (Coleoptera: Curculionidae). Nat. Prod. Res. 2012, 26, 1498–1503. [Google Scholar] [CrossRef]
- Madhiazhagan, K.; Ramadoss, N.; Anuradha, R. Effect of botanicals on bacterial blight of rice. J. Mycol. Plant Pathol. 2002, 32, 68–69. [Google Scholar]
- Ponnanna, K.M.; Adiver, S.S. Fungicidal management of grey mildew of cotton. Plant Pathol. Newsl. 2001, 19, 6–8. [Google Scholar]
- Jha, M.M.; Kumar, S.; Hasan, S. Effect of botanicals on maydis leaf blight of maize in vitro. Ann. Biol. 2004, 20, 173–176. [Google Scholar]
- Abd-El-Khair, H.; Wafaa, M.H. Application of Some Egyptian Medicinal Plant Extracts Against Potato Late and Early Blights. Res. J. Agric. Biol. Sci. 2007, 3, 166–175. [Google Scholar]
- Sumitra, A.; Kanojia, A.K.; Kumar, A.; Mogha, N.; Sahu, V. Biopesticide formulation to control tomato lepidopteran pest menace. Curr. Sci. 2014, 7, 1051–1057. [Google Scholar]
- Sales, M.D.C.; Costa, H.B.; Patrícia, M.B.F.; Jose, A.V.; Debora, D.M. Antifungal activity of plant extracts with potential to control plant pathogens in pineapple. Asian Pac. J. Trop. Biomed. 2016, 1, 26–31. [Google Scholar] [CrossRef]
- Muthomi, J.; Fulano, A.M.; Wagacha, J.M.; Mwang’ombe, A.W. Management of snap bean insect pests and diseases by use of antagonistic fungi and plant extracts. Sustain. Agric. Res. 2017, 6, 52. [Google Scholar] [CrossRef] [Green Version]
- Mougou, I.; Boughalleb-M’hamdi, N. Biocontrol of Pseudomonas syringae pv. Syringae affecting citrus orchards in Tunisia by using indigenous Bacillus spp. and garlic extract. Egypt. J. Biol. Pest Control 2018, 28, 60. [Google Scholar] [CrossRef]
- Suryawanshi, A.P.; Ladkat, G.M.; Dhoke, P.K.; Surayawanshi, S.D.; Pensalwar, S.N. Evaluation of some plant extracts against Sclerotium rolfsii on pigeonpea. J. Plant Dis. Sci. 2007, 2, 32–33. [Google Scholar]
- Okwute, S.K. Plants as potential sources of pesticidal agents: A review. In Pesticides—Advances in Chemical and Botanical Pesticides; Soundararajan, R.P., Ed.; InTech: San Francisco, CA, USA, 2012; pp. 207–323. [Google Scholar]
- Chougule, P.M.; Andoji, Y.S. Antifungal activity of some common medicinal plant extracts against soil borne phytopathogenic fungi Fusarium oxysporum causing wilt of tomato. Int. J. Dev. Res. 2016, 6, 7030–7033. [Google Scholar]
- Ngegba, P.M.; Kanneh, S.M.; Bayon, M.S.; Ndoko, E.J.; Musa, P.D. Fungicidal effect of three plants extracts in control of four phytopathogenic fungi of tomato (Lycopersicum esculentum L.) fruit rot. Int. J. Environ. Agric. Biotechnol. 2018, 1, 112–117. [Google Scholar] [CrossRef]
- Ntalli, N.; Bratidou Parlapani, A.; Tzani, K.; Samara, M.; Boutsis, G.; Dimou, M.; Monokrousos, N. Thymus citriodorus (Schreb) botanical products as ecofriendly nematicides with bio-fertilizing properties. Plants 2020, 9, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowers, J.H.; Locke, J.C. Effect of botanical extracts on the population density of Fusarium oxysporum in soil and control of Fusarium wilt in the greenhouse. Plant Dis. 2000, 84, 300–305. [Google Scholar] [CrossRef] [Green Version]
- Izah, S.C.; Etim, N.G.; Ilerhunmwuwa, I.A.; Silas, G. Evaluation of crude and ethanolic extracts of Capsicum frutescens var. minima fruit against some common bacterial pathogens. Int. J. Complement Alt. Med. 2019, 12, 105–108. [Google Scholar] [CrossRef]
- Ogundele, R.A.; Oyedele, D.J.; Adekunle, O.K. Management of Meloidogyne incognita and other phytonematodes infecting Amaranthus cruentus and Telfairia occidentalis with African marigold (Tagetes erecta) and Siam weed (Chromolaena odorata). Australas. Plant Pathol. 2016, 45, 537–545. [Google Scholar] [CrossRef]
- Jing, L.; Lei, Z.; Li, L.; Xie, R.; Xi, W.; Guan, Y.; Sumner, L.W.; Zhou, Z. Antifungal Activity of Citrus Essential Oils. J. Agric. Food Chem. 2014, 62, 3011–3033. [Google Scholar] [CrossRef]
- Mandal, S.; Mandal, M. Coriander (Coriandrum sativum L.) essential oil: Chemistry and biological activity. Asian Pac. J. Trop. Biomed. 2015, 5, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Gamboa-Angulo, M.M.; Cristóbal-Alejo, J.; Medina-Baizabal, I.L.; Chí-Romero, F.; Méndez-González, R.; Simá-Polanco, P.; May-Pat, F. Antifungal properties of selected plants from the Yucatan peninsula, Mexico. World J. Microbiol. Biotechnol. 2008, 24, 1955–1959. [Google Scholar] [CrossRef]
- Acedo, A.L., Jr.; Acedo, J.Z.; Evangelio, M.F.N. Post harvest biocontrol of bacterial soft rot of cabbage using botanicals. Philipp. J. Crop Sci. 1999, 24, 12. [Google Scholar]
- Cui, G.F.; Yuan, H.Q.; He, W.; Deng, Y.K.; Sun, R.R.; Zhong, G.H. Synergistic effects of botanical curcumin-induced programmed cell death on the management of Spodoptera litura Fabricius with avermectin. Ecotoxicol. Environ. Saf. 2022, 229, 113097. [Google Scholar] [CrossRef] [PubMed]
- Veeran, S.; Cui, G.F.; Shu, B.S.; Yi, X.; Zhong, G.H. Curcumin-induced autophagy and nucleophagy in Spodoptera frugiperda Sf9 insect cells occur via PI3K/AKT/TOR pathways. J. Cell. Biochem. 2019, 120, 2119–2137. [Google Scholar] [CrossRef] [PubMed]
- Veeran, S.; Shu, B.S.; Cui, G.F.; Fu, S.J.; Zhong, G.H. Curcumin induces autophagic cell death in Spodoptera frugiperda cells. Pestic. Biochem. Physiol. 2017, 139, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Dabur, R.; Chhillar, A.K.; Yadav, V.; Kamal, P.K.; Gupta, J.; Sharma, G.L. In vitro antifungal activity of 2-(3,4-dimethyl-2,5-dihydro-1H-pyrrol-2-yl)-1-methylethyl pentanoate, a dihydropyrrole derivative. J. Med. Microbial. 2005, 54, 549–552. [Google Scholar] [CrossRef]
- Pande, P.C.; Chauhan, J. Screening of in vitro antifungal activity of plant extract of Datura stramonium, Solanum nigrum and Withania somnifera. J. Plant Dev. Sci. 2011, 3, 315–316. [Google Scholar]
- Patil, V.S.; Kulkarni, S. Bio-Efficacy of certain botanicals against colony growth and spore germination of Exserohilum hawaiiensis, a causal agent of leaf blight of wheat. Karnataka J. Agric. Sci. 2002, 15, 391–396. [Google Scholar]
- Prasad, C.S.; Gupta, V.; Tyagi, A.; Pathak, S. Biological control of Sclerotium rolfsii Sacc., the incitant of cauliflower collar rot. Ann. Plant Prot. Sci. 2003, 11, 61–63. [Google Scholar]
- Patni, C.S.; Kolte, S.J.; Awasthi, R.P. Inhibitory effect of some plant extracts against Alternaria brassicae, causing Alternaria blight of mustard. J. Res. SKUAST-J. 2005, 4, 71–79. [Google Scholar]
- Alabi, D.A.; Oyero, J.A.; Amusa, N.A. Fungitoxic and Phytotoxic Effects of vernonia amygdalina (L.), Bryophyllum pinnantus Kurz Ocimum gratissimum (Closium) L. and Eucalyptna globules (Caliptos) Labill Water Extracts on Cowpea and Cowpea seedling pathogens in Ago-Iwoye, South Western Nigeria. World J. Agric. Sci. 2005, 1, 70–75. [Google Scholar]
- Katooli, N.; Maghsodlo, R.; Razavi, S.E. Evaluation of eucalyptus essential oil against some plant pathogenic fungi. J. Plant Breed. Crop Sci. 2011, 3, 41–43. [Google Scholar]
- Zhao, L.; Feng, C.; Hou, C.; Hu, L.; Wang, Q.; Wu, Y. First discovery of acetone extract from cottonseed oil sludge as a novel antiviral agent against plant viruses. PLoS ONE 2015, 2, e0117496. [Google Scholar] [CrossRef] [PubMed]
- Jantasorn, A.; Boontida, M.; Tida, D. In vitro antifungal activity evaluation of fve plant extracts against fve plant pathogenic fungi causing rice and economic crop diseases. J. Biopestic. 2016, 1, 1–7. [Google Scholar]
- Hsieh, T.F. Effect of leaf extract of Hydnocarpus on control of anthracnose of Chinese cabbage caused by Colletotrichum higginsianum. Acad. J. Med. Plants 2018, 6, 255–261. [Google Scholar] [CrossRef]
- Fayaz, M.; Bhat, M.H.; Fayaz, M.; Kumar, A.; Jain, A.K. Antifungal activity of Lantana camara L. leaf extracts in different solvents against some pathogenic fungal strains. Pharmacologia 2017, 8, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Sreeramulu, A.; Arunakumari, M.; Lakshmi, N.R.P. Antifungal Activity of Wild Sage (Lantana camara) against Colletotrichum falcatum. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1847–1852. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Zheng, X. Essential oils to control Alternaria alternata in vitro and in vivo. Food Control 2007, 18, 1126–1130. [Google Scholar] [CrossRef]
- Mermer-Doğu, D.; Zobar, D. Effects of some plant essential oils against Botrytis cinerea and Tetranychus urticae on grapevine. Turk. J. Agric. Nat. Sci. 2014, 1, 1268–1273. [Google Scholar]
- Suleiman, M.N. Antifungal properties of leaf extract of neem and tobacco on three fungal pathogens of tomato (Lycopersicon esculentum Mill). Adv. Appl. Sci. Res. 2011, 2, 217–220. [Google Scholar]
- Ogbebor, N.; Adekunle, A.T. Inhibition of conidial germination and mycelial growth of Corynespora cassiicola (Berk and Curt) of rubber (Hevea brasiliensis muell. Arg.) using extracts of some plants. Afr. J. Biotechnol 2005, 4, 996–1000. [Google Scholar]
- Ushamalini, C.; Rajappan, K.; Gangadharan, K. Suppression of charcoal rot and wilt pathogens of cowpea by botanicals. Plant Dis. Res. 1997, 12, 113–117. [Google Scholar]
- Pramanick, T.C.; Phookan, A.K. Effect of plant extracts in the management of sheath rot of rice. J. Agric. Sci. Soc. North East India 1998, 11, 85–87. [Google Scholar]
- Tomar, M.; Chandel, S. Use of phytoextracts in the management of Gladiolus wilt. J. Mycol. Plant Pathol. 2006, 36, 142–144. [Google Scholar]
- Weng, Q.F.; Zhong, G.H.; Hu, M.Y.; Luo, J.J.; Li, X.G. Bioactivities and physiological effects of extracts of Peganum harmala against Bursaphelenchus xylophilus. Sci. Agric. Sin. 2005, 38, 2014–2022. [Google Scholar] [CrossRef]
- Sharoba, A.M.; El Mansy, H.A.; El Tanahy, H.H.; El Waseif, K.H.; Ibrahim, M.A. Chemical composition, antioxidant and antimicrobial properties of the essential oils and extracts of some aromatic plants. Middle East J. Appl. Sci. 2015, 2, 344–352. [Google Scholar]
- Jnaid, Y.; Yacoub, R.; Al-Biski, F. Antioxidant and antimicrobial activities of Origanum vulgare essential oil. Int. Food Res. J. 2016, 4, 1706–1710. [Google Scholar]
- Satish, S.; Raveesha, K.A.; Janardhana, G.R. Antibacterial activity of plant extracts on phytopathogenic Xanthomonas campestris pathovars. Lett. Appl. Microbiol. 1999, 28, 145–147. [Google Scholar] [CrossRef]
- Patel, P.; Joshi, C.; Birdi, T.; Kothari, V. Anti-infective efficacy of Psidium guajava L. leaves against certain pathogenic bacteria. F1000Research 2019, 3, 8–12. [Google Scholar] [CrossRef]
- Zhong, G.H.; Hu, M.Y.; Weng, Q.F.; Ma, A.Q.; Xu, W.S. Laboratory and field evaluations of extracts from Rhododendron molle flowers as insect growth regulator to imported cabbage worm, Pieris rapae L. (Lepidoptera:Pieridae). J. Appl. Entomol. 2001, 125, 563–569. [Google Scholar] [CrossRef]
- Doltsinis, S.K.; Markellou, E.; Kasselaki, A.M.; Fanouraki, M.N.; Koumaki, C.; Schmitt, M.A.; Tsakalidis, A.L.; Malathrakis, N.E. Efficacy of Milsana®, a Formulated Plant Extract from Reynoutria sachalinensis, against Powdery Mildew of Tomato (Leveillula taurica). BioControl 2006, 51, 375–392. [Google Scholar] [CrossRef]
- Widmer, T.L.; Laurent, N. Plant extracts containing caffeic acid and rosmarinic acid inhibit zoospore germination of Phytophthora spp. pathogenic to Theobroma cacao. Eur. J. Plant Pathol. 2006, 115, 377–388. [Google Scholar] [CrossRef]
- Ngegba, P.M.; Enikuomehin, O.A.; Afolabi, C.G.; Akintokun, A.K.; Egbontan, A.O.; Kanneh, S.M.; Samura, A.E. Evaluation of some Plant Extracts on Mycelial Growth and Sporulation Density of Fungal Pathogens of Groundnut (Arachis hypogaea L.) In-Vitro. Int. J. Dev. Res. 2017, 7, 13808–13814. [Google Scholar]
- Elbeshehy, E.K.F.; Metwali, E.M.R.; Almaghrabi, O.A. Antiviral activity of Thuja orientalis extracts against Watermelon Mosaic Virus (WMV) on Citrullus lanatus. Saudi J. Biol. Sci. 2015, 22, 211–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathur, K.; Gurjar, R.B.S. Evaluation of different fungal antagonists, plant extracts and oilcakes against Rhizoctonia solani, causing stem rot of chilli. Ann. Plant Prot. Sci. 2002, 10, 319–322. [Google Scholar]
- Purnima, D.; Saxena, S.K. Effect of Withania somnifera on fruit rot of tomato caused by Aspergillus niger in presence of Drosophila busckii. Indian Phytopathol. 2002, 55, 112–113. [Google Scholar]
- Al-Samarrai, G.; Singh, H.; Syarhabil, M. Evaluating eco-friendly botanicals (natural plant extracts) as alternatives to synthetic fungicides. Ann. Agric. Environ. Med. 2012, 19, 673–676. [Google Scholar]
- Rawal, P.; Adhikari, R.S. Evaluation of antifungal activity of Zingiber officinale against Fusarium oxysporum f.sp. lycopersici. Adv. Appl. Sci. Res. 2016, 7, 5–9. [Google Scholar]
- Singh, R.; Anuradha, S. Plant secondary metabolites in the sustainable diamondback moth (Plutella xylostella L.) management. Indian J. Fundam. Appl. Life Sci. 2011, 1, 295–309. [Google Scholar]
- Dixon, R.A. Natural products and plant disease resistance. Nature 2001, 411, 843–847. [Google Scholar] [CrossRef]
- Fischer, D.; Imholt, C.; Pelz, H.J.; Wink, M.; Prokop, A.; Jacob, J. The repelling effect of plant secondary metabolites on water voles, Arvicola amphibius. Pest Manag. Sci. 2013, 69, 437–443. [Google Scholar] [CrossRef]
- Devi1, M.R.; Meenakshi Bawari1 Paul, S.B.; Sharma, G.D. Neurotoxic and Medicinal Properties of Datura stramonium L. Review. Assam Univ. J. Sci. Technol. Biol. Environ. Sci. 2011, 7, 139–144. [Google Scholar]
- Jency, B.J.; George Jeevitha, M.V.; Sisssy, C. Pharmacological and biological overview on Calotropis gigantea: A comprehensive review. Int. Res. J. Pharm. Appl. Sci. 2013, 3, 219–223. [Google Scholar]
- Suresh Kumar, P.; Suresh, E.; Kalavathy, S. Review on a potential herb Calotropis gigantea (L.) R. Br. Sch. Acad. J. Pharm. 2013, 2, 135–143. [Google Scholar]
- Emimal Victoria, E. Pest infestation on the biochemical modulation of Adhatoda vasica. J. Biopestic. 2010, 3, 413–419. [Google Scholar]
- Nandre, B.N.; Bakliwal, S.R.; Rane, B.R.; Pawar, S.P. A Review on Adhatoda vasica. Pharma Science Monitor. Int. J. Pharm. Sci. 2012, 3, 3232–3245. [Google Scholar]
- Kumar, V.; Chandrashekar, K.; Sidhu, O.P. Efficacy of karanjin and different extracts of Pongamia pinnata against selected insect pests. J. Entomol. Res. 2006, 30, 103–108. [Google Scholar]
- Subbalakshmi Lokanadhan Muthukrishnan, P.; Jeyaraman, S. Neem products and their agricultural applications. J. Biopestic. 2012, 5, 72–76. [Google Scholar]
- Prowse, G.M.; Galloway, T.S.; Andrew, F. Insecticidal activity of garlic juice in two dipteran pests. Agric. For. Entomol. 2006, 8, 1–6. [Google Scholar] [CrossRef]
- Madhumathy, A.P.; Ali-Ashraf Aivazi Vijayan, A. Larvicidal efficacy of Capsicum annum against Anopheles stephensi and Culex quinquefasciatus. J. Vector Borne Dis. 2007, 44, 223–226. [Google Scholar]
- Nirmal, S.A.; Shashikant, R.; Pattan Shaikh, M.H.; Dhasade, V.V.; Mandal Subhash, C. An overview of Lantana camara: Chemistry and pharmacological profile. Pharmacol. Online Newsl. 2009, 3, 520–531. [Google Scholar]
- Singh, R.N.; Sharatchandra, B. The development of botanical products with special reference to seri-ecosystem. Casp. J. Environ. Sci. 2005, 3, 1–8. [Google Scholar]
- Dar, S.A.; Dar, N.A.; Bhat, M.A.; Bhat, M.H. Prospects, utilization and challenges of botanical pesticides in sustainable agriculture. Int. J. Mol. Biol. Biochem. 2014, 2, 1–14. [Google Scholar]
- Xu, H.X.; Zheng, X.S.; Yang, Y.J.; Tian, J.C.; Lu, Y.H.; Tan, K.H.; Heong, K.L.; Lu, Z.X. Methyl eugenol bioactivities as a new potential botanical insecticide against major insect pests and their natural enemies on rice (Oriza sativa). Crop Prot. 2015, 72, 144–149. [Google Scholar] [CrossRef]
- Oliveira, A.P.; Santana, A.S.; Santana, E.D.R.; Lima, A.P.S.; Faro, R.R.N.; Nunes, R.S.; Lima, A.D.; Blank, A.F.; Araújo, A.P.A.; Cristaldo, P.F.; et al. Nanoformulation prototype of the essential oil of Lippia sidoides and thymol to population management of Sitophilus zeamais (Coleoptera: Curculionidae). Ind. Crops Prod. 2017, 107, 198–205. [Google Scholar] [CrossRef]
- Štefanidesová, K.; Škultéty, L.; Sparagano, O.A.E.; Špitalská, E. The repellent efficacy of eleven essential oils against adult Dermacentor reticulatus ticks. Ticks Tick-Borne Dis. 2017, 8, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential oils in insect control: Lowrisk products in a high-stakes world. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R.; Benelli, G. Ethnobotanical knowledge on botanical repellents employed in the African region against mosquito vectors—A review. Exp. Parasitol. 2016, 167, 103–108. [Google Scholar] [CrossRef]
- Copping, L.G.; Duke, S.O. Natural products that have been used commercially as crop protection agents. Pest Manag. Sci. 2007, 63, 524–554. [Google Scholar] [CrossRef]
- Dayan, F.G.M.; Tellez, A.; Duke, S. Managing weeds with natural products. Pestic. Outlook 1992, 10, 185–188. [Google Scholar]
- Isman, M.B.; Machial, C.M. Pesticides based on plant essential oils: From traditional practice to commercialization. In Naturally Occuring Bioactive Compounds; Carpinella, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 29–44. [Google Scholar] [CrossRef]
- Isman, M.B.; Paluch, G. Chapter 7. Needles in the haystack: Exploring chemical diversity of botanical insecticides. In RSC Green Chemistry; Òscar, L., Fernàndez-Bolaños, J.G., Eds.; Royal Society of Chemistry: Cambridge, UK, 2011; pp. 248–265. [Google Scholar] [CrossRef]
- Akaike, A.; Izumi, Y. Overview. In Nicotinic Acetylcholine Receptor Signaling in Neuroprotection; Akaike, A., Shimohama, S., Misu, Y., Eds.; Springer: Singapore, 2018; pp. 1–15. [Google Scholar]
- Blotnick-Rubin, E.; Anglister, L. Fine Localization of Acetylcholinesterase in the Synaptic Cleft of the Vertebrate Neuromuscular Junction. Front. Mol. Neurosci. 2018, 11, 123. [Google Scholar] [CrossRef] [Green Version]
- Chowański, S.; Adamski, Z.; Marciniak, P.; Rosiński, G.; Büyükgüzel, E.; Büyükgüzel, K.; Bufo, S. A review of bioinsecticidal activity of Solanaceae alkaloids. Toxins 2016, 8, 60. [Google Scholar] [CrossRef] [Green Version]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rattan, R.S. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 2010, 29, 913–920. [Google Scholar] [CrossRef]
- Ware, G.W. An introduction to insecticides. In Radcliffe’s IPM World Textbook, 3rd ed.; Radcliffe, E.B., Hutchison, W.D., Eds.; MeisterPro Information Resources: Willoughby, OH, USA, 2000. [Google Scholar]
- Ware, G.W.; Whitacre, D.M. The Pesticide Book, 6th ed.; MeisterPro Information Resources: Willoughby, OH, USA, 2004; p. 488. [Google Scholar]
- Casida, J.; Durkin, K. Neuroactive Insecticides: Targets, Selectivity, Resistance, and Secondary Effects. Annu. Rev. Entomol. 2013, 58, 99–117. [Google Scholar] [CrossRef] [PubMed]
- Shivanandappa, T.; Rajashekar, Y. Mode of Action of Plant-Derived Natural Insecticides. In Advances in Plant Biopesticides, 1st ed.; Singh, D., Ed.; Springer: New Delhi, India, 2014; pp. 323–345. [Google Scholar]
- Hare, J.; Morse, J. Toxicity, Persistence, and Potency of Sabadilla Alkaloid Formulations to Citrus Thrips (Thysanoptera: Thripidae). J. Econ. Entomol. 1997, 90, 326–332. [Google Scholar] [CrossRef] [Green Version]
- Kostyukovsky, M.; Rafaeli, A.; Gileadi, C.; Demchenko, N.; Shaaya, E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manag. Sci. 2002, 58, 1101–1106. [Google Scholar] [CrossRef]
- Park, J.H.; Jeon, Y.J.; Lee, C.H.; Chung, N.; Lee, H.S. Insecticidal toxicities of carvacrol and thymol derived from Thymus vulgaris Lin. against Pochazia shantungensis Chou & Lu., newly recorded pest. Sci. Rep. 2017, 7, 40902. [Google Scholar] [CrossRef] [Green Version]
- Mordue, A.J.; Nisbet, A.J. Azadirachtin from the neem tree Azadirachta indica: Its action against insects. An. Soc. Entomol. Bras. 2000, 29, 615–632. [Google Scholar]
- Chengala, L.; Nandita, S. Review of Mode of action of some major botanical pesticides. Int. Res. J. Sci. Eng. 2018, 6, 2. [Google Scholar]
- Pavela, R. History, Presence and Perspective of Using Plant Extracts as Commercial Botanical Insecticides and Farm Products for Protection against Insects—A Review. Plant Protect. Sci. 2016, 4, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Oboh, G.; Ademosun, A.O.; Olumuyiwa, T.A.; Olasehinde, T.A.; Ademiluyi, A.O.; Adeyemo, A.C. Insecticidal activity of essential oil from orange peels (Citrus sinensis) against Tribolium confusum, Callosobruchus maculatus and Sitophilus oryzae and its inhibitory effects on acetylcholinesterase and Na+/K+-ATPase activities. Phytoparasitica 2017, 45, 501–508. [Google Scholar] [CrossRef]
- Karani, A.O.; Ndakidemi, P.A.; Mbega, E.R. Botanical pesticides in management of common bean pests: Importance and possibilities for adoption by small scale farmers in Africa. J. Appl. Life Sci. Int. 2017, 12, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Murovhi, J.; Phophi, M.M.; Mafongoya, P. Efficacy of Plant Materials in Controlling Aphids on Okra (Abelmoschus esculentus L. Moench) in Limpopo Province of South Africa. Agronomy 2020, 10, 1968. [Google Scholar] [CrossRef]
- Ahmad, T.; Fauzy, Z.M.; Yoshia Utami, T.; Arbianti, R.; Hermansyah, H. Production of bio-insecticide from extracted Carica papaya using NADES solvent with ultrasound-assisted extraction (UAE). In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 67, p. 03007. [Google Scholar] [CrossRef]
- Zobayer, N.; Hasan, R. Effects of manually processed Bio-pesticides on crop production and pest managements in okra (Abelmoschus esculentus (L.) Moench). J. Nat. Sci. Res. 2013, 3, 112–118. [Google Scholar]
- Dunkel, F.V.; Jaronski, S.T.; Sedlak, C.W.; Meiler, S.U.; Veo, K.D. Effects of Steam-Distilled Shoot Extract of Tagetes minuta L. (Asterales: Asteraceae) and Entomopathogenic Fungi on Larval Tetanops myopaeformis. Environ. Entomol. 2010, 39, 979–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Sun, T.; Sun, Z.P.; Li, H.Y.; Qi, X.X.; Zhong, G.H.; YI, X. Azadirachtin acting as a hazardous compound to induce multiple detrimental effects in Drosophila melanogaster. J. Hazard. Mater. 2018, 359, 338–347. [Google Scholar] [CrossRef]
- Boulahbel, B.; Aribi, N.; Kilani-Morakchi, S.; Soltani, N. Insecticidal activity of azadirachtin on Drosophila melanogaster and recovery of normal status by exogenous 20-hydroxyecdysone, Afr. Entomol. 2015, 23, 224–233. [Google Scholar] [CrossRef]
- Lai, D.; Jin, X.; Wang, H.; Yuan, M.; Xu, H. Gene expression profile change and growth inhibition in Drosophila larvae treated with azadirachtin. J. Biotechnol. 2014, 185, 51–56. [Google Scholar] [CrossRef]
- Asaduzzaman, M.; Shim, J.K.; Lee, S.; Lee, K.Y. Azadirachtin ingestion is lethal and inhibits expression of ferritin and thioredoxin peroxidase genes of the sweet potato whitefly Bemisia tabaci. J. Asia-Pac. Entomol. 2016, 19, 1–4. [Google Scholar] [CrossRef]
- Ahmad, K.; Adnan, M.; Khan, M.A.; Hussain, Z.; Junaid, K.; Saleem, N. Bioactive neem leaf powder enhances the shelf life of stored mungbean grains and extends protection from pulse beetle. Pak. J. Weed Sci. Res. 2015, 21, 71–81. [Google Scholar]
- Zanuncio, J.C.; Mourão, S.A.; Martínez, L.C.; Wilcken, C.F.; Ramalho, F.S.; Plata-Rueda, A. Toxic effects of the neem oil (Azadirachta indica) formulation on the stink bug predator, Podisus nigrispinus (Heteroptera: Pentatomidae). Sci. Rep. 2016, 6, 30261. [Google Scholar] [CrossRef]
- Singh, A.; Kataria, R.; Kumar, D. Repellence property of traditional plant leaf extracts against Aphis gossypii Glover and Phenacoccus solenopsis Tinsley. Afr. J. Agric. Res. 2012, 7, 1623–1628. [Google Scholar] [CrossRef]
- Brotodjojo, R.R.; Arbiwati, D. Effect of application of granular organic fertilizer enriched with boiler ash and neem leaves powder on plant resistance against insect pests. Int. J. Biosci. Biochem. Bioinform. 2016, 6, 152–157. [Google Scholar] [CrossRef] [Green Version]
- Bezzar-Bendjazia, R.; Kilani-Morakchi, S.; Aribi, N. Larval exposure to azadirachtin affects fitness and oviposition site preference of Drosophila melanogaster. Pestic. Biochem. Physiol. 2016, 133, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Coelho, C.A.A.; de Souza, N.A.; Feder, M.D.; d Silva, C.E.; Garcia, E.S.; Azambuja, P.; Gonzalez, M.S.; Rangel, E.F. Effects of Azadirachtin on the development and mortality of Lutzomyia longipalpis Larvae (Diptera: Psychodidae: Phlebotominae). J. Med. Entomol. 2006, 43, 262–266. [Google Scholar] [CrossRef]
- Jeyasankar, A.; Raja, N.; Ignacimuthu, S. Insecticidal compound isolated from Syzygium lineare Wall. (Myrtaceae) against Spodoptera litura (Lepidoptera: Noctuidae). Saudi J. Biol. Sci. 2011, 18, 329–332. [Google Scholar] [CrossRef] [Green Version]
- Yooboon, T.; Pluempanupat, W.; Koul, O.; Bulangpoti, V. Effects of azadirachtin on cuticular proteins of Spodoptera litura (Lepidoptera: Noctuidae) vis-à-vis the modes of application. Commun. Agric. Appl. Biol. Sci. 2015, 80, 169–177. [Google Scholar]
- Huang, T.T.; Ali, S.; Long, X.Z. Joint application of Isaria fumosorsea chitinase and azadirachtin as biopesticides against the diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae). Egypt. J. Biol. Pest Control 2016, 26, 539–543. [Google Scholar]
- Kilani-Morakchi, S.; Bezzar-Bendjazia, R.; Ferdenache, M.; Aribi, N. Preimaginal exposure to azadirachtin affects food selection and digestive enzymes in adults of Drosophila melanogaster (Diptera:Drosophilidae). Pestic. Biochem. Physiol. 2017, 140, 58–64. [Google Scholar] [CrossRef]
- Aribi, N.; Oulhaci, M.C.; Kilani-Morakchi, S.; Sandoz, J.C.; Kaiser, L.; Denis, B.; Joly, D. Azadirachtin impact on mate choice, female sexual receptivity and male activity in Drosophila melanogaster (Diptera: Drosophilidae). Pestic. Biochem. Physiol. 2017, 143, 95–101. [Google Scholar] [CrossRef]
- Bezzar-Bendjazia, R.; Kilani-Morakchi, S.; Aribi, N. Growth and molting disruption effects of azadirachtin against Drosophila melanogaster (Diptera: Drosophilidae). J. Entomol. Zool. Stud. 2016, 4, 363–368. [Google Scholar]
- Poland, T.M.; Haack, R.A.; Patrice, T.R.; Miller, D.L.; Bauer, L.S. Laboratory evaluation of the toxicity of systemic insecticides for control of Anoplophora glabripennis and Plectrodera scalator (Coleoptera: Cerambycidae). J. Econ. Entomol. 2006, 99, 85–93. [Google Scholar] [CrossRef]
- Abedi, Z.; Saber, M.; Vojoudi, S.; Mahdavi, V.; Parsaeyan, E. Acute, sublethal, and combination effects of azadirachtin and Bacillus thuringiensis on the cotton bollworm, Helicoverpa armigera. J. Insect Sci. 2014, 14, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, W.F.; De Meyer, L.R.; Guedes, N.C.; Smagghe, G. Lethal and sublethal effects of azadirachtin on the bumblebee Bombus terrestris (Hymenoptera:Apidae). Ecotoxicology 2015, 24, 130–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sankari, S.A.; Narayanasamy, P. Bio-efficacy of flash-based herbal pesticides against pests of rice and vegetables. Curr. Sci. 2007, 92, 811–816. [Google Scholar]
- Sousa, B.M.; Barbosa, D.B.; Santana, G.M.; Vieira, C.; Haralampidou, G. Applying plant oils to control fall army worm (Spodoptera frugiperda) in corn. Aust. J. Crop Sci. 2018, 12, 557–562. [Google Scholar]
- Sarma, R.; Adhikari, K.; Mahanta, S.; Khanikor, B. Combinations of plant essential oil based terpene compounds as larvicidal and adulticidal agent against Aedes aegypti (Diptera: Culicidae). Sci. Rep. 2019, 9, 9471. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, A.K.; Prajapati, V.; Verma, N.; Bahl, J.R.; Bansal, R.P.; Khanuja, S.P.S.; Kumar, S. Bioactivities of the leaf essential oil of Curcuma longa (var. Ch-66) on three species of stored-product beetles (Coleoptera). J. Econ. Entomol. 2002, 95, 183–189. [Google Scholar] [CrossRef]
- Pavela, R. Insecticidal and repellent activity of selected essential oils against of the pollen beetle, Meligethes aeneus (Fabricius) adults. Ind. Crops Prod. 2011, 34, 888–892. [Google Scholar] [CrossRef]
- Enan, E.E. Insecticidal activity of essential oils: Octopaminergic sites of action. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2001, 130, 325–337. [Google Scholar] [CrossRef]
- Baidoo, P.K.; Mochiah, M.B. Comparing the Effectiveness of Garlic (Allium sativum L.) and Hot Pepper (Capsicum frutescens L.) in the Management of the Major Pests of Cabbage Brassica oleracea (L.). Sustain. Agric. Res. 2016, 2, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Tavares, W.S.; Cruz, I.; Petacci, F.; Assis Júnior, S.L.; Freitas, S.S.; Zanuncio, J.C.; Serrão, J.E. Potential use of Asteraceae extracts to control Spodoptera frugiperda (Lepidoptera: Noctuidae) and selectivity to their parasitoids Trichogramma pretiosum (Hymenoptera: Trichogramma tidae) and Telenomus remus (Hymenoptera: Scelionidae). Ind. Crop. Prod. 2009, 30, 384–388. [Google Scholar] [CrossRef]
- Mukanga, M.; Deedat, Y.; Mwangala, F.S. Toxic effect of five plant extract against larger grain borer, Prostephanus truncates. Afr. J. Agric. Res. 2010, 5, 3369–3378. [Google Scholar]
- Okwute, S.K.; Onyia, R.; Anene, C.; Amodu, O.P. Protectant, insecticidal and antimicrobial potentials of Dalbergia saxatilis Hook f (Fabaceae). Afr. J. Biotechnol. 2009, 8, 6556–6560. [Google Scholar] [CrossRef]
- Dyer, L.A.J.; Richard Dodson, C.D. Isolation, synthesis, and evolutionary ecology of Piper Amides. In A Model Genus for Studies of Phytochemistry, Ecology, and Evolution; Dyer, L.A., Palmer, A.O.N., Eds.; Springer: Boston, MA, USA, 2004; pp. 117–139. [Google Scholar] [CrossRef]
- Elumalai, K.; Krishnappa, K.; Anandan, A.; Govindarajan, M.; Mathivanan, T. Larvicidal and ovicidal activity of seven essential oil against lepidopteran pest S. litura (Lepidoptera: Noctuidae). Int. J. Recent Sci. Res. 2010, 1, 8–14. [Google Scholar]
- Baskaran, J.; Arshid, G.; Krishnappa, K.; Elumalai, K. Larvicidal activity of selected plant essential oils against tobacco cut worm Spodoptera litura (Fab) (Lepidoptera: Noctuidae). Int. J. Curr. Adv. Res. 2012, 1, 13–17. [Google Scholar]
- Priyanka, B.; Srivastava, R.P. Larvicidal and growth regulatory activities of some essential oils against Asian army worm, Spodoptera litura (Fab.). J. Biopestic. 2012, 5, 186–190. [Google Scholar]
- Abida, Y.; Tabassum, F.; Zaman, S.; Chhabi, S.B.; Islam, N. Biological screening of Curcuma longa L. for insecticidal and repellent potentials against Tribolium castaneum (Herbst) adults. Univ. J. Zool. Rajshahi Univ. 2010, 28, 69–71. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Taning, C.N.T.; Bonneure, E.; Mangelinckx, S.; Smagghe, G.; Shah, M.M. Insecticidal activity of plant-derived extracts against different economically important pest insects. Phytoparasitica 2017, 45, 113–124. [Google Scholar] [CrossRef]
- Muzemu, S.; Mvumi, B.M.; Nyirenda, S.P.M.; Sileshi, G.W.; Sola, P.; Chikukura, L.; Kamanula, J.F.; Belmain, S.R.; Stevenson, P.C. Pesticidal Effects of Indigenous Plant Extracts against Rape Aphids and Tomato Red Spider Mites. Afr. Crop Sci. Conf. Proc. 2011, 10, 171–173. [Google Scholar]
- Shah, J.A.; Inayatullah, M.; Sohail, K.; Shah, S.F.; Shah, S.; Iqbal, T.; Usman, M. Efficacy of Botanical Extracts and a Chemical Pesticide against Tomato Fruit Worm, Helicoverpa armigera. Sarhad J. Agric. 2013, 1, 93–96. [Google Scholar]
- Nia, B.; Frah, N.; Azoui, I. Insecticidal Activity of Three Plants Extracts against Myzuspersicae (Sulzer, 1776) and Their Phytochemical Screening. Acta Agric. Slov. 2015, 2, 261–267. [Google Scholar] [CrossRef]
- Ali, S.; Muhammad, S.M.H.; Muneer, A.; Faisal, H.; Muhammad, F.; Dilbar, H.; Muhammad, S.; Abdul, G. Insecticidal activity of turmeric (Curcuma longa) and garlic (Allium sativum) extracts against red flour beetle, Tribolium castaneum: A safe alternative to insecticides in stored commodities. J. Entomol. Zool. Stud. 2014, 3, 201–205. [Google Scholar]
- Parwada, C.; Chikuvire, T.J.; Kamota, A.; Mandumbu, R.; Mutsengi, K. Use of botanical pesticides in controlling Sitophilus zeamais (maize weevil) on stored Zea mays (maize) grain. Mod. Concep. Deve. Agron. 2018, 4. [Google Scholar] [CrossRef]
- Yoon, M.; Cha, B.; Kim, J. Recent trends in studies on botanical fungicides in agriculture. Plant Pathol. J. 2013, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lengai, G.M.; Muthomi, J.W. Biopesticides and their role in sustainable agricultural production. J. Biosci. Med. 2018, 6, 7–41. [Google Scholar] [CrossRef] [Green Version]
- Martnez, A. Natural Fungicides Obtained from Plants, Fungicides for Plant and Animal Diseases. In Fungicides for Plant and Animal Diseases; Dhanasekaran, D., Ed.; IntechOpen: London, UK, 2012; pp. 953–978. [Google Scholar]
- Damalas, C.A. Potential uses of turmeric (Curcuma longa) products as alternative means of pest management in crop production. Review Article. Plant Omics J. 2011, 4, 136–141. [Google Scholar]
- Suleiman, M.N. Fungitoxic activity of Neem and Pawpaw leaves extracts on Alternaria solani, casual organism of Yam Rots. Adv. Environ. Biol. 2010, 4, 159–161. [Google Scholar]
- Cho, J.Y.; Choi, G.J.; Lee, S.W.; Jang, K.S.; Lim, H.K.; Lim, C.H.; Lee, S.O.; Cho, K.Y.; Kim, J.C. Antifungal activity against Colletotrichum spp. of curcuminoids isolated from Curcuma longa L. rhizomes. J. Microbiol. Biotechnol. 2006, 16, 280–285. [Google Scholar]
- Ferreira, F.D.; Mossini, S.A.G.; Ferreira, F.M.D.; Arrotéia, C.C.; da Costa, C.L.; Nakamura, C.V.M.; Machinski, M., Jr. The inhibitory effects of Curcuma longa L. essential oil and curcumin on Aspergillus flavus link growth and morphology. Sci. World J. 2013, 2013, 343804. [Google Scholar] [CrossRef] [Green Version]
- Sivaranjani, M.; Krishnan, S.R.; Kannappan, A.; Ramesh, M.; Ravi, A.V. Curcumin from Curcuma longa affects the virulence of Pectobacterium wasabiae and P. carotovorum subsp. carotovorumvia quorum sensing regulation. Eur. J. Plant Pathol. 2016, 146, 793–806. [Google Scholar] [CrossRef]
- Patrice, A.K.; Séka, K.; Francis, Y.K.; Théophile, A.S.; Fatoumata, F.; Diallo, H.A. Effects of Three Aqueous Plant Extracts in the Control of Fungi Associated with Post-harvest of Yam (Dioscorea alata). Int. J. Agron. Agric. Res. 2017, 3, 77–87. [Google Scholar]
- Enikuomehin, O.A.; Oyedeji, E.O. Fungitoxic effects of some plant extracts against tomato fruit rot pathogens. Arch. Phytopathol. Plant Prot. 2010, 43, 233–240. [Google Scholar] [CrossRef]
- Devi, K.B.; Pavankumar, P.; Bhadraiah, B. Antifungal Activity of Plant Extracts against Post-Harvest Fungal Pathogens. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 669–679. [Google Scholar] [CrossRef]
- Bomfim, S.N.; Lydiana, P.N.; Pinheiro, J.F.O.; Cassia, Y.K.; Galerani, S.A.M.; Renata, G.; Samuel, B.N.; Carlos, A.M.; Benicio, A.A.F.; Miguel, M.J. Antifungal activity and inhibition of fumonisin production by Rosmarinus officinalis essential oil in Fusarium verticillioides (Sacc.) Nirenberg. Food Chem. 2014, 166, 330–336. [Google Scholar] [CrossRef] [Green Version]
- Karimi, K.; Amini, J.; Harighi, B.; Bahramnejad, B. Evaluation of biocontrol potential of Pseudomonas and Bacillus spp against Fusarium wilt of chickpea. Aust. J. Crop Sci. 2012, 6, 695–703. [Google Scholar]
- Islam, R.M.D.; Mondal, C.; Hossain, I.; Meah, M.B. Organic management: An alternative to control late blight of potato and tomato caused by Phytophthora infestans. Int. J. Theor. Appl. Sci. 2013, 5, 32–42. [Google Scholar]
- Yamamoto-Ribeiro, M.M.; Grespan, R.; Kohiyama, C.Y.; Ferreira, F.D.; Mossini, S.A.; Silva, E.L.; Filho, B.A.; Mikcha, J.M.; Machinski, M., Jr. Effect of Zingiber officinale Essential Oil on Fusarium verticillioides and Fumonisin Production. Food Chem. 2013, 141, 3147–3152. [Google Scholar] [CrossRef] [Green Version]
- Abtew, A.; Subramanian, S.; Cheseto, X.; Kreiter, S.; Garzia, G.T.; Martin, T. Repellency of plant extracts against the legume flower thrips Megalurothrips sjostedti (Thysanoptera: Thripidae). Insects 2015, 6, 608–625. [Google Scholar] [CrossRef] [Green Version]
- Minz, S.; Samuel, C.O.; Tripathi, C.S. The Effect of Plant Extracts on the Growth of Wilt Causing Fungi Fusarium oxysporum. J. Pharm. Biol. Sci. 2012, 1, 13–16. [Google Scholar] [CrossRef]
- Perelló, A.; Noll, U.; Slusarenko, A.J. In vitro efficacy of garlic extract to control fungal pathogens of wheat. J. Med. Plants Res. 2013, 24, 1809–1817. [Google Scholar] [CrossRef]
- Cruz, M.E.S.; Schwan-Estrada, K.R.F.; Clemente, E.; Itako, A.T.; Stangarlin, J.R.; Cruz, M.J.S. Plant extracts for controlling the post-harvest anthracnose of banana fruit. Rev. Bras. De Plantas Med. 2013, 4, 727–733. [Google Scholar] [CrossRef] [Green Version]
- Djeussi, D.E.; Noumedem, J.A.K.; Seukep, J.A.; Fankam, A.G.; Voukeng, I.K.; Tankeo, S.B.; Nkuete, A.H.L.; Kuete, V. Antibacterial activities of selected edible plants extracts against multidrug-resistant Gram-negative bacteria. BMC Complementary Altern. Med. 2013, 13, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, R.; Islam, B.; Akram, M.; Shakil, S.; Ahmad, A.; Ali, S.M.; Siddiqui, M.; Khan, A.U. Antimicrobial activity of five herbal extracts against multi drug resistant (mdr) strains of bacteria and fungus of clinical origin. Molecules 2009, 14, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Plant, J.; Stephens, B. Evaluation of the antibacterial activity of a sizable set of essential oils. Med. Aromat. Plants. 2015, 4, 185. [Google Scholar] [CrossRef] [Green Version]
- Sateesh, K.; Marimuthu, B.; Thayumanavan, R.; Nandakumar, R.; Samiyappan, R. Antibacterial activity and induction of systemic resistance in rice by leaf extract of Datura metel against Rhizoctonia solani and Xanthomonas oryzae pv. Oryzae. Physiol. Mol. Plant Pathol. 2004, 65, 91–100. [Google Scholar]
- Meena, C.; Gopalakrishnan, J.; Dureja, P. Antibacterial Withametelin B from Datura metel against Xanthomonas oryzae pv. oryzae. Biopestic. Int. 2013, 9, 31–37. [Google Scholar]
- Abo-Elyousr, K.A.M.; Asran, M.R. Antibacterial activity of certain plant extracts against bacterial wilt of tomato. Arch. Phytopathol. Plant Prot. 2009, 42, 573–578. [Google Scholar] [CrossRef]
- Hassan, M.A.E.; Bereika, M.F.F.; Abo-Elnaga, H.I.G.; Sallam, M.A.A. Direct antimicrobial activity and induction of systemic resistance in potato plants against bacterial wilt disease by plant extracts. Plant Pathol. J. 2009, 25, 352–360. [Google Scholar] [CrossRef]
- Balestra, G.M.; Heydari, A.; Ceccarelli, D.; Ovidi, E.; Quattrucci, A. Antibacterial effect of Allium sativum and Ficus carica extracts on tomato bacterial pathogens. Crop Prot. 2009, 28, 807–811. [Google Scholar] [CrossRef]
- Govindappa, M.; Umersha, S.; Lokesh, S. Adathoda vasica leaf extract induces resistance in rice against bacterial leaf blight disease (Xanthomonas oryzae pv. oryzae). Int. J. Plant Physiol. Biochem. 2011, 3, 6–14. [Google Scholar]
- Ji, P.; Momol, M.T.; Olson, S.M.; Pradhanang, P.M.; Jones, J. Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. Plant Dis. 2005, 89, 497–500. [Google Scholar] [CrossRef] [PubMed]
- Paret, M.L.; Cabos, R.; Kratky, B.A.; Alvarez, A.M. Effect of plant essential oil on Ralstonia solancearum race 4 and bacterial wilt of edible ginger. Plant Dis. 2010, 94, 521–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, A.O.; Santos, M.M.B.; Santos, T.C.G.; Souza, E.B.; Mariano, R.L.R. Biofumigation for managing bacterial wilt of sweet peppers. J. Plant Pathol. 2014, 96, 363–367. [Google Scholar]
- Deberdt, P.; Perrin, B.; Coranson-Beaudu, R.; Duyck, P.F.; Wicker, E. Effect of Allium fistulosum extract on Ralstonia solanacearum populations and tomato bacterial wilt. Plant Dis. 2012, 96, 687–692. [Google Scholar] [CrossRef] [Green Version]
- Rukhsana, J.; Tehreema, I.; Huma, B. Purification and bioassays of bioactive fraction from Curcuma longa against Xanthomonas oryzae pv. oryzae causing BLB disease in rice. Pak. J. Bot. 2011, 43, 1335–1342. [Google Scholar]
- Sinha, B.B.P.; Sinha, R.K.P. Integrated disease management of bacterial blight of rice with special reference to neem products. Ann. Plant Prot. Sci. 2000, 8, 206–261. [Google Scholar]
- Singh, U.P.; Prithiviraj, B.; Sarma, B.K.; Singh, M.; Ray, A.B. Role of garlic (Allium sativum L.) in human and plant diseases. Indian J. Exp. Biol. 2001, 39, 310–322. [Google Scholar]
- Pavaraj, M.; Bakavathiappan, G.; Baskaran, S. Evaluation of some plant extracts for their nematicidal properties against root-knot nematode, Meloidogyne incognita. J. Biopestic. 2012, 5, 106–110. [Google Scholar]
- Pesticide Action Network (PAN). Field Guide to Non-Chemical Pest Management in Tomato Production, Hamburg. 2005. Available online: www.osiat.org (accessed on 25 September 2021).
- Khan, A.; Sayed, M.; Shaukat, S.S.; Handoo, Z.A. Efficacy of four plant extracts on nematodes associated with papaya in Sindh, Pakistan. Nematol. Mediterr. 2008, 36, 93–98. [Google Scholar]
- Kepenekçi, I.; Erdoğuş, D.; Erdoğan, P. Effects of some plant extracts on root-knot nematodes in vitro and in vivo conditions. Turk. J. Entomol. 2016, 40, 3–14. [Google Scholar] [CrossRef]
- Akyazi, F. Effect of some plant methanol extracts on egg hatching and juvenile mortality of root-knot nematode Meloidogyne incognita. Am. J. Exp. Agric. 2014, 11, 1471–1479. [Google Scholar] [CrossRef]
- Asif, M.; Tariq, M.; Khan, A.; Siddiqui, M.A. Biocidal and antinemic properties of aqueous extracts of Ageratum and Coccinia against root-knot nematode, Meloidogyne incognita in vitro. J. Agric. Sci. 2017, 2, 108–122. [Google Scholar] [CrossRef] [Green Version]
- Oka, Y.; Ben-Daniel, B.; Cohen, Y. Nematicidal activity of the leaf powder and extracts of Myrtus communis against the root-knot nematode Meloidogyne javanica. Plant Pathol. 2012, 61, 1012–1020. [Google Scholar] [CrossRef]
- Khan, F.; Asif, M.; Khan, A.; Tariq, M.; Ansari, T.; Shariq, M.; Siddiqui, M.A. Evaluation of the nematicidal potential of some botanicals against root-knot nematode, Meloidogyne incognita infected carrot: In vitro and greenhouse studystar. Curr. Plant Biol. 2019, 20, 100115. [Google Scholar] [CrossRef]
- Bello, L.Y.; Chindo, P.S.; Marley, P.S.; Alegbejo, M.D. Effects of some plant extracts on larval hatch of the root-knot nematode, Meloidogyne incognita. Arch. Phytopathol. Plant Prot. 2006, 39, 253–257. [Google Scholar] [CrossRef]
- Olabiyi, T.I. Pathogenicity study and nematoxic properties of some plant extracts on the root-knot nematode pest of tomato, Lycopersicon esculentum (L.) Mill. Plant Pathol. J. 2008, 7, 45–49. [Google Scholar] [CrossRef]
- Agbenin, N.O.; Emechebe, A.M.; Marley, P.S. Evaluations of neem seed powder for Fusarium wilt and Meloidogyne control on tomato. Arch. Phytopathol. Plant Prot. 2004, 37, 319–326. [Google Scholar] [CrossRef]
- Rajasekaran, D.; Palombo, E.A.; Yeo, T.C.; Ley, D.L.S.; Tu, C.L.; Malherbe, F.; Grollo, L. Identification of traditional medicinal plant extracts with novel anti-influenza activity. PLoS ONE 2013, 8, e79293. [Google Scholar] [CrossRef] [Green Version]
- Kohn, L.K.; Foglio, M.A.; Rodrigues, R.A.; Sousa, I.M.; Martini, M.C.; Padilla, M.A.; Neto, L.D.F.; Arns, C.W. In-vitro antiviral activities of extracts of plants of the Brazilian Cerrado against the avian Metapneumovirus (aMPV). Braz. J. Poult. Sci. 2015, 3, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Al-Ani, R.A.; Diwan, S.N.H.; Adhab, M.A. Efficiency of Thuja orientalis and Artimisia campestris extracts to control of Potato leaf roll virus (PLRV) in potato plants. Agric. Biol. J. N. Am. 2010, 1, 579–583. [Google Scholar]
- Abdelkhalek, A.; Al-Askar, A.A.; Alsubaie, M.M.; Behiry, S.I. First Report of Protective Activity of Paronychia argentea Extract against Tobacco Mosaic Virus Infection. Plants 2021, 10, 2435. [Google Scholar] [CrossRef] [PubMed]
- Abdelkhalek, A.; Salem, M.Z.M.; Ali, H.M.; Kordy, A.M.; Salem, A.Z.M.; Behiry, S.I. Antiviral, antifungal, and insecticidal activities of Eucalyptus bark extract: HPLC analysis of polyphenolic compounds. Microb. Pathog. 2020, 147, 104383. [Google Scholar] [CrossRef] [PubMed]
- Abdelkhalek, A.; Salem, M.Z.M.; Hafez, E.; Behiry, S.I.; Qari, S.H. The Phytochemical, Antifungal, and First Report of the Antiviral Properties of Egyptian Haplophyllum tuberculatum Extract. Biology 2020, 9, 248. [Google Scholar] [CrossRef]
- El-Sawy, M.M.; Elsharkawy, M.M.; Abass, J.M.; Kasem, M.H. Antiviral activity of 2-nitromethyl phenol, zinc nanoparticles and seaweed extract against cucumber mosaic virus (CMV) in Eggplant. J. Virol. Antivir. Res. 2017, 6, 2. [Google Scholar] [CrossRef]
- Al-Ani, A.R.; Adhab, M.A.; Hassan, K.A. Antiviral activity of Vit-org, 2-nitromethyl phenoland Thuja extract against eggplant blister mottled virus (EBMV). Afr. J. Microbiol. Res. 2011, 5, 3555–3558. [Google Scholar]
- Kekuda, P.T.R.; Akarsh, S.; Nawaz, S.A.N.; Ranjitha, M.C.; Darshini, S.M.; Vidya, P. In Vitro Antifungal Activity of Some Plants against Bipolaris sarokiniana (Sacc.) Shoem. Int. J. Curr. Microbiol. Appl. Sci. 2016, 6, 331–337. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, A. Biopesticides: Present Status and the Future Prospects. J. Fertil. Pestic. 2015, 6, e129. [Google Scholar] [CrossRef]
- Black R for AATF African Agricultural Technology Foundation. A Guide to the Development of Regulatory Frameworks for Microbial Biopesticides in Sub-Saharan Africa. Nairobi: African Agricultural Technology Foundation. 2013. Available online: https://www.aatf-africa.org/Regulatory-Frameworks-for-Microbial-Biopesticides-InSub-Saharan-Africa (accessed on 5 October 2021).
- Pavela, R. Limitation of plant biopesticides. In Advances in Plant Biopesticides; Singh, D., Ed.; Springer: New Delhi, India, 2014; pp. 347–359. [Google Scholar] [CrossRef]
No. | Scientific Name | Family | Part Utilized | Extraction Method | Target Pest | Ref. |
---|---|---|---|---|---|---|
1 | Acorus calamus L. | Acoraceae | Leaf, Rhizome, Stem | Aqueous, Ethanolic, Methanolic extraction | Microsporum gypseum, Penicillium marneffei, Trichophyton rubrum, Sitophilus zeamais | [37] |
2 | Adhatoda vasica L. | Acanthaceae | Leaf, Root, Bark, Fruit, Flower | Aqueous, Ethanolic, Methanolic extraction | Xanthomonas oryzae | [38] |
3 | Allium cepa L. | Alliaceae | Seed | Steam distillation | Alternaria solani, Cochliobolus heterostrophus, Phytophthora infestans, Ramularia areola | [39,40,41] |
4 | Allium sativum L. | Alliaceae | Bulb, Leaf | Ethanolic extraction | Bemisia tabaci, Curvularia lunata, Fusarium guttiforme, Helicoverpa armigera, Pseudomonas syringae | [42,43,44,45] |
5 | Annona squamosa L. | Annonaceae | Seed | Solvent extraction | Fusarium wilt, Phytophthora blight, Rhizoctonia solani | [46] |
6 | A. indica | Meliaceae | Leaf, Bark, Root, Seed, Fruit | Aqueous, Ethanolic, Methanolic extraction, Steam distillation | Aphis spp., Aspergillus niger, B. tabaci, Colletotrichum spp, Echinochloa crusgalli, Fusarium oxysporum, Geotrichum candidium, H. armigera,Meloidogyne incognita, Meloidogyne javanica, Rhizopus stolonifer, Sitophilus zeamais | [47,48,49,50] |
7 | Camellia oleiferaAbel. | Theaceae | Stem, Leaf | Aqueous extraction | [35] | |
8 | Capsicum frutescens L. | Solanaceae | Fruit | Maceration, Soxhlet, Ethanolic extraction | A. solani, Bacillus subtilis, Escherichia coli, F. oxysporum, Phytophthra infestans, Pseudomonas aerugionsa, Staphylococcus aureus | [41,51,52] |
9 | Chromolaena odorata L. | Asteraceae | Leaf, Stem, Root | Aqueous, Ethanolic, Methanolic extraction | A. niger, Dolichodorus sp., F. oxysporum, G. candidium, Helicotylenchus sp., M. incognita, R. stolonifer | [49,53] |
10 | Chrysanthemum cinerariaefolium L. | Compositae | Flower | Ethanolic, Methanolic extraction | Blatta orientalis, Isoptera spp., Lasius niger, Myrmecia gulosa | [47] |
11 | Citrus hystrix DC. | Rutaceae | Leaf | Steam, Hydrodistillation, Solvent extraction | Acarina spp., Acheta domesticus, Aphis spp., Botrytis cinerea, Siphonaptera spp., Uromyces appendiculatus, | [44,54] |
12 | Coriandrum sativum L. | Apiaceae | Seed, Fruit | Steam, Hydrodistillation, Solvent extraction | Alternaria alternate, F. oxysporum, Pyricularia oryzae, Trichoconiella padwickii, X. oryzae | [55] |
13 | Croton chichenensis Lundell | Euphorbiaceae | Root | Aqueous, Ethanolic extraction | Alternaria tagetica, Colletotrichum gloeosporioidese, F. oxysporium, Rhizopus sp. | [56] |
14 | Cymbopogon citratus Stapf. | Gramineae | Leaf | Maceration, Hydro, Steam distillation | A. solani, Alternaria brassicae, P. infestans, Pectobacterium carotovorum | [57] |
15 | Curcuma longa L. | Zingiberaceae | Root stem | Aqueous extraction | Spodoptera frugiperda, Spodoptera litura | [58,59,60] |
16 | Datura stramonium L. | Solanaceae | Leaf, Fruit | Methanolic extraction, solvent extraction | A. alternata, Aspergillusflavus, Aspergillusfumigatus, A. niger | [61,62] |
17 | Eucalyptus globules Labill | Myrtaceae | Leaf, Bark | Steam, Hydro distillation, Soxhlet extraction | A. brassicae, Alternaria triticina, A. solani, F. oxysporum, P. infestans, Pythium ultimum R. solani | [63,64,65] |
18 | Gossypium herbaceum L. | Malvaceae | Leaf | Crude, Solvent extraction | Rice stripe virus, Southern rice black-streaked dwarf virus, Tobacco mosaic virus | [66] |
19 | Hydnocarpus anthelminthicus Pierre ex Lecomte | Achariaceae. | Leaf, Fruit. | Aqueous, Ethanolic extraction | Colletotrichum falcatum, Colletotrichum higginsianum, Phytophthora palmivora, P. oryzae, R. solani | [67,68] |
20 | Lantana camara | Verbenaceae | Leaf, Stem, Fruit | Maceration, Solvent, Aqueous, extraction, Steam distillation | A.flavus, A. niger | [69,70] |
21 | Derris elliptical | Fabaceae | Root | Crude extraction | Aphis spp., Cerotoma trifurcata, Diabrotica undecimpunctata, Erythroneura variabilis, Tetranychus urticae | [47] |
22 | Mentha piperita L. | Lamiaceae | Shoot | Steam, Hydro distillation | A. alternata, B. cinerea | [71,72] |
23 | N. tabacum | Solanaceae | Leaf | Solvent extraction | Aphis sp., Acarina sp., Bradysia sp., Circulifer tenellus, F. oxysporum, Penicillium digitatum, Rhizopus sp. | [47,73] |
24 | Ocimum basilicum L. | Labiatae | Leaf | Steam, Hydro distillation | A. solani, Alternaria heveae, P. infestans | [41,74] |
25 | Ocimum sanctum L. | Malvaceae | Leaf | Ethanolic extraction | F. oxysporum, Macrophomina phaseolina, Sarocladium oryzae | [75,76,77] |
26 | Ocimum tenuiflorum L. | Lamiaceae | Leaf | Crude extraction | Phyllosticta zingiberi | [78] |
27 | Origanum vulgare L. | Lamiaceae | Leaf, Flower | Aqueous, Ethanolic extraction | Bacillus spp., Serratia marcescens | [79] |
28 | Peganum harmala L. | Zygophyllaceae | Leaf, Stem | n-Butanol extraction | Bursaphelenchus xylophilus | [80] |
29 | Prosopis juliflora (Sw) DC | Fabaceae | Leaf, Fruit | Ethanolic extraction | A. alternata, A. solani, B. cinerea, B. subtilis, Candida albican, Geotrichum candidum, P. infestans, S. aureus, Xanthomonas campestris | [81] |
30 | Psidium guajava L. | Myrtaceae. | Leaf | Aqueous, Ethanolic, Methanolic extraction | Chromobacterium violaceum, P. carotovorum, Pseudomonas aeruginosa, S. aureus, S. marcescens | [57,82] |
31 | Reynoutria sachalinensis Schmidt | Polygonaceae. | Leaf, Stem, Flower | Aqueous, Ethanolic extraction | Leveillula taurica | [83,84] |
32 | Ricinus communis L. | Euphorbiaceae | Leaf | Methanolic extraction | R.solani, Fusarium wilt | [46] |
33 | Rhododendron molle G.Don | Ericaceae | Flower | EtOAc extraction | Pieris rapae | [85] |
34 | Rosmarinus officinalis L. | Lamiaceae | Leaf, Seed | Steam, Hydro distillation | A. flavus, Phytophthoracapsici, P. megakarya, P. palmivora | [86] |
35 | Salvia officinalis L. | Lamiaceae | Shoot | Soxhlet extraction, Hydrodistillation | Penicillium aurantiogriseum, Verticillium dahlia | [87] |
36 | Tithonia diversifolia (Hemsl.) | Asteraceae | Leaf | Crude, Methanolic extraction | A. niger, F. oxysporum, G. candidium, R. stolonifer | [59] |
37 | T. diversifolia | Asteraceae | Leaf | Crude, Methanolic extraction | Cercospora arachidicola, Cercosporidium personatum | [88] |
38 | Tridax procumbens L. | Asteraceae | Leaf | Crude, Methanolic, Soxhlet extraction | C. arachidicola, C. personatum | [88] |
39 | Thuja orientalis L. | Cupressaceae | Leaf | Aqueous extraction, Steam distillation | Watermelon mosaic virus | [89] |
40 | Thymus citriodorus L. | Lamiaceae | Leaf | Maceration, Soxhlet extraction, Steam distillation | M.incognita, M.javanica | [51] |
41 | Trigonella foenumgraceum L. | Fabaceae | Leaf, Seed | Ethanolic, Methanolic extraction | P. capsici | [90] |
42 | Vernonia amygdalina Del. | Asteraceae | Leaf | Maceration, Soxhlet extraction | F. oxysporum | [64] |
43 | Withania somnifera L. | Solanaceae | Leaf | Aqueous extraction | Trichothecium roseum | [91] |
44 | Zingiber officinale Roscoe. | Zingiberaceae | Rhizome | Maceration, Crude, Solvent extraction | B.tabaci, Caliothrips fasciatus, Colletotrichum lindemuthianum, Fusarium lycopersici, F. oxysporium, F. solani, Phaeoisariopsis, griseola, P.infestans, P. oryzae, P. digitatum | [44,92,93] |
No. | Product | Botanical Name | Trade Name | Main Bioactive Compound(s) | Biological Effects | Ref. |
---|---|---|---|---|---|---|
1 | Capsicum oleoresin | Capsicum spp. (C. frutescens) | Hot Pepper Wax Insect Repellent | Capsaicin | Repellent, Fungicide, Nematicide, Bactericide | [114,115] |
2 | Cinnamaldehyde | Cassia tora L., Cassia obtusifolia L. | VertigoTM, CinnacureTM, | Cinnamaldehyde | Fungicide, Insect Attractant | [114,115] |
3 | Cinnamon essential oil | Cinnamomumzeylanicum | Weed ZapTM, Repellex, | Cinnamaldehyde | Insecticide, Herbicide | [96,116] |
4 | Clove essential oil | Syzygiumaromaticum L. Eugenia caryophyllus Spreng | Matran EC, Burnout II, Biooganic Lawn | Eugenol (mixture of several predominantly terpenoid compounds) | Insecticide, Herbicide | [96,114,115,116] |
5 | Extract of giant Knotweed | R. sachalinensis | Milsana®, RegaliaTM | Physcion, Emodin | Fungicide, Bactericide | [112,115] |
6 | Jojoba essential oil | Simmondsiacalifornica Nutt., S. chinensis | Detur, E-Rasem, Eco E-Rase, Permatrol, ERaseTM | Straight-chain wax esters | Fungicide, Insecticide | [114,115] |
7 | Karanjin | Derris indica (Lam.) Bennet | Derisom | Karanjin | Insecticide, Acaricide | [114] |
8 | Lemongrass essential oil | Cymbopogonnardus, C.citratus, Cymbopogonflexuosus D.C | GreenMatch EXTM | Citronellal, Citral | Insecticide, Herbicide | [96,115] |
9. | Neem (neem oil, medium polarity extracts) | A. indica | Ecozin, Azatrol EC, Agroneem, TrilogyTM | Azadirachtin, Dihydroazadirachtin, Triterpenoids (Nimbin, Salannin | Insecticide, Acaricide, Fungicide | [114,117] |
10 | Nicotine | Nicotiana spp. | Stalwart, No-Fid, XL-All Nicotine, Tobacco Dust | (S)-isomer, (RS)-isomers, and (S)-isomer of nicotine sulfate. | Insecticide | [114,117] |
11 | Phenethyl propionate | Component of peppermint oil (M. piperita) and peanut oil | EcoSmart HC, EcoExempt HC, Ecopco Acu | Phenethyl propionate | Insecticide, Insect Repellent, Herbicide | [114,115] |
12 | Pink plume poppy extract | Macleaya cordata R. Br. | Qwel® | Alkaloids, Anguinarine Chloride, Chelerythrine Chloride | Fungicide | [112,115] |
13 | Pyrethrum | Tanacetumcinerariaefolium (Trevisan) Schultz-Bip. | Pyganic, Diatect | Esters of chrysanthemic acid and pyrethric acid (pyrethrins I and II, cinerins I and II, jasmolins I and II) | Insecticide, Acaricide | [115,117] |
14 | Rosemary essential oil | R. officinalis | EcotrolTM, SporanTM | 1,8-cineole (borneol, camphor, monoterpenoids) | Insecticide, Acaricide, Fungicide | [96,115] |
15 | Rotenone | Derris spp., Lonchocarpus spp., and Tephrosia spp. | Bonide, Rotenone | Rotenone, Deguelin, (isoflavonoids) | Insecticide, Acaricide | [114,117] |
16 | Ryania | Ryania spp. (Ryania speciose Vahl) | Natur-Gro R-50, Natur-Gro Triple Plus, Ryan 50 | Ryanodine, Ryania, 9,21-didehydroryanodine (alkaloids) | Insecticide | [114,117] |
17 | Sabadilla | Schoenocaulon spp. (S. officinale) | Veratran, Red Devil, Natural Guard | Mixture of alkaloids (cevadine, veratridine) | Insecticide | [115,117] |
18 | Thyme essential oil | Thymus vulgaris L. Thymus spp. | Proud 3, Organic Yard Insect Killer, PromaxTM | Thymol, Carvacrol | Insecticide, Fungicide, Herbicide | [96,115] |
No. | Plant Source | Active Compounds | Target Site | Mechanism of Action | Ref. |
---|---|---|---|---|---|
1 | Haloxylon salicornicum, N. tabacum, Stemona japonicum | Nicotine | Nervous system | It competes with the neurotransmitter by attaching to acetylcholine receptors (nAChRs) at neuron synapses, producing unregulated nerve firing. The disturbance of normal nerve impulse performance caused physiological system malfunctions of the neurons. | [118,119,120] |
2 | Crysanthemum cinerariaefolium | Pyrethrin I & II, Cinerin I & II, Jasmolin I & II | Nerve (Axon) | Interfering with Na and K ion conversion inhibited normal transmittal of nerve impulses, triggering paralysis in insects. | [17,121,122] |
3 | Lonchocarpus spp., Derris spp. | Rotenone | Mitochondria | Cell respiratory enzyme inhibitor disrupts cellular metabolism, reduces ATP output. Nerve and muscle cell malfunctions lead to low feeding rates. | [123,124,125] |
4 | Ryania spp. | Byanodine | Muscles | Activation of sarcoplasmic reticulum. Affect calcium development and causes improper function of muscles. | [126] |
5 | S. officinale | Sabadilla | Nerve (Axon) | Obstruct the movement of neurons and potassium ion in nerve axons. | [122,127] |
6 | Cedrus spp., Citronella spp., Eucalyptus spp., Pinus spp. | Essential oils | Octopaminergic system | Increase the level of intracellular messenger and effectively inhibit cyclic AMP of abdominal epidermal tissue. | [122,128] |
7 | Monarda spp., O. vulgare, T. vulgaris | Thymol | Octopaminergic system | Prevent octopamine receptors via tyramine receptors cascade. | [122,129] |
8 | A. indica | Azadirachtin, Nimbin, Salannin, Melandriol | Endocrine System | Inhibit Prothoracicotropic hormone (PTTH); distort phagostimulant disruptor by cholinergic transmission | [122,130,131] |
9 | A.squamosa | Squamocin (annonin), Debitterized annona oil | Mitochondria | Dunnione acts as insecticide and fungicide, disrupting mitochondrial complex III. | [122,132] |
10 | Capsicum annum | Protoalkaloids Capsaicin | Nerve | Induced metabolism, impaired cell membrane, and nervous system. Acts as a physical repellent. | [132] |
11 | Citrus sinensis | Limonene, Linalool | Hyperactivity, hyperexcitation leading to rapid knockdown and immobilization. Inhibitory effects on acetylcholinesterase. | [133] | |
12 | Pongamia pinnata | Karanjin, Debitterised karanjin oil | Serves as feeding restraint, repellant, reduced growth, oviposition suppressor, and low or no fertilization. | [122,132] | |
13 | S. officinale | Cevadine, Veratridine | Mitochondria | Interrupt nerve cell membrane process, induced nerve cell membrane, paralysis, and mortality. | [122,132] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngegba, P.M.; Cui, G.; Khalid, M.Z.; Zhong, G. Use of Botanical Pesticides in Agriculture as an Alternative to Synthetic Pesticides. Agriculture 2022, 12, 600. https://doi.org/10.3390/agriculture12050600
Ngegba PM, Cui G, Khalid MZ, Zhong G. Use of Botanical Pesticides in Agriculture as an Alternative to Synthetic Pesticides. Agriculture. 2022; 12(5):600. https://doi.org/10.3390/agriculture12050600
Chicago/Turabian StyleNgegba, Patrick Maada, Gaofeng Cui, Muhammad Zaryab Khalid, and Guohua Zhong. 2022. "Use of Botanical Pesticides in Agriculture as an Alternative to Synthetic Pesticides" Agriculture 12, no. 5: 600. https://doi.org/10.3390/agriculture12050600
APA StyleNgegba, P. M., Cui, G., Khalid, M. Z., & Zhong, G. (2022). Use of Botanical Pesticides in Agriculture as an Alternative to Synthetic Pesticides. Agriculture, 12(5), 600. https://doi.org/10.3390/agriculture12050600