Comparative Analysis of the Effects of Internal Factors on the Floral Color of Four Chrysanthemum Cultivars of Different Colors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Maintenance Management
2.2. Colorimetric Measurement
2.3. Extraction and Measurement of Total Flavonoids
2.4. Extraction and Determination of the Anthocyanins Content
2.5. Extraction and Determination of Carotenoid Content
2.6. Observation of Upper Epidermal Cells of Ray Florets at Different Stages
2.7. pH Measurement of ray Floret Homogenates
2.8. Determination of Metal Ions
2.9. Quantitative Reverse Transcription-Polymerase Chain Reaction
2.10. Statistical Analysis
3. Results
3.1. Measurement of Colorimetric Values of Four Chrysanthemum Varieties during the Flowering Period
3.2. The Effect of Upper Epidermal Cells of Ray Florets on Floral Color during the Flowering Period
3.3. The effect of Pigments and pH on the Floral Color of Four Chrysanthemum Varieties
3.4. Quantification of Metal Contents in Ray Florets of Four Chrysanthemum Varieties
3.5. The Expression of Genes Associated with Anthocyanins Synthesis and Cytosol pH in Ray Florets of Chrysanthemums
3.6. The Comprehensive Analysis of the Measurement Indexs of Ray Florets of Four Colored Chrysanthemums
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meléndez-Ackerman, E.; Campbell, D.R.; Waser, N.M. Hummingbird Behavior and Mechanisms of Selection on Flower Color in Ipomopsis. Ecology 1997, 78, 2532. [Google Scholar] [CrossRef]
- Riffell, J.A.; Lei, H.; Abrell, L.; Hildebrand, J.G. Neural Basis of a Pollinator’s Buffet: Olfactory Specialization and Learning in Manduca sexta. Science 2013, 339, 200–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahapatra, S.; Padhy, B.; Kumar Behera, L.P. Relation of flower colour, anthocyanin concentration and the environmental factors. Asian J. Microbiol. Biotechnol. Environ. Sci. 2014, 16, 693–698. [Google Scholar]
- Dela, G.; Or, E.; Ovadia, R.; Nissim-Levi, A.; Weiss, D.; Oren-Shamir, M. Changes in anthocyanin concentration and composition in ‘Jaguar’ rose flowers due to transient high-temperature conditions. Plant Sci. 2003, 164, 333–340. [Google Scholar] [CrossRef]
- Stiles, E.A.; Cech, N.B.; Dee, S.M.; Lacey, E.P. Temperature-sensitive anthocyanin production in flowers of Plantago lanceolata. Physiol. Plant 2007, 129, 756–765. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Li, X.; Liu, Y.; Cao, B. Regulation of flavanone 3-hydroxylasegene involved in the flavonoid biosynthesis path-way in response to UV-B radiation and drought stress in the desert plant, Reaumuria soongorica. Plant Physiol. Biochem. 2013, 73, 161–167. [Google Scholar] [CrossRef]
- Zhao, D.; Hao, Z.; Tao, J. Effects of shade on plant growth and flower quality in the herbaceous peony (Paeonia lactiflora Pall.). Plant Physiol. Biochem. 2012, 61, 187–196. [Google Scholar] [CrossRef]
- Sun, Z.; Han, M.; Zhai, X.; Wu, Z.; Yu, Q.; Xue, J.; Chen, L. Effect of number of short-day on flowering and visual quality of poinsettia. Acta Hortic. Sin. 2006, 33, 583–586. [Google Scholar]
- Lai, Y.-S.; Yamagishi, M.; Suzuki, T. Elevated temperature inhibits anthocyanin biosynthesis in the tepals of an Oriental hybrid lily via the suppression of LhMYB12 transcription. Sci. Hortic. 2011, 132, 59–65. [Google Scholar] [CrossRef]
- Zhao, D.Q.; Tao, J. Recent advances on the development and regulation of flower color in ornamental plants. Front. Plant Sci. 2015, 6, 261. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Li, C.; Wang, L.; Dai, S.; Xu, Y. Anthocyanins present in flowers of Senecio cruentus with different colors. Acta Hortic. Sin. 2009, 36, 1775–1782. [Google Scholar]
- Zhao, D.; Tao, J.; Han, C.; Ge, J. Flower color diversity revealed by differential expression of flavonoid biosynthetic genes and flavonoid accumulation in herbaceous peony (Paeonia lactiflora Pall.). Mol. Biol. Rep. 2012, 39, 11263–11275. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Meng, L.; Han, K.; Sun, Y.; Dai, S. Isolation and expression analysis of key genes involved in anthocyanins bio-synthesis of cineraria. Acta Hortic. Sin. 2009, 36, 1013–1022. [Google Scholar]
- Han, Y.; Wang, X.; Chen, W.; Dong, M.; Yuan, W.; Liu, X.; Shang, F. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in flower petal of Osmanthus fragrans. Tree Genet. Genomes 2013, 10, 329–338. [Google Scholar] [CrossRef]
- Hieber, A.D.; Mudalige-Jayawickrama, R.G.; Kuehnle, A.R. color genes in the orchid Oncidium gower ramsey: Identifi-cation expression and potential genetic instability in an interspecific cross. Planta 2006, 223, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Moehs, C.P.; Tian, L.; Osteryoung, K.W.; DellaPenna, D. Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Mol. Biol. 2001, 45, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Vignolini, S.; Moyroud, E.; Hingant, T.; Banks, H.; Rudall, P.J.; Steiner, U. The flower of Hibiscus trionum is both visibly and measurably iridescent. New Phytol. 2015, 205, 97–101. [Google Scholar] [CrossRef]
- Pina, F. Chemical Applications of Anthocyanins and Related Compounds. A Source of Bioinspiration. J. Agric. Food Chem. 2014, 62, 6885–6897. [Google Scholar] [CrossRef]
- Yoshida, K.; Miki, N.; Momonoi, K.; Kawachi, M.; Katou, K.; Okazaki, Y.; Uozumi, N.; Maeshima, M.; Kondo, T. Synchrony between flower opening and petal-color change from red to blue in morning glory, Ipomoea tricolor cv. Heavenly Blue. Proc. Jpn. Acad. Ser. B 2009, 85, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Verweij, W.; Spelt, C.; Di Sansebastiano, G.P.; Vermeer, J.; Reale, L.; Ferranti, F.; Quattrocchio, F. An H+ P-ATPase on the tonoplast determines vacuolar pH and flower color. Nat. Cell Biol. 2008, 10, 1456–1462. [Google Scholar] [CrossRef]
- Akbari, R.; Hatamzadeh, A.; Sariri, R.; Bakhshi, D. Analysis of petal pH and metal ions to investigate the mechanism of color development in Gerbera hybrid. Aust. J. Crop. Sci. 2013, 7, 941–947. [Google Scholar]
- Teppabut, Y.; Oyama, K.-I.; Kondo, T.; Yoshida, K. Change of Petals′ Color and Chemical Components in Oenothera Flowers during Senescence. Molecules 2018, 23, 1698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyama, K.I.; Yamada, T.; Ito, D.; Kondo, T.; Yoshida, K. Metal Complex Pigment Involved in the Blue Sepal color Develop-ment of Hydrangea. J. Agric. Food Chem. 2015, 63, 7630–7635. [Google Scholar] [CrossRef] [PubMed]
- Morita, Y.; Hoshino, A. Recent advances in flower color variation and patterning of Japanese morning glory and petunia. Breed. Sci. 2018, 68, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, Y.; Brugliera, F. Flower color and cytochromes P450. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120432. [Google Scholar] [CrossRef] [Green Version]
- Noda, N. Recent advances in the research and development of blue flowers. Breed. Sci. 2018, 68, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Wessinger, C.A.; Rausher, M.D. Lessons from flower color evolution on targets of selection. J. Exp. Bot. 2012, 63, 5741–5749. [Google Scholar] [CrossRef] [Green Version]
- Naing, A.H.; Lee, J.H.; Park, K.I.; Kim, K.O.; Chung, M.Y.; Kim, C.K. Transcriptional control of anthocyanin biosynthesis genes and transcription factors associated with flower coloration patterns in Gerbera hybrida. 3 Biotech 2018, 8, 65. [Google Scholar] [CrossRef]
- Reguera, M.; Bassil, E.; Tajima, H.; Wimmer, M.; Chanoca, A.; Otegui, M.S.; Paris, N.; Blumwald, E. pH Regulation by NHX-Type Antiporters Is Required for Receptor-Mediated Protein Trafficking to the Vacuole in Arabidopsis. Plant Cell 2015, 27, 1200–1217. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Tang, X.J.; Huang, H.; Zhang, Y.; Dai, S.L. Transcriptomic analyses reveal species-specific light-induced anthocya-nins biosynthesis in chrysanthemum. BMC Genom. 2015, 16, 202. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Yang, Q.H.; Wang, Y.G.; Fang, W.M.; Guan, Z.Y.; Zhang, F.; Chen, F.D. Analysis of flower color redness and pigment composition changes in Chrysanthemum during aging. J. Hortic. 2018, 45, 519–529. [Google Scholar]
- Hu, D.; Sun, C.-H.; Ma, Q.-J.; You, C.-X.; Cheng, L.; Hao, Y.-J. MdMYB1 Regulates Anthocyanin and Malate Accumulation by Directly Facilitating Their Transport into Vacuoles in Apples. Plant Physiol. 2015, 170, 1315–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Lu, C.; Ma, S.; Wang, X.; Dai, S. Different colored Chrysanthemum × morifolium cultivars represent distinct plastid transformation and carotenoid deposit patterns. Protoplasma 2019, 256, 1629–1645. [Google Scholar] [CrossRef]
- Xiao, W.F.; Li, Z.; Chen, H.; Lv, F.B. Comparison of morphological differences of epidermal cells of petals of Phalaenopsis with different colors. Sci. Bull. 2017, 33, 104–111. [Google Scholar]
- Reuveni, M.; Evenor, D.; Arlzi, B.; Perl, A.; Erner, Y. Decrease in vacuolar pH during petunia flower opening is reflected in the activity of tonoplast H+-ATPase. J. Plant Physiol. 2001, 158, 991–998. [Google Scholar] [CrossRef]
- Rezende, F.M.; Clausen, M.H.; Rossi, M.; Furlan, C.M. The Regulation of Floral color Change in Pleroma raddianum (DC.) Gardner. Molecules 2020, 25, 4664. [Google Scholar] [CrossRef]
- Sun, C.H.; Yu, J.Q.; Wen, L.Z.; Guo, Y.H.; Sun, X.; Hu, D.G.; Zheng, C.S. Chrysanthemum MADS-box transcription fac-tor CmANR1 modulates lateral root development via homo-/heterodimerization to influence auxin accumulation in Ara-bidopsis. Plant Sci. 2017, 266, 27–36. [Google Scholar] [CrossRef]
- Lu, C.F.; Li, Y.F.; Wang, J.Y.; Qu, J.P.; Chen, Y.; Chen, X.Y.; Huang, H.; Dai, S.L. Flower color classification and correla-tion between color space values with pigments in potted multiflora chrysanthemum. Sci. Hortic. 2021, 283, 110082. [Google Scholar] [CrossRef]
- Noda, K.; Glover, B.J.; Linstead, P.; Martin, C. Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature 1994, 369, 661–664. [Google Scholar] [CrossRef]
- Tanaka, Y.; Sasaki, N.; Ohmiya, A. Plant pigments for coloration: Anthocyanins, betalains and carotenoids. Plant J. 2008, 54, 733–749. [Google Scholar] [CrossRef]
- Bai, X.X.; Hu, K.; Dai, S.L.; Wang, L.S. Components of flower pigments in the petals of different color Chrysanthemum mori-folium Ramat.cultivars. J. Beijing For. Univ. 2006, 28, 84–89. [Google Scholar]
- Tanaka, Y.; Brugliera, F.; Kalc, G.; Senior, M.; Dyson, B.; Nakamura, N.; Katsumoto, Y.; Chandler, S. Flower Color Modification by Engineering of the Flavonoid Biosynthetic Pathway: Practical Perspectives. Biosci. Biotechnol. Biochem. 2010, 74, 1760–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spelt, C.; Quattrocchio, F.M.; Mol, J.; Koes, R. ANTHOCYANIN1 of Petunia Controls Pigment Synthesis, Vacuolar pH, and Seed Coat Development by Genetically Distinct Mechanisms. Plant Cell 2002, 14, 2121–2135. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Hu, K.; Han, K.T.; Xiang, Q.Y.; Dai, S.L. Flower Colour Modification of Chrysanthemum by Suppression of F3′H and Overexpression of the Exogenous Senecio cruentus F3′5′H Gene. PLoS ONE 2013, 8, e74395. [Google Scholar] [CrossRef] [Green Version]
- Ohmiya, A. Molecular mechanisms underlying the diverse array of petal colors in chrysanthemum flowers. Breed. Sci. 2018, 68, 119–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, K.; Kitahara, S.; Ito, D.; Kondo, T. Ferric ions involved in the flower color development of the Himalayan blue pop-py, Meconopsis grandis. Phytochemistry 2006, 67, 992–998. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, R.N.; Santos, D.T.; Meireles, M.A.A. Non-thermal stabilization mechanisms of anthocyanins in model and food systems—An overview. Food Res. Int. 2011, 44, 499–509. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.-Z.; Du, L.-D.; Chen, S.-M.; Cao, J.-R.; Ding, X.-Q.; Zheng, C.-S.; Sun, C.-H. Comparative Analysis of the Effects of Internal Factors on the Floral Color of Four Chrysanthemum Cultivars of Different Colors. Agriculture 2022, 12, 635. https://doi.org/10.3390/agriculture12050635
Liu J-Z, Du L-D, Chen S-M, Cao J-R, Ding X-Q, Zheng C-S, Sun C-H. Comparative Analysis of the Effects of Internal Factors on the Floral Color of Four Chrysanthemum Cultivars of Different Colors. Agriculture. 2022; 12(5):635. https://doi.org/10.3390/agriculture12050635
Chicago/Turabian StyleLiu, Jin-Zhi, Lian-Da Du, Shao-Min Chen, Jing-Ru Cao, Xiang-Qin Ding, Cheng-Shu Zheng, and Cui-Hui Sun. 2022. "Comparative Analysis of the Effects of Internal Factors on the Floral Color of Four Chrysanthemum Cultivars of Different Colors" Agriculture 12, no. 5: 635. https://doi.org/10.3390/agriculture12050635
APA StyleLiu, J. -Z., Du, L. -D., Chen, S. -M., Cao, J. -R., Ding, X. -Q., Zheng, C. -S., & Sun, C. -H. (2022). Comparative Analysis of the Effects of Internal Factors on the Floral Color of Four Chrysanthemum Cultivars of Different Colors. Agriculture, 12(5), 635. https://doi.org/10.3390/agriculture12050635