Investigating the Impact of International Markets on Imported and Exported Non-Cereal Crops in Bangladesh
Abstract
:1. Introduction
2. Previous Research
3. Materials and Methods
4. Results
5. Discussions
6. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahman, M.M.; Hossain, M.A.; Ali, M.R.; Ahmed, Z.; Hedayutul Islam, A.H.M. Assessing vulnerability and adaptation strategy of the cyclone affected coastal area of Bangladesh. Geoenviron. Disasters 2022, 9, 6. [Google Scholar] [CrossRef]
- Shahabuddin, Q.; Rahman, A. Agricultural and Food Policy Framework in Bangladesh: An Assessment. Bangladesh Dev. Stud. 2017, 40, 27–51. Available online: https://www.jstor.org/stable/26572743 (accessed on 22 February 2022).
- Osmani, S.R. Pricing and Distribution Policies for Agricultural Development in Bangladesh. Bangladesh Dev. Stud. 1985, 13, 1–40. Available online: http://www.jstor.org/stable/40775789 (accessed on 3 March 2022).
- WB. Overview of Bangladesh, Where We Work, World Bank Report. 2022. Available online: https://www.worldbank.org/en/country/bangladesh/overview#1 (accessed on 11 April 2022).
- Talukder, R.K. Food Security, Self-Sufficiency and Nutrition Gap in Bangladesh. Bangladesh Dev. Stud. 2005, 31, 35–62. Available online: https://ideas.repec.org/a/ris/badest/0470.html (accessed on 22 June 2020).
- FAO (Food and Agriculture Organization of the United Nations). The State of Food and Agriculture; FAO: Rome, Italy, 2015; Available online: http://bit.ly/KAn84P (accessed on 16 May 2020).
- HIES. Household Income and Expenditure Survey; Preliminary Report on Household Income and Expenditure Survey; Bureau of Statistics Division, Ministry of Planning, Government of the People’s Republic of Bangladesh: Dhaka, Bangladesh, 2015.
- FAO/WHO. Food and Agriculture Organization of the United Nations/World Health Organization. Bangladesh Country Nutrition Paper. In Proceedings of the International Conference on Nutrition 21 Years Later, Rome, Italy; Geneva, Swaziland, 19–21 November 2014. [Google Scholar]
- Dameus, A. Impact of Government Pricing Policies on Cereal Grain Producers in Haiti. Master’s Thesis, Iowa State University, Ames, IA, USA, 1988. Available online: https://lib.dr.iastate.edu/rtd/16585 (accessed on 14 February 2022).
- Taylor, D.S.; Phillips, T.P. Food-Pricing Policy in Developing Countries: Further Evidence on Cereal Producer Prices. Am. J. Agric. Econ. 1991, 73, 1036–1043. [Google Scholar] [CrossRef]
- BBS. Bangladesh Bureau of Statistics. Yearbook of Agricultural Statistics of Bangladesh; Statistics Division, Ministry of Planning, Government of the People’s Republic of Bangladesh: Dhaka, Bangladesh, 2019. Available online: http://bbs.portal.gov.bd/sites/default/files/files/bbs.portal.gov.bd/page/1b1eb817_9325_4354_a756_3d18412203e2/2020-10-06-09-58-453f7e0a42348e05f0999979870ec07b.pdf (accessed on 11 January 2022).
- BBS. Bangladesh Bureau of Statistics. Yearbook of Agricultural Statistics of Bangladesh; Statistics Division, Ministry of Planning, Government of the People’s Republic of Bangladesh: Dhaka, Bangladesh, 2017. Available online: http://bbs.portal.gov.bd/sites/default/files/files/bbs.portal.gov.bd/page/1b1eb817_9325_4354_a756_3d18412203e2/Yearbook-2017-Final-05-05-2018.pdf (accessed on 21 February 2022).
- Hossain, M.M.; Abdulla, F. Forecasting potato production in Bangladesh by ARIMA model. J. Adv. Stat. 2016, 1, 191–198. [Google Scholar] [CrossRef]
- Jaime, R.; Alcántara, J.M.; Manzaneda, A.J.; Rey, P.J. Climate change decreases suitable areas for rapeseed cultivation in Europe but provides new opportunities for white mustard as an alternative oilseed for biofuel production. PLoS ONE 2018, 13, e0207124. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. FAOSTAT Data. 2021. Available online: www.faostat.fao.org (accessed on 16 November 2021).
- Setshedi, C.; Mosikari, T.J. Empirical analysis of macroeconomic variables towards agricultural productivity in South Africa. Ital. Rev. Agric. Econ. 2019, 74, 3–15. [Google Scholar] [CrossRef]
- Kadir, S.U.S.A.; Tunggal, N.Z. The impact of macroeconomic variables toward agricultural productivity in Malaysia. South East Asia J. Contemp. Bus. Econ. Law 2015, 8, 21–27. [Google Scholar]
- Brownson, S.; Vincent, I.M.; Emmanuel, G.; Etim, D. Agricultural Productivity and Macro-economic Variable fluctuation in Nigeria. Int. J. Econ. Financ. 2012, 4, 114–125. [Google Scholar] [CrossRef] [Green Version]
- Motamed, M.; Hungerford, A.; Rosch, S.; O’Donoghue, E.; MacLachlan, M.; Astill, G.; Cessna, J.; Cooper, J. Federal Risk Management Tools for Agricultural Producers: An Overview; The U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2018; ERR-250. [Google Scholar]
- Frankel, J.; Rose, A.K. Determinants of Agricultural and Mineral Commodity Prices; HKS Faculty Research Working Paper Series 10-038; John, F., Ed.; Kennedy School of Government, Harvard University: Cambridge, MA, USA, 2010. [Google Scholar]
- Jannat, A.; Ishikawa-Ishiwata, Y.; Furuya, J. Does Climate Change Affect Rapeseed Production in Exporting and Importing Countries? Evidence from Market Dynamics Syntheses. Sustainability 2022, 14, 6051. [Google Scholar] [CrossRef]
- Kamaruddin, K.; Hazmi, Y.; Masbar, R.; Syahnur, S.; Majid, M.S.A. Asymmetric Impact of World Oil Prices on Marketing Margins: Application of NARDL Model for the Indonesian Coffee. Int. J. Energy Econ. 2021, 11, 212–220. Available online: https://econjournals.com/index.php/ijeep/article/view/11857 (accessed on 29 January 2022). [CrossRef]
- Jannat, A.; Ishikawa-Ishiwata, Y.; Furuya, J. Assessing the Impacts of Climate Variations on the Potato Production in Bangladesh: A Supply and Demand Model Approach. Sustainability 2021, 13, 5011. [Google Scholar] [CrossRef]
- Salam, M.A.; Furuya, J.; Kobayashi, S. Climate effect on supply and market price stability of rice in Bangladesh: Assessment of climate and socioeconomic scenarios. Jpn. J. Agric. Econ. 2017, 19, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Furuya, J.; Kobayashi, S.; Yamauchi, K. Impacts of climate change on rice market and production capacity in the Lower Mekong Basin. Paddy Water Env. 2014, 12, 255–274. [Google Scholar] [CrossRef]
- Ahamed, M.S.; Moniruzzaman, M.; Tabassum, N. Can Cold Storage Reduce Seasonal Variation in Prices of Agricultural Commodities? A Case of Potato in Bangladesh. Bangladesh J. Agric. Econ. 2021, 42, 19–36. Available online: https://bjae.bau.edu.bd/index.php/home/article/view/100 (accessed on 12 December 2021).
- Bhati, M.; Kumar, R. Price Volatility of Oilseeds under Trade Liberalization in India: Analysis of Rapeseed and Mustard. Int. Econ. Stud. 2020, 50, 61–74. [Google Scholar] [CrossRef]
- Singha, U.; Maezawa, S. Production, Marketing System, Storage and Future Aspect of Potato in Bangladesh. Rev. Agric. Sci. 2019, 7, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Sabur, S.A.; Monayem Miah, M.A.; Begum, M.E.A.; Rahman, M.S.; Molla, M.M.U. Demand, supply and reasons for price hike of potato in Bangladesh. Bangladesh J. Agric. Econ. 2021, 42, 93–108. [Google Scholar]
- Rahman, S.; Kazal, M.M.H.; Begum, I.A.; Alam, M.J. Competitiveness, Profitability, Input Demand and Output Supply of Maize Production in Bangladesh. Agriculture 2016, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Miah, M.M.A.; Shiblee, S.M.A.; Rashid, M.A. Economic Impacts of Oilseed Research and Development in Bangladesh. Bangladesh Dev. Stud. 2015, 38, 1–31. [Google Scholar]
- Alam, M.J.; Buysse, J.; Begum, I.A.; Nolte, S.; Wailes, E.J.; Van Huylenbroeck, G. Impact of trade liberalization and world price changes in Bangladesh: A computable general equilibrium analysis. Agric. Econ. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Hassan, F.; Kornher, L. Farm wage and Rice Price dynamics in Bangladesh. Food Sec. 2022, 14, 127–146. [Google Scholar] [CrossRef]
- Hossain, M. What implications does the world food price rise have for food security in Bangladesh. Int. J. Food Agric. Econ. 2014, 2, 51–63. [Google Scholar]
- Barahona, J.F.; Chulaphan, W. Price transmission between world food prices and different consumer food price indices in Thailand. Kasetsart J. Soc. Sci. 2019, 40, 17–23. [Google Scholar] [CrossRef]
- Ivanic, M.; Martin, W. Short- and Long-Run Impacts of Food Price Changes on Poverty; The World Bank: Washington, DC, USA, 2014. [Google Scholar] [CrossRef] [Green Version]
- Jacoby, H.G. Food prices, wages, and welfare in rural India. Econ. Inq. 2016, 54, 159–176. [Google Scholar] [CrossRef] [Green Version]
- Jayasuriya, S.; Mudbhary, P.; Broca, S.S. Food Price Spikes, Increasing Volatility and Global Economic Shocks: Coping with Challenges to Food Security in Asia; Food and Agriculture Organization of the United Nations: Bangkok, Thailand, 2012; Available online: http://www.fao.org/docrep/016/i3031e/i3031e00.htm (accessed on 2 November 2021).
- Kalkuhl, M.; Von Braun, J.; Torero, M. Food Price Volatility and Its Implications for Food Security and Policy. 2016. MPRA Paper No. 72164. Available online: https://mpra.ub.uni-muenchen.de/72164/ (accessed on 23 June 2021).
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Shin, Y.; Byungchul, Y.; Matthew, G.M. Modeling asymmetric cointegration and dynamic multipliers in an ARDL framework. In Festschrift in Honor of Peter Schmidt: Econometric Methods and Applications; Horrace, W.C., Sickles, R.C., Eds.; Springer Science and Business Media: New York, NY, USA, 2014; pp. 281–314. [Google Scholar]
- Delatte, A.L.; López-Villavicencio, A. Asymmetric Exchange Rate Pass-through: Evidence from Major Countries. J. Macroecon. 2012, 34, 833–844. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar]
- Phillips, P.C.; Perron, P. Testing for a unit root in time series regression. Biometrika 1988, 75, 335–346. [Google Scholar] [CrossRef]
- Kwiatkowski, D.; Phillips, P.C.; Schmidt, P.; Shin, Y. Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? J. Econom. 1992, 54, 159–178. [Google Scholar] [CrossRef]
- Ogundipe, A.A.; Adu, O.; Ogundipe, O.M.; Asaleye, A.J. Macroeconomic Impact of Agricultural Commodity Price Volatility in Nigeria. Open Agric. J. 2019, 13, 162–174. [Google Scholar] [CrossRef]
- Granger, C.W.J. Cointegrated Variables and Error Correction Models; Discussion Paper; University of California: San Diego, CA, USA, 1983. [Google Scholar]
- Samuelson, P.A. Spatial Price Equilibrium and Linear Programming. Am. Econ. Rev. 1952, 42, 560–580. [Google Scholar]
- Takayama, T.; Judge, G.G. Spatial and Temporal Price Allocation Models; North Holland: Amsterdam, The Netherlands, 1971. [Google Scholar]
- Taslim, M.A.; Hossain, M.A. Asymmetric Transmission of International Price of Edible Oil in Bangladesh. Bangladesh Dev. Stud. 2015, 38, 33–54. [Google Scholar]
- Canola Council. Growing Canola. 2021. Available online: https://www.canolacouncil.org/growing-canola/ (accessed on 10 December 2021).
- Sarker, R. Trade Expansion, International Competitiveness and the Pursuit of Export Diversification in Bangladesh. Bangladesh Dev. Stud. 2018, 41, 1–25. Available online: https://www.jstor.org/stable/10.2307/27031073 (accessed on 10 January 2022).
- Shahbaz, M. Does trade openness affect long run growth? Cointegration, causality and forecast error variance decomposition tests for Pakistan. Econ. Model. 2012, 29, 2325–2339. [Google Scholar] [CrossRef] [Green Version]
- Latruffe, L. Competitiveness, Productivity and Efficiency in the Agricultural and Agri-Food Sectors; OECD Food, Agriculture and Fisheries Working Papers No. 30; OECD Publishing: Paris, France, 2010. [Google Scholar]
- Raihan, S.; Khondker, B.H.; Uddin, H. Price Monitoring of Selected Commodities in Dhaka City; A Report Prepared for the Ministry of Commerce, Government of Bangladesh; Government of Bangladesh: Dhaka, Bangladesh, 2010.
- Tadesse, G.; Algieri, B.; Kalkuhl, M.; von-Braun, J. Drivers and triggers of international food price spikes and volatility. Food Policy 2014, 47, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Roy, T.S.; Chakraborty, R.; Parvez, M.N.; Biswas, S.; Chakraborty, S. Development of sustainable gross national income from potato export in Bangladesh- a perspective review. Univ. J. Agril. Res. 2017, 5, 46–51. [Google Scholar] [CrossRef]
- Bangladesh Export Promotion Bureau, BEPB (2016) Statistical Data for 2015–2016, Ministry of Industry, Government of People’s Republic of Bangladesh. Available online: www.epb.gov.bd (accessed on 10 April 2022).
- Saghaian, S.; Nemati, M.; Walters, C.; Chen, B. Asymmetric Price Volatility Transmission between U.S. Biofuel, Corn, and Oil Markets. J. Agric. Resour. Econ. 2018, 43, 46–60. Available online: http://www.jstor.org/stable/44840974 (accessed on 6 May 2022).
Variables | Levels | First Differences | ||||
---|---|---|---|---|---|---|
ADF | PP | KPSS | ADF | PP | KPSS | |
Potato | ||||||
FP | −3.376 * | −3.245 * | 0.111 | −5.395 *** | −15.280 *** | 0.500 *** |
WP | −2.762 | −4.149 ** | 0.129 ** | −5.903 ** | −4.370 *** | 0.178 ** |
TRD | −3.850 ** | −3.782 ** | 0.103 | −4.906 *** | −16.847 *** | 0.151 ** |
GDPPC | 4.0829 | 4.083 | 0.198 | −3.306 * | −3.265 * | 0.182 ** |
Rapeseed | ||||||
FP | −1.8020 | −1.768 | 0.159 ** | −5.162 *** | −5.148 *** | 0.089 |
WP | −3.3837 * | −1.935 | 0.079 | −4.544 *** | −5.428 *** | 0.376 *** |
TRD | −4.2221 ** | −3.217 * | 0.103 | −4.809 *** | −7.243 *** | 0.236 *** |
Statistics | Potato | Rapeseed | |||||
---|---|---|---|---|---|---|---|
FP (USD/MT) | WP USD/MT | TRD (MT) | FP (USD/MT) | WP (USD/MT) | TRD (MT) | GDPPC (USD Per Capita) | |
Mean | 8298.03 | 169.53 | 2,851,031 | 25,772.22 | 369.38 | 47,393.84 | 643.70 |
Median | 7000.00 | 150.00 | 2,210,500 | 18,470.00 | 367.00 | 44,811.00 | 395.96 |
Maximum | 17,060.00 | 380.00 | 11,556,000 | 48,740.00 | 565.00 | 129,000.0 | 1846.42 |
Minimum | 2280.00 | 72.00 | 126,000.0 | 11,090.00 | 220.00 | 259.00 | 252.73 |
Std. Dev. | 4375.46 | 83.61 | 2,596,944 | 13,623.96 | 106.42 | 30,441.95 | 458.87 |
Skewness | 0.59 | 1.12 | 1.18 | 0.54 | 0.24 | 0.77 | 1.27 |
Kurtosis | 1.88 | 3.37 | 4.83 | 1.58 | 1.87 | 3.36 | 3.43 |
Jarque-Bera | 3.22 | 7.00 | 44.74 | 4.26 | 2.00 | 3.35 | 8.89 |
Probability | 0.19 | 0.03 | 0.00 | 0.12 | 0.37 | 0.19 | 0.01 |
Observations | 32 | 32 | 32 | 32 | 32 | 32 | 32 |
Test Statistic | Potato | Rapeseed |
---|---|---|
F-statistic | 4.572 ** | 4.398 ** |
Critical value bounds (N = 32) | ||
Significance | I0 bound | I1 bound |
10% | 2.618 | 3.532 |
5% | 3.164 | 4.194 |
1% | 4.428 | 5.816 |
Variables | Potato | Rapeseed | ||
---|---|---|---|---|
Coefficient | t-Stat. | Coefficient | t-Stat. | |
WP | −56.218 *** | −2.83 | −59.328 *** | −2.31 |
TRD | −0.0008 | −0.44 | −164.701 | −0.44 |
GDPPC | 8.306 * | 2.11 | 0.785 | 0.54 |
Constant | 16,050.350 | 0.98 | 50,932.230 | 0.46 |
Variables | Potato | Variables | Rapeseed | ||
---|---|---|---|---|---|
Coefficient | t-Stat. | Coefficient | t-Stat. | ||
Constant | 6037.267 *** | 3.482 | Constant | 6680.13 * | 1.861 |
FP(−1) | −0.376 | −0.950 | FP(−1) | −0.131 | −0.493 |
∆FP(−1) | 0.011 | 0.042 | ∆FP(−1) | −0.334 | −1.310 |
WP(−1) | −21.146 ** | −2.754 | WP(−1) | −7.781 | −0.580 |
∆WP | 0.538 | 0.130 | ∆WP | −8.008 | −0.624 |
∆WP(−1) | 12.097 ** | 2.637 | ∆WP(−1) | 22.599 * | 1.959 |
TRD (−1) | −0.0003 | −0.797 | TRD (−1) | 0.102 ** | 2.487 |
∆TRD | 0.0005 ** | 2.398 | ∆TRD | 0.067 ** | 2.740 |
∆GDPPC | 3.124244 | 1.512 | ∆TRD (−1) | −0.051 ** | −2.082 |
∆GDPPC | 60.519 ** | 2.358 | |||
GDPPC (−1) | −21.601 ** | −2.716 | |||
∆GDPPC (−1) | 74.766 *** | 3.124 |
Test Statistic | Potato | Rapeseed |
---|---|---|
F-statistic | 4.637 ** | 12.174 *** |
Critical value bounds (N = 32) | ||
Significance | I0 bound | I1 bound |
10% | 2.254 | 3.388 |
5% | 2.685 | 3.96 |
1% | 3.713 | 5.326 |
Variables | Potato | Rapeseed | ||
---|---|---|---|---|
Coefficient | t-Stat. | Coefficient | t-Stat. | |
Constant | 3186.765 *** | 5.556 | 15,245.81 *** | 6.147 |
WP+ | 12.645 ** | 2.308 | 34.147 *** | 3.263 |
WP− | 7.621 | 1.536 | −143.409 ** | −2.912 |
TRD+ | 0.0005 *** | 4.050 | 0.047 | 0.967 |
TRD− | 0.0006 *** | 4.089 | 0.046 | 1.322 |
GDPPC+ | 1.419 | 0.840 | −21.064 | −1.563 |
GDPPC− | 70.925 | 0.569 | 303.537 *** | 3.384 |
Variables | Potato | Variables | Rapeseed | ||
---|---|---|---|---|---|
Coefficient | t-Stat. | Coefficient | t-Stat. | ||
Constant | 5505.691 *** | 3.999 | Constant | 8889.267 *** | 6.098 |
FP (−1) | −1.728 *** | −5.510 | FP (−1) | −0.583 *** | −4.496 |
∆FP (−1) | 0.705 *** | 3.502 | ∆FP (−1) | 0.225 ** | 1.881 |
∆WP+ | 3.022 | 0.494 | ∆WP+ | 19.909 ** | 2.408 |
∆WP− | 13.167 | 1.512 | ∆WP− | −22.924 ** | −2.261 |
WP+ (−1) | 21.846 ** | 2.216 | WP− (−1) | −83.616 *** | −4.384 |
∆WP+ (−1) | −23.141 ** | −2.343 | ∆WP- (−1) | 56.692 *** | 3.167 |
∆TRD+ | 0.0008 ** | 2.790 | ∆TRD+ | 0.005 | 0.196 |
∆TRD− | 0.001 *** | 2.959 | ∆TRD− | 0.026 | 1.424 |
∆GDPPC+ | 89.765 * | 2.195 | TRD+ (−1) | 0.027 | 1.044 |
∆GDPPC− | 122.536 | 0.559 | ∆GDPPC+ | −12.282 ** | −1.908 |
GDPPC+ (−1) | 2.451 | 0.825 | ∆GDPPC− | 1769.327 *** | 5.234 |
Tests | Problem | Potato (p-Value) | Rapeseed (p-Value) | Decision | ||
---|---|---|---|---|---|---|
ARDL | NARDL | ARDL | NARDL | |||
BG F-stat. (LM) | Serial correlation | 0.470 | 0.423 | 0.884 | 0.138 | No serial correlation exists |
BPG F-stat. | Heteroscedasticity | 0.116 | 0.778 | 0.764 | 0.778 | No heteroscedasticity exists |
CUSUM | Stability | – | – | Model is stable | ||
CUSUMSQ | Stability | – | – | Model is stable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jannat, A.; Aruga, K.; Furuya, J.; Iiyama, M. Investigating the Impact of International Markets on Imported and Exported Non-Cereal Crops in Bangladesh. Agriculture 2022, 12, 833. https://doi.org/10.3390/agriculture12060833
Jannat A, Aruga K, Furuya J, Iiyama M. Investigating the Impact of International Markets on Imported and Exported Non-Cereal Crops in Bangladesh. Agriculture. 2022; 12(6):833. https://doi.org/10.3390/agriculture12060833
Chicago/Turabian StyleJannat, Arifa, Kentaka Aruga, Jun Furuya, and Miyuki Iiyama. 2022. "Investigating the Impact of International Markets on Imported and Exported Non-Cereal Crops in Bangladesh" Agriculture 12, no. 6: 833. https://doi.org/10.3390/agriculture12060833
APA StyleJannat, A., Aruga, K., Furuya, J., & Iiyama, M. (2022). Investigating the Impact of International Markets on Imported and Exported Non-Cereal Crops in Bangladesh. Agriculture, 12(6), 833. https://doi.org/10.3390/agriculture12060833