Food Production in the Context of Global Developmental Challenges
Abstract
:1. Demographic Factors and Demand for Food
2. Surplus Food Distribution
3. Consumption and Meeting Food Demand
4. Food Waste
5. Global Demand for Agricultural Land (Food Production)
6. Problems Associated with Intensive Agricultural (Food) Production
- contributing to soil degradation (damage to soil structure, soil erosion, decrease in soil fertility, increase in soil salinity and acidity, pollution with chemicals, pesticides, and artificial fertilizers)
- disrupting natural water retention (due to a higher demand for water, artificial irrigation, drying of natural water bodies, land drainage, elimination of small water bodies in agricultural areas, eutrophication) and decreasing water quality (due to leaching of organic and inorganic pollutants to groundwater and surface water);
- disrupting the genetic and species diversity of organisms, as well as the biodiversity of ecosystems (due to pesticide use, monoculture, GMOs, and industrial livestock farming).
7. Global Warming and Food Production
8. Stability of Food Supply
9. Diversification of Food Products to Meet Consumer Expectations
- foods with special attributes, namely foods that meet the needs of specific consumer groups (organic food, kosher food, traditional specialties guaranteed food, vegetarian food);
- novelty foods which differ from conventional food products in raw materials and their sources (transgenic food, in vitro meat), provide health benefits beyond meeting basic nutrition needs (functional food), and are ready to eat with minimal or no preparation (convenience food);
- special purpose foods which differ from conventional food products in nutritive and assimilative properties and/or method of preparation (diets that address specific health concerns, infant formulas, foods for persons with special nutrition needs, foods prescribed by medical professionals).
10. Conclusions
- the quantity and availability of food has to be increased to feed a growing world population;
- the quality of food has to be improved to cater to the consumers′ rapidly evolving needs and expectations;
- the quality of food raw materials has to be improved to meet the demands of the food processing industry.
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.; Wei, B.; Zhang, R.; Li, H. Evolution of water-energy-food-climate study: Current status and future prospects. J. Water Clim. Chang. 2022, 13, 463. [Google Scholar] [CrossRef]
- Abdi, H.; Shahbazitabar, M.; Mohammadi-Ivatloo, B. Food, Energy and Water Nexus: A Brief Review of Definitions, Research, and Challenges. Inventions 2020, 5, 56. [Google Scholar] [CrossRef]
- Yadav, K.; Geli, H.M.E.; Cibils, A.F.; Haye, M.; Fernald, A.; Peach, J.; Sawalhah, M.N.; Tidwell, V.C.; Johnson, L.E.; Zaied, A.J.; et al. An Integrated Food, Energy, and Water Nexus, Human Well-Being, and Resilience (FEW-WISE) Framework: New Mexico. Front. Environ. Sci. 2021, 9, 667018. [Google Scholar] [CrossRef]
- Adam, D. How far will global population rise? Researchers can’t agree. Nature 2021, 597, 462–465. [Google Scholar] [CrossRef] [PubMed]
- Vollset, S.E.; Goren, E.; Yuan, C.-W.; Cao, J.; Smith, A.E.; Hsiao, T.; Bisignano, C.; Azhar, G.S.; Castro, E.; Chalek, J.; et al. Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: A forecasting analysis for the Global Burden of Disease Study. Lancet 2020, 396, 1285–1306. [Google Scholar] [CrossRef]
- United Nations. Department of Economic and Social Affairs, Population Division (2019). In World Population Prospects 2019: Highlights (ST/ESA/SER.A/423); UN: New York, NY, USA, 2019; pp. 5, 12. [Google Scholar]
- Population Reference Bureau (PRF). Available online: https://www.prb.org/ (accessed on 23 April 2022).
- van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef]
- Andreoli, V.; Bagliani, M.; Corsi, A.; Frontuto, V. Drivers of Protein Consumption: A Cross-Country Analysis. Sustainability 2021, 13, 7399. [Google Scholar] [CrossRef]
- Al Hasan, S.M.; Saulam, J.; Mikami, F.; Kanda, K.; Ngatu, N.R.; Yokoi, H.; Hirao, T. Trends in per Capita Food and Protein Availability at the National Level of the Southeast Asian Countries: An Analysis of the FAO’s Food Balance Sheet Data from 1961 to 2018. Nutrients 2022, 14, 603. [Google Scholar] [CrossRef]
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- OECD/FAO. OECD-FAO Agricultural Outlook 2021–2030; OECD Publishing: Paris, France, 2021; pp. 171, 274–275. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2021. In Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for all; FAO: Rome, Italy, 2021; p. 8. [Google Scholar] [CrossRef]
- Buttriss, J. Nutrient requirements and optimisation of intakes. Brit. Med. Bull. 2000, 56, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Richter, M.; Baerlocher, K.; Bauer, J.M.; Elmadfa, I.; Heseker, H.; Leschik-Bonnet, E.; Stangl, G.; Volkert, D.; Stehle, P. Revised Reference Values for the Intake of Protein. Ann. Nutr. Metab. 2019, 74, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Daily Calorie Supply per Capita by Source. Available online: https://ec.europa.eu/eurostat/databrowser/view/t2020_rk100/default/table?lang=en (accessed on 23 April 2022).
- The WHO Regional Office for Europe (WHO/Europe). Protein Available per Person per Day (g). Available online: https://gateway.euro.who.int/en/indicators/hfa_444-3221-protein-available-per-person-per-day-g/visualizations/#id=19470 (accessed on 23 April 2022).
- The World Health Organization (WHO). Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 23 April 2022).
- Kleinert, S.; Horton, R. Obesity needs to be put into a much wider context. Lancet 2019, 393, 724–726. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019; p. 8. [Google Scholar]
- United Nations Environment Programme. Food Waste Index Report 2021; United Nations Environment Programme: Nairobi, Kenya, 2021; pp. 8, 20. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Energy-Smart Food for People and Climate; Issue Paper; FAO: Rome, Italy, 2011; p. 26. [Google Scholar]
- Gladek, E.; Fraser, M.; Roemers, G.; Muñoz, O.S.; Kennedy, E.; Hirsch, P. The Global Food System: An Analysis; METABOLIC: Amsterdam, The Netherland, 2017; p. 5. [Google Scholar]
- Provenza, F.D.; Kronberg, S.L.; Gregorini, P. Is Grassfed Meat and Dairy Better for Human and Environmental Health? Front. Nutr. 2019, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.-B.; Aggarwal, R.; Wu, J.; Lv, L. Urbanization-associated farmland loss: A macro-micro comparative study in China. Land Use Policy 2021, 101, 105228. [Google Scholar] [CrossRef]
- Hooke, R.L.B.; Martín-Duque, J.F.; Pedraza, J. Land transformation by humans: A review. GSA Today 2012, 22, 12. [Google Scholar] [CrossRef]
- Mauser, W.; Klepper, G.; Zabel, F.; Delzeit, R.; Hank, T.; Putzenlechner, B.; Calzadilla, A. Global biomass production potentials exceed expected future demand without the need for cropland expansion. Nat. Commun. 2015, 6, 8946. [Google Scholar] [CrossRef] [Green Version]
- Folberth, C.; Khabarov, N.; Balkovič, J.; Skalský, R.; Visconti, P.; Ciais, P.; Janssens, I.A.; Peñuelas, J.; Obersteiner, M. The global cropland-sparing potential of high-yield farming. Nat. Sustain. 2020, 3, 281–289. [Google Scholar] [CrossRef]
- Shurtleff, W.; Aoyagi, A. History of Vegetarianism and Veganism Worldwide (1970–2022): Extensively Annotated Bibliography and Sourcebook; Soyinfo Center: Lafayette, LA, USA, 2022; p. 1130. [Google Scholar]
- Ritchie, H. If the World Adopted a Plant-Based Diet We Would Reduce Global Agricultural Land Use from 4 to 1 Billion Hectares. 2021. Available online: https://ourworldindata.org/land-use-diets (accessed on 23 April 2022).
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [Green Version]
- Chai, B.C.; van der Voort, J.R.; Grofelnik, K.; Eliasdottir, H.G.; Klöss, I.; Perez-Cueto, F.J.A. Which Diet Has the Least Environmental Impact on Our Planet? A Systematic Review of Vegan, Vegetarian and Omnivorous Diets. Sustainability 2019, 11, 4110. [Google Scholar] [CrossRef] [Green Version]
- Grossi, G.; Goglio, P.; Vitali, A.; Williams, A.G. Livestock and climate change: Impact of livestock on climate and mitigation strategies. Anim. Front. 2019, 9, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Givens, D.I. Milk and meat in our diet: Good or bad for health? Animal 2010, 4, 1941–1952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; USDA: Washington, DC, USA; HHS: Washington, DC, USA, 2020; p. 18. Available online: https://www.dietaryguidelines.gov/ (accessed on 23 April 2022).
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K. International Agency for Research on Cancer Monograph Working Group. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef] [Green Version]
- McAfee, A.J.; McSorley, E.M.; Cuskelly, G.J.; Moss, B.W.; Wallace, J.M.W.; Bonham, M.P.; Fearon, A.M. Red meat consumption: An overview of the risks and benefits. Meat Sci. 2010, 84, 1–13. [Google Scholar] [CrossRef] [PubMed]
- McNeill, S.H. Inclusion of red meat in healthful dietary patterns. Meat Sci. 2014, 98, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Lemken, D. The price penalty for red meat substitutes in popular dishes and the diversity in substitution. PLoS ONE 2021, 16, e0252675. [Google Scholar] [CrossRef]
- The Food and Agriculture Organization (FAO). Emissions Shares. Available online: https://www.fao.org/faostat (accessed on 23 April 2022).
- Benton, T.G.; Bieg, C.; Harwatt, H.; Pudasaini, R.; Wellesley, L. Food system impacts on biodiversity loss. In Three Levers for Food System Transformation in Support of Nature; Research Paper, Environment and Resources Programme; Chatham House, the Royal Institute of International Affairs: London, UK, 2021; pp. 15–21. [Google Scholar]
- Song, F.; Zhang, G.J.; Ramanathan, V.; Leung, L.R. Trends in surface equivalent potential temperature: A more comprehensive metric for global warming and weather extremes. Proc. Natl. Acad. Sci. USA 2022, 119, e2117832119. [Google Scholar] [CrossRef]
- Gasparrini, A.; Guo, Y.; Sera, F.; Vicedo-Cabrera, A.M.; Huber, V.; Tong, S.; Coelho, M.S.Z.S.; Hilario, P.N.S.; Lavigne, E.; Correa, P.M.; et al. Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet. Health 2017, 1, e360–e367. [Google Scholar] [CrossRef]
- Sterk, G.; Stoorvogel, J.J. Desertification-Scientific Versus Political Realities. Land 2020, 9, 156. [Google Scholar] [CrossRef]
- Salvia, R.; Egidi, G.; Vinci, S.; Salvati, L. Desertification Risk and Rural Development in Southern Europe: Permanent Assessment and Implications for Sustainable Land Management and Mitigation Policies. Land 2019, 8, 191. [Google Scholar] [CrossRef] [Green Version]
- The Lancet Countdown: Tracking Progress on Health and Climate Change. The 2021 report of the Lancet Countdown on health and climate change: Code red for a healthy future. Lancet 2021, 398, P1619–P1662. [Google Scholar] [CrossRef]
- Mimura, N. Review. Sea-level rise caused by climate change and its implications for socjety. Proc. Jpn. Acad. 2013, 89, 281–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 36. [Google Scholar]
- Kopp, R.E.; Kemp, A.C.; Bittermann, K.; Horton, B.P.; Donnelly, J.P.; Gehrels, W.R.; Hay, C.C.; Mitrovica, J.X.; Morrow, E.D.; Rahmstorf, S. Temperature-driven global sea-level variability in the Common Era. Proc. Natl. Acad. Sci. USA 2016, 113, E1434–E1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haasnoot, M.; Kwadijk, J.; van Alphen, J.; Le Bars, D.; van den Hurk, B.; Diermanse, F.; van der Spek, A.; Oude Essink, G.; Delsman, J.; Mens, M. Adaptation to uncertain sea-level rise; how uncertainty in Antarctic mass-loss impacts the coastal adaptation strategy of the Netherlands. Environ. Res. Lett. 2020, 15, 034007. [Google Scholar] [CrossRef]
- Schnurr, R.E.J.; Walker, T.R. Marine Transportation and Energy Use. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- New Zealand Ministry of Foreign Affairs & Trade (New Zealand Embassy in Cairo). The Importance of the Suez Canal to Global Trade—18 April 2021. 2021. Available online: https://www.mfat.govt.nz/pl/trade/mfat-market-reports/market-reports-middle-east/the-importance-of-the-suez-canal-to-global-trade-18-april-2021/ (accessed on 23 April 2022).
- Bailey, R.; Wellesley, L. Chokepoints and Vulnerabilities in Global Food Trade; Chatham House Report; Chatham House, the Royal Institute of International Affairs: London, UK, 2017; p. 5. [Google Scholar]
- Barman, A.; Das, R.; De, P.K. Impact of COVID-19 in food supply chain: Disruptions and recovery strategy. Curr. Opin. Behav. Sci. 2021, 2, 100017. [Google Scholar] [CrossRef]
- International Labour Organization (ILO). ILO Monitor: COVID-19 and the World of Work. Seventh edition Updated Estimates and Analysis. p. 2. Available online: https://www.ilo.org/wcmsp5/groups/public/---dgreports/---dcomm/documents/briefingnote/wcms_767028.pdf (accessed on 23 April 2022).
- Béné, C.; Bakker, D.; Chavarro, M.J.; Even, B.; Melo, J.; Sonneveld, A. Global assessment of the impacts of COVID-19 on food security. Glob. Food Sec. 2021, 31, 100575. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAO). Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 23 April 2022).
- Grote, U.; Fasse, A.; Nguyen, T.T.; Erenstein, O. Food Security and the Dynamics of Wheat and Maize Value Chains in Africa and Asia. Front. Sustain. Food Syst. 2021, 3, 617009. [Google Scholar] [CrossRef]
- Li, Y.; Robertson, I. The epidemiology of swine influenza. Animal Diseases 2021, 1, 21. [Google Scholar] [CrossRef]
- Sua, S.; Bi, Y.; Wong, G.; Gray, G.C.; Gao, G.F.; Li, S. Epidemiology, Evolution, and Recent Outbreaks of Avian Influenza Virus in China. J. Virol. 2015, 89, 8671–8676. [Google Scholar] [CrossRef] [Green Version]
- Blome, S.; Franzke, K.; Beer, M. African swine fever—A review of current knowledge. Virus Res. 2020, 287, 198099. [Google Scholar] [CrossRef]
- Staver, C.; Pemsl, D.E.; Scheerer, L.; Vicente, L.P.; Dita, M. Ex Ante Assessment of Returns on Research Investments to Address the Impact of Fusarium Wilt Tropical Race 4 on Global Banana Production. Front. Plant Sci. 2020, 11, 844. [Google Scholar] [CrossRef]
- Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Jankielsohn, A. The Importance of Insects in Agricultural Ecosystems. Adv. Entomol. 2018, 6, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Colgrave, M.L.; Dominik, S.; Tobin, A.B.; Stockmann, R.; Simon, C.; Howitt, C.A.; Belobrajdic, D.P.; Paull, C.; Vanhercke, T. Perspectives on Future Protein Production. J. Agric. Food Chem. 2021, 69, 15076–15083. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, L.; Weiss, J. Alternative Protein Sources as Technofunctional Food Ingredients. Annu. Rev. Food Sci. T. 2021, 12, 93–117. [Google Scholar] [CrossRef]
- Kurek, M.A.; Onopiuk, A.; Pogorzelska-Nowicka, E.; Szpicer, A.; Zalewska, M.; Półtorak, A. Novel Protein Sources for Applications in Meat-Alternative Products—Insight and Challenges. Foods 2022, 11, 957. [Google Scholar] [CrossRef]
- Morach, B.; Witte, B.; Walker, D.; von Koeller, E.; Grosse-Holz, F.; Rogg, J.; Brigl, M.; Dehnert, N.; Obloj, P.; Koktenturk, S.; et al. Food for Thought: The Protein Transformation. Ind. Biotechnol. 2021, 17, 125–133. [Google Scholar] [CrossRef]
- Gawęcki, J.; Mossor-Pietraszewska, T. Kompendium Wiedzy o Żywności, Żywieniu i Zdrowiu; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2006; pp. 12–13, 20, 126. [Google Scholar]
- Hanus, G. Food market innovations as a response to consumer requirements: A review of literature. Optimum. Econ. Stud. 2018, 1, 251–264. [Google Scholar] [CrossRef] [Green Version]
- Iwatani, S.; Yamamoto, N. Functional food products in Japan: A review. Food Sci. Hum. Wellness 2019, 8, 96–101. [Google Scholar] [CrossRef]
- Chancel, L.; Piketty, T.; Saez, E.; Zucman, G. World Inequality Report 2022; World Inequality Lab wir2022.wid.World: Paris, France, 2022; p. 15. [Google Scholar]
- The World Bank. Available online: https://data.worldbank.org (accessed on 23 April 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daszkiewicz, T. Food Production in the Context of Global Developmental Challenges. Agriculture 2022, 12, 832. https://doi.org/10.3390/agriculture12060832
Daszkiewicz T. Food Production in the Context of Global Developmental Challenges. Agriculture. 2022; 12(6):832. https://doi.org/10.3390/agriculture12060832
Chicago/Turabian StyleDaszkiewicz, Tomasz. 2022. "Food Production in the Context of Global Developmental Challenges" Agriculture 12, no. 6: 832. https://doi.org/10.3390/agriculture12060832
APA StyleDaszkiewicz, T. (2022). Food Production in the Context of Global Developmental Challenges. Agriculture, 12(6), 832. https://doi.org/10.3390/agriculture12060832