A Machine Learning-Based Assessment of Maize Silage Dry Matter Losses by Net-Bags Buried in Farm Bunker Silos
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Sampling Collection
2.2. Proximate Composition, Fermentative Profile, Density, Porosity, and Dry Matter Losses
2.3. Statistical Analysis and Machine Learning Algorithm
3. Results
3.1. Chemical and Physical Traits of Harvested Biomass and Silage
3.2. Dry Matter Losses (DML) of WPM Silage
3.3. Modeling the DML of WPM Silage
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Köhler, B.; Taube, F.; Ostertag, J.; Thurner, S.; Kluß, C.; Spiekers, H. Dry-matter losses and changes in nutrient concentrations in grass and maize silages stored in bunker silos. Grass Forage Sci. 2019, 74, 274–283. [Google Scholar] [CrossRef]
- Bacenetti, J.; Fusi, A. The environmental burdens of maize silage production: Influence of different ensiling techniques. Anim. Feed Sci. Technol. 2015, 204, 88–98. [Google Scholar] [CrossRef]
- Riuzzi, G.; Tata, A.; Massaro, A.; Bisutti, V.; Lanza, I.; Contiero, B.; Bragolusi, M.; Miano, B.; Negro, A.; Gottardo, F.; et al. Authentication of forage-based milk by mid-level data fusion of (+/−) DART-HRMS signatures. Int. Dairy J. 2021, 112, 104859. [Google Scholar] [CrossRef]
- Cortese, M.; Segato, S.; Andrighetto, I.; Ughelini, N.; Chinello, M.; Schiavon, E.; Marchesini, G. The effects of decreasing dietary crude protein on the growth performance, feed efficiency and meat quality of finishing charolais bulls. Animals 2019, 9, 906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchesini, G.; Serva, L.; Chinello, M.; Gazziero, M.; Tenti, S.; Mirisola, M.; Garbin, E.; Contiero, B.; Grandis, D.; Andrighetto, I. Effect of maturity stage at harvest on the ensilability of maize hybrids in the early and late FAO classes, grown in areas differing in yield potential. Grass Forage Sci. 2019, 74, 415–426. [Google Scholar] [CrossRef]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef] [Green Version]
- Robinson, P.H.; Swanepoel, N.; Heguy, J.M.; Price, P.; Meyer, D.M. Total “shrink” losses, and where they occur, in commercially sized silage piles constructed from immature and mature cereal crops. Sci. Total Environ. 2016, 559, 45–52. [Google Scholar] [CrossRef]
- Serva, L.; Andrighetto, I.; Marchesini, G.; Contiero, B.; Grandis, D.; Magrin, L. Prognostic capacity assessment of a multiparameter risk score for aerobic stability of maize silage undergoing heterofermentative inoculation (Lactobacillus buchneri) in variable ensiling conditions. Anim. Feed Sci. Technol. 2021, 281, 115116. [Google Scholar] [CrossRef]
- Fabiszewska, A.U.; Zielińska, K.J.; Wróbel, B. Trends in designing microbial silage quality by biotechnological methods using lactic acid bacteria inoculants: A minireview. World J. Microbiol. Biotechnol. 2019, 35, 76. [Google Scholar] [CrossRef] [Green Version]
- Holmes, B.J.; Muck, R.E. Packing bunkers and piles to maximize forage preservation. In Proceedings of the 6th International Dairy Housing Conference ASABE and Harvest and Storage, Minneapolis, MN, USA, 16–18 June 2007. [Google Scholar]
- Serva, L.; Magrin, L.; Marchesini, G.; Andrighetto, I. Short Communication: Prognostic Values of a Multiparametric Risk Score in Maize Silage Undergoing Different Ensiling Conditions. Agronomy 2022, 12, 774. [Google Scholar] [CrossRef]
- Tabacco, E.; Righi, F.; Quarantelli, A.; Borreani, G. Dry matter and nutritional losses during aerobic deterioration of corn and sorghum silages as influenced by different lactic acid bacteria inocula. J. Dairy Sci. 2011, 94, 1409–1419. [Google Scholar] [CrossRef] [PubMed]
- Köhler, B.; Diepolder, M.; Ostertag, J.; Thurner, S.; Spiekers, H. Dry matter losses of grass, lucerne and maize silages in bunker silos. Agric. Food Sci. 2013, 22, 145–150. [Google Scholar] [CrossRef]
- Burti, S.; Zotti, A.; Bonsembiante, F.; Contiero, B.; Banzato, T. A Machine Learning-Based Approach for Classification of Focal Splenic Lesions Based on Their CT Features. Front. Vet. Sci. 2022, 9, 872618. [Google Scholar] [CrossRef] [PubMed]
- Riuzzi, G.; Davis, H.; Lanza, I.; Butler, G.; Contiero, B.; Gottardo, F.; Segato, S. Multivariate modelling of milk fatty acid profile to discriminate the forages in dairy cows’ ration. Sci. Rep. 2021, 11, 23201. [Google Scholar] [CrossRef]
- Lanza, I.; Lolli, V.; Segato, S.; Caligiani, A.; Contiero, B.; Lotto, A.; Galaverna, G.; Magrin, L.; Cozzi, G. Use of GC–MS and 1H NMR low-level data fusion as an advanced and comprehensive metabolomic approach to discriminate milk from dairy chains based on different types of forage. Int. Dairy J. 2021, 123, 105174. [Google Scholar] [CrossRef]
- Serva, L.; Marchesini, G.; Chinello, M.; Contiero, B.; Tenti, S.; Mirisola, M.; Grandis, D.; Andrighetto, I. Use of near-infrared spectroscopy and multivariate approach for estimating silage fermentation quality from freshly harvested maize. Ital. J. Anim. Sci. 2021, 20, 859–871. [Google Scholar] [CrossRef]
- Richard, T.L.; Veeken, A.H.M.; De Wilde, V.; Hamelers, H.V.M. Air-filled porosity and permeability relationships during solid-state fermentation. Biotechnol. Prog. 2004, 20, 1372–1381. [Google Scholar] [CrossRef]
- Robinson, P.H.; Swanepoel, N.; Heguy, J.M.; Price, T.; Meyer, D.M. “Shrink” losses in commercially sized corn silage piles: Quantifying total losses and where they occur. Sci. Total Environ. 2016, 542, 530–539. [Google Scholar] [CrossRef]
- Segato, S.; Merlanti, R.; Bisutti, V.; Montanucci, L.; Serva, L.; Lucatello, L.; Mirisola, M.; Contiero, B.; Conficoni, D.; Balzan, S.; et al. Multivariate and machine learning models to assess the heat effects on honey physicochemical, colour and NIR data. Eur. Food Res. Technol. 2019, 245, 2269–2278. [Google Scholar] [CrossRef]
- Ferraretto, L.F.; Shaver, R.D.; Luck, B.D. Silage review: Recent advances and future technologies for whole-plant and fractionated corn silage harvesting 1. J. Dairy Sci. 2018, 101, 3937–3951. [Google Scholar] [CrossRef]
- Windle, M.C.; Walker, N.; Kung, L.K., Jr. Effects of an exogenous protease on the fermentation and nutritive value of corn silage harvested at different dry matter contents and ensiled for various lengths of time. J. Dairy Sci. 2014, 97, 3053–3060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiß, K.; Kroschewski, B.; Auerbach, H.U. The Influence of Delayed Sealing and Repeated Air Ingress during the Storage of Maize Silage on Fermentation Patterns, Yeast Development and Aerobic Stability. Fermentation 2022, 8, 48. [Google Scholar] [CrossRef]
- Weiß, K.; Kroschewski, B.; Auerbach, H. Formation of volatile organic compounds during the fermentation of maize as affected by sealing time and silage additive use. Arch. Anim. Nutr. 2020, 74, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.; da Silva, É.B.; Carvalho-Estrada, P.d.A.; Daniel, J.L.P.; Nussio, L.G. Influence of hybrid, moisture, and length of storage on the fermentation profile and starch digestibility of corn grain silages. Anim. Feed Sci. Technol. 2021, 271, 114707. [Google Scholar] [CrossRef]
- Montes, F.; Hafner, S.D.; Rotz, C.A.; Mitloehner, F.M. Temperature and air velocity effects on ethanol emission from corn silage with the characteristics of an exposed silo face. Atmos. Environ. 2010, 44, 1987–1995. [Google Scholar] [CrossRef]
- Brüning, D.; Gerlach, K.; Weiß, K.; Südekum, K.H. Effect of compaction, delayed sealing and aerobic exposure on maize silage quality and on formation of volatile organic compounds. Grass Forage Sci. 2018, 73, 53–66. [Google Scholar] [CrossRef]
- Gallo, A.; Giuberti, G.; Bruschi, S.; Fortunati, P.; Masoero, F. Use of principal factor analysis to generate a corn silage fermentative quality index to rank well- or poorly preserved forages. J. Sci. Food Agric. 2016, 96, 1686–1696. [Google Scholar] [CrossRef]
- Borreani, G.; Tabacco, E.; Cavallarin, L. A new oxygen barrier film reduces aerobic deterioration in farm-scale corn silage. J. Dairy Sci. 2007, 90, 4701–4706. [Google Scholar] [CrossRef] [Green Version]
- Woolford, M.K.K. The detrimental effects of air on silage. J. Appl. Bacteriol. 1990, 68, 101–116. [Google Scholar] [CrossRef]
- Griswold, K.E.; Craig, P.H.; Graybill, J.S.; Dinh, S.K. Relating Dry Matter Density to Dry Matter Loss within Corn Silage Bunker Silos. 2010. Available online: https://projects.sare.org/wp-content/uploads/195griswold-dry-matter-loss-poster-metric-version.pdf (accessed on 1 May 2022).
- Saylor, B.A.; McCary, C.L.; Diepersloot, E.C.; Heinzen, C.; Pupo, M.R.; Gusmão, J.O.; Ghizzi, L.G.; Sultana, H.; Ferraretto, L.F. Effect of forage processor roll gap width and storage length on fermentation profile, nutrient composition, kernel processing score, and starch disappearance of whole-plant maize silage harvested at three different maturities. Agriculture 2021, 11, 574. [Google Scholar] [CrossRef]
- Horst, E.H.; Bumbieris, V.H.; Neumann, M.; López, S. Effects of the harvest stage of maize hybrids on the chemical composition of plant fractions: An analysis of the different types of silage. Agriculture 2021, 11, 786. [Google Scholar] [CrossRef]
Variables Pre-Ensiled (g kg−1DM) | Mean | s.d. | IQR | Min | Median | Max |
DM_fresh (g kg−1) | 338 | 34 | 57 | 280 | 346 | 411 |
Crude protein | 66.8 | 3.9 | 4.3 | 60.5 | 67.1 | 77.5 |
Ether extract | 27.4 | 1.9 | 2.9 | 23.3 | 27.1 | 31.5 |
Ash | 37.9 | 3.1 | 3.3 | 32.1 | 38.9 | 44.2 |
Starch | 339 | 26 | 40 | 301 | 341 | 395 |
Water-soluble carbohydrates | 70.1 | 32.3 | 64.8 | 22.1 | 62.5 | 113.2 |
aNDF | 389 | 23 | 22 | 335 | 391 | 439 |
ADF | 209 | 20 | 21 | 175 | 211 | 246 |
Lignin | 25.5 | 5.7 | 7.5 | 16.0 | 26.5 | 38.1 |
Variables Post-Ensiled (g kg−1 DM) | ||||||
DM (g kg−1) | 336 | 31 | 51 | 281 | 335 | 395 |
Lactic acid | 51.9 | 8.9 | 11.4 | 34.0 | 52.0 | 68.8 |
Acetic acid | 26.5 | 6.8 | 7.8 | 5.9 | 25.4 | 39.9 |
Propionic acid | 9.9 | 2.3 | 3.5 | 6.2 | 9.3 | 14.8 |
Butyric acid | 0.87 | 0.12 | 0.19 | 0.70 | 0.85 | 1.10 |
NH3-N (g 100 g−1 total N) | 7.8 | 0.7 | 0.8 | 6.3 | 7.9 | 9.5 |
pH | 3.83 | 0.10 | 0.12 | 3.57 | 3.84 | 4.01 |
DM density (kg DM m−3) | 205 | 26 | 39 | 152 | 209 | 254 |
Porosity (decimals) | 0.41 | 0.07 | 0.06 | 0.33 | 0.40 | 0.60 |
DM losses (%) | 5.04 | 3.76 | 4.65 | 0.53 | 4.15 | 14.13 |
Prediction | Original Farm-Derived Data Set (n = 36) | |||
---|---|---|---|---|
Actual class | DML < 3.0 | 3.0 ≤ DML ≤ 7.0 | DML > 7.0 | |
Predicted as | DML < 3.0 (L) | 12 | 1 | 1 |
Predicted as | 3.0 ≤ DML ≤ 7.0 (M) | 2 | 13 | 1 |
Predicted as | DML > 7.0 (H) | 0 | 1 | 5 |
Predictive Statistics | ||||
Sensitivity | 0.86 | 0.87 | 0.71 | |
Specificity | 0.91 | 0.86 | 0.97 | |
Positive predictive value | 0.86 | 0.81 | 0.83 | |
Negative predictive value | 0.90 | 0.89 | 0.93 | |
Balanced accuracy | 0.88 | 0.86 | 0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segato, S.; Marchesini, G.; Magrin, L.; Contiero, B.; Andrighetto, I.; Serva, L. A Machine Learning-Based Assessment of Maize Silage Dry Matter Losses by Net-Bags Buried in Farm Bunker Silos. Agriculture 2022, 12, 785. https://doi.org/10.3390/agriculture12060785
Segato S, Marchesini G, Magrin L, Contiero B, Andrighetto I, Serva L. A Machine Learning-Based Assessment of Maize Silage Dry Matter Losses by Net-Bags Buried in Farm Bunker Silos. Agriculture. 2022; 12(6):785. https://doi.org/10.3390/agriculture12060785
Chicago/Turabian StyleSegato, Severino, Giorgio Marchesini, Luisa Magrin, Barbara Contiero, Igino Andrighetto, and Lorenzo Serva. 2022. "A Machine Learning-Based Assessment of Maize Silage Dry Matter Losses by Net-Bags Buried in Farm Bunker Silos" Agriculture 12, no. 6: 785. https://doi.org/10.3390/agriculture12060785
APA StyleSegato, S., Marchesini, G., Magrin, L., Contiero, B., Andrighetto, I., & Serva, L. (2022). A Machine Learning-Based Assessment of Maize Silage Dry Matter Losses by Net-Bags Buried in Farm Bunker Silos. Agriculture, 12(6), 785. https://doi.org/10.3390/agriculture12060785