A Platform Approach to Smart Farm Information Processing
Abstract
:1. Introduction
2. The Core Components of Data Processing in Smart Farming Systems
3. Challenges and Requirements in Smart Farming
4. Requirements, Discussion and Solutions
4.1. Interoperability
4.2. Reliability
4.3. Scalability
4.4. Near Real-Time Data Processing and Decision Making
4.5. Security and Privacy
4.6. Regulation and Policies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Food Day Is Here! Food and Agriculture Organizations: Rome, Italy, 2016; Available online: https://www.cnfa.org/world-food-day-2016/ (accessed on 9 April 2022).
- Jayaraman, P.P.; Yavari, A.; Georgakopoulos, D.; Morshed, A.; Zaslavsky, A. Internet of things platform for smart farming: Experiences and lessons learnt. Sensors 2016, 16, 1884. [Google Scholar] [CrossRef] [PubMed]
- Knierim, A.; Kernecker, M.; Erdle, K.; Kraus, T.; Borges, F.; Wurbs, A. Smart farming technology innovations—Insights and reflections from the German Smart-AKIS hub. NJAS-Wagening. J. Life Sci. 2019, 90, 100314. [Google Scholar] [CrossRef]
- Yang, X.; Shu, L.; Chen, J.; Ferrag, M.A.; Wu, J.; Nurellari, E.; Huang, K. A survey on smart agriculture: Development modes, technologies, and security and privacy challenges. IEEE/CAA J. Autom. Sin. 2020, 8, 273–302. [Google Scholar] [CrossRef]
- Finger, R.; Swinton, S.M.; El Benni, N.; Walter, A. Precision Farming at the Nexus of Agricultural Production and the Environment. Annu. Rev. Resour. Econ. 2019, 11, 313–335. [Google Scholar] [CrossRef] [Green Version]
- Mushi, G.E.; Serugendo, G.D.M.; Burgi, P.Y. Digital Technology and Services for Sustainable Agriculture in Tanzania: A Literature Review. Sustainability 2022, 14, 2415. [Google Scholar] [CrossRef]
- Reportlinker. The Smart Agriculture Market. 2020. Available online: https://www.reportlinker.com/p05983713/Smart-Agriculture-Market-by-Type-and-Component-Global-Opportunity-Analysis-and-Industry-Forecast-.html (accessed on 9 April 2022).
- Islam, N.; Rashid, M.M.; Pasandideh, F.; Ray, B.; Moore, S.; Kadel, R. A review of applications and communication technologies for internet of things (Iot) and unmanned aerial vehicle (uav) based sustainable smart farming. Sustainability 2021, 13, 1821. [Google Scholar] [CrossRef]
- Vallakati, N.; Ghosh, T.; Thakur, S.; Rathod, M. Smart Farming using AI and IoT. In Proceedings of the 4th International Conference on Advances in Science & Technology (ICAST2021), Mumbai, China, 7 May 2021. [Google Scholar]
- Chukkapalli, S.S.L.; Mittal, S.; Gupta, M.; Abdelsalam, M.; Joshi, A.; Sandhu, R.; Joshi, K. Ontologies and artificial intelligence systems for the cooperative smart farming ecosystem. IEEE Access 2020, 8, 164045–164064. [Google Scholar] [CrossRef]
- Ehlers, M.-H.; Finger, R.; El Benni, N.; Gocht, A.; Gron Sorenson, C.A.; Gusset, M.; Pfeifer, C.; Poppe, K.; Regan, A.; Rose, D.C.; et al. Scenarios for European agricultural policymaking in the era of digitalisation. Agric. Syst. 2022, 196, 103318. [Google Scholar] [CrossRef]
- Almalki, F.A.; Soufiene, B.O.; Alsamhi, S.H.; Sakli, H. A low-cost platform for environmental smart farming monitoring system based on iot and uavs. Sustainability 2021, 13, 5908. [Google Scholar] [CrossRef]
- Leader, J.; Shantz, B. Disruptive Technologies in the Agri-food Sector: A Knowledge Synthesis. Rural Rev. Ont. Rural Plan. Dev. Policy 2021, 5. [Google Scholar] [CrossRef]
- Ada, E.; Sagnak, M.; Uzel, R.A.; Balcıoğlu, İ. Analysis of barriers to circularity for agricultural cooperatives in the digitalization era. Int. J. Product. Perform. Manag. 2021, 71, 932–951. [Google Scholar] [CrossRef]
- Fountas, S.; Espejo-García, B.; Kasimati, A.; Mylonas, N.; Darra, N. The future of digital agriculture: Technologies and opportunities. IT Prof. 2020, 22, 24–28. [Google Scholar] [CrossRef]
- Farooq, M.S.; Riaz, S.; Abid, A.; Abid, K.; Naeem, M.A. A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. IEEE Access 2019, 7, 156237–156271. [Google Scholar] [CrossRef]
- Anidu, A.; Dara, R. A review of data governance challenges in smart farming and potential solutions. In Proceedings of the 2021 IEEE International Symposium on Technology and Society (ISTAS), Waterloo, ON, Canada, 28–31 October2021; pp. 1–8. [Google Scholar]
- Amiri-Zarandi, M.; Dara, R.A.; Fraser, E. A survey of machine learning-based solutions to protect privacy in the Internet of Things. Comput. Secur. 2020, 96, 101921. [Google Scholar] [CrossRef]
- Ouafiq, E.M.; Elrharras, A.; Mehdary, A.; Chehri, A.; Saadane, R.; Wahbi, M. IoT in smart farming analytics, big data based architecture. In Human Centred Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2021; pp. 269–279. [Google Scholar]
- Star Schema Benchmark. 2021. Available online: Github.com/Kyligence/ssb-kylin (accessed on 9 April 2022).
- Clements, A.C.A.; Pfeiffer, D.U.; Otte, M.J.; Morteo, K.; Chen, L. A global livestock production and health atlas (GLiPHA) for interactive presentation, integration and analysis of livestock data. Prev. Vet. Med. 2002, 56, 19–32. [Google Scholar] [CrossRef]
- Akbar, M.O.; Ali, M.J.; Hussain, A.; Qaiser, G.; Pasha, M.; Pasha, U.; Missen, M.S.; Akhtar, N. IoT for development of smart dairy farming. J. Food Qual. 2020, 2020, 4242805. [Google Scholar] [CrossRef]
- Taneja, M.; Jalodia, N.; Byabazaire, J.; Davy, A.; Olariu, C. SmartHerd management: A microservices-based fog computing–Assisted IoT platform towards data-driven smart dairy farming. Softw. Pract. Exp. 2019, 49, 1055–1078. [Google Scholar] [CrossRef]
- Zamora-Izquierdo, M.A.; Santa, J.; Martínez, J.A.; Martínez, V.; Skarmeta, A.F. Smart farming IoT platform based on edge and cloud computing. Biosyst. Eng. 2019, 177, 4–17. [Google Scholar] [CrossRef]
- Li, W.; Mo, W.; Zhang, X.; Squiers, J.J.; Lu, Y.; Sellke, E.W.; Fan, W.; DiMaio, J.M.; Thatcher, J.E. Outlier detection and removal improves accuracy of machine learning approach to multispectral burn diagnostic imaging. J. Biomed. Opt. 2015, 20, 121305. [Google Scholar] [CrossRef]
- Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. 2009, 41, 1–58. [Google Scholar] [CrossRef]
- Garvin, D.A. Managing Quality: The Strategic and Competitive Edge; Simon and Schuster: New York, NY, USA, 1988. [Google Scholar]
- Cai, L.; Zhu, Y. The challenges of data quality and data quality assessment in the big data era. Data Sci. J. 2015, 14, 1–10. [Google Scholar] [CrossRef]
- Middleton, C. Broadband Infrastructure for the Future: Connecting Rural Ontario to the Digital Economy; Foresight Papers; Rural Ontario Institute: Guelph, ON, Canada, 2017; Volume 45. [Google Scholar]
- Dara, R.A.; Makrehchi, M.; Kamel, M.S. Filter-based data partitioning for training multiple classifier systems. IEEE Trans. Knowl. Data Eng. 2009, 22, 508–522. [Google Scholar] [CrossRef]
- Sivakumar, R.; Prabadevi, B.; Velvizhi, G.; Muthuraja, S.; Kathiravan, S.; Biswajita, M.; Madhumathi, A. Internet of things and machine learning applications for smart precision agriculture. IoT Appl. Comput. 2022, 135–165. [Google Scholar] [CrossRef]
- Bauer, A.; Bostrom, A.G.; Ball, J.; Applegate, C.; Cheng, T.; Laycock, S.; Rojas, S.M.; Kirwan, J.; Zhou, J. Combining computer vision and deep learning to enable ultra-scale aerial phenotyping and precision agriculture: A case study of lettuce production. Hortic. Res. 2019, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bendre, M.R.; Thool, R.C.; Thool, V.R. Big data in precision agriculture: Weather forecasting for future farming. In Proceedings of the 2015 1st International Conference on Next Generation Computing Technologies (NGCT), Dehradun, India, 4–5 September 2015; pp. 744–750. [Google Scholar]
- Uhlir, P.; Clement, G. Legal Interoperability of Research Data: Principles and Implementation Guidelines; Research Data Alliance; 2016; Available online: https://www.codata.org/uploads/Legal%20Interoperability%20Principles%20and%20Implementation%20Guidelines_Final2.pdf (accessed on 9 April 2022).
- Singh, P.M.; van Sinderen, M.J. Big data interoperability challenges for logistics. In Enterprise Interoperability in the Digitized and Networked Factory of the Future; ISTE Press: London, UK, 2016; pp. 325–335. Available online: https://pure.tue.nl/ws/portalfiles/portal/106530696/Pages_325_335_from_Proceeding_IESA2016_final_proof.pdf (accessed on 9 April 2022).
- Pierce, R. Evaluating information: Validity, reliability, accuracy, triangulation. In Research Methods in Politics; SAGE Publications Ltd.: New York, NY, USA, 2008; pp. 78–99. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.-J. Big data in smart farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Maya-Gopal, P.S.; Chintala, B.R. Big data challenges and opportunities in agriculture. Int. J. Agric. Environ. Inf. Syst. 2020, 11, 48–66. [Google Scholar] [CrossRef]
- Rodríguez, M.A.; Cuenca, L.; Ortiz, Á. Big data transformation in agriculture: From precision agriculture towards smart farming. In Working Conference on Virtual Enterprises; Springer: Cham, Switzerland, 2019; pp. 467–474. [Google Scholar]
- Ferrández-Pastor, F.J.; García-Chamizo, J.M.; Nieto-Hidalgo, M.; Mora-Martínez, J. Precision agriculture design method using a distributed computing architecture on internet of things context. Sensors 2018, 18, 1731. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Christie, R.; Manjula, P.R. Scalability in internet of things: Features, techniques and research challenges. Int. J. Comput. Intell. Res. 2017, 13, 1617–1627. [Google Scholar]
- Madushanki, A.A.R.; Halgamuge, M.N.; Wirasagoda, W.A.H.S.; Syed, A. Adoption of the Internet of Things (IoT) in agriculture and smart farming towards urban greening: A review. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 11–28. [Google Scholar] [CrossRef] [Green Version]
- So-In, C.; Poolsanguan, S.; Rujirakul, K. A hybrid mobile environmental and population density management system for smart poultry farms. Comput. Electron. Agric. 2014, 109, 287–301. [Google Scholar] [CrossRef]
- Sarkar, C.; Nambi, S.N.A.U.; Prasad, R.V.; Rahim, A. A scalable distributed architecture towards unifying IoT applications. In Proceedings of the 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea, 6–8 March 2014; pp. 508–513. [Google Scholar]
- Casado, R.; Younas, M. Emerging trends and technologies in big data processing. Concurr. Comput. Pract. Exp. 2015, 27, 2078–2091. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Liu, X.; Zhang, L.; Yang, L.T. Big data real-time processing based on storm. In Proceedings of the 2013 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, Melbourne, VIC, Australia, 16–18 July 2013; pp. 1784–1787. [Google Scholar]
- Gürcan, F.; Berigel, M. Real-time processing of big data streams: Lifecycle, tools, tasks, and challenges. In Proceedings of the 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 19–21 October 2018; pp. 1–6. [Google Scholar]
- Sarker, M.N.I.; Islam, M.S.; Murmu, H.; Rozario, E. Role of big data on digital farming. Int. J. Sci. Technol. Res. 2020, 9, 1222–1225. [Google Scholar]
- Hamed, T.; Dara, R.; Kremer, S.C. Intrusion detection in contemporary environments. In Computer and Information Security Handbook; Elsevier: Amsterdam, The Netherlands, 2017; pp. 109–130. [Google Scholar]
- Jakku, E.; Taylor, B.; Fleming, A.; Mason, C.; Fielke, S.; Sounness, C.; Thorburn, P. “If they don’t tell us what they do with it, why would we trust them?” Trust, transparency and benefit-sharing in Smart Farming. NJAS-Wagening. J. Life Sci. 2019, 90–91, 100285. [Google Scholar] [CrossRef]
- Wiseman, L.; Sanderson, J.; Zhang, A.; Jakku, E. Farmers and their data: An examination of farmers’ reluctance to share their data through the lens of the laws impacting smart farming. NJAS-Wagening. J. Life Sci. 2019, 90–91, 100301. [Google Scholar] [CrossRef]
- Van der Burg, S.; Wiseman, L.; Krkeljas, J. Trust in farm data sharing: Reflections on the EU code of conduct for agricultural data sharing. Ethics Inf. Technol. 2021, 23, 185–198. [Google Scholar] [CrossRef]
- Bahlo, C.; Dahlhaus, P.; Thompson, H.; Trotter, M. The role of interoperable data standards in precision livestock farming in extensive livestock systems: A review. Comput. Electron. Agric. 2019, 156, 459–466. [Google Scholar] [CrossRef]
- Morando, F. Legal interoperability: Making Open Government Data compatible with businesses and communities. Leg. Interoperability Mak. Open Gov. Data Compat. Bus. Communities 2013, 4, 441–452. [Google Scholar]
- Kalogirou, V.; Charalabidis, Y. The European union landscape on interoperability standardisation: Status of European and national interoperability frameworks. In Enterprise Interoperability VIII; Springer: Cham, Switzerland, 2019; pp. 359–368. [Google Scholar]
- Jiang, S.; Angarita, R.; Chiky, R.; Cormier, S.; Rousseaux, F. Towards the integration of agricultural data from heterogeneous sources: Perspectives for the French agricultural context using semantic technologies. In Proceedings of the International Conference on Advanced Information Systems Engineering, Grenoble, France, 8–12 June 2022; Springer: Cham, Switzerland, 2020; pp. 89–94. [Google Scholar]
- Martini, D. Semantic Interoperability in Agriculture; Semantic Interoperability Centre, European Commission, 2008; Available online: https://joinup.ec.europa.eu/sites/default/files/document/2011-12/daniel-martini-semantic-interoperability-agriculture.pdf (accessed on 9 April 2022).
- Santos, C.; Riyuiti, A. An overview of the use of metadata in agriculture. IEEE Lat. Am. Trans. 2012, 10, 1265–1267. [Google Scholar] [CrossRef]
- Tolk, A.; Bair, L.J.; Diallo, S.Y. Supporting Network Enabled Capability by extending the Levels of Conceptual Interoperability Model to an interoperability maturity model. J. Def. Model. Simul. 2013, 10, 145–160. [Google Scholar] [CrossRef]
- Wall, E.; Weersink, A.; Swanton, C. Agriculture and ISO 14000. Food Policy 2001, 26, 35–48. [Google Scholar] [CrossRef]
- Silva, J.; Leite, D.; Fernandes, M.; Mena, C.; Gibbs, P.A.; Teixeira, P. Campylobacter spp. as a foodborne pathogen: A review. Front. Microbiol. 2011, 2, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food Agriculture Organization, United Nations. Agricultural Metadata Element Set (AgMES). Available online: http://aims.fao.org/standards/agmes, (accessed on 9 April 2022).
- Caracciolo, C.; Stellato, A.; Morshed, A.; Johannsen, G.; Rajbhandari, S.; Jaques, Y.; Keizer, J. The Agrovoc Linked Dataset. Semant. Web 2013, 4, 341–348. [Google Scholar] [CrossRef] [Green Version]
- Balafoutis, A.T.; Beck, B.; Fountas, S.; Tsiropoulos, Z.; Vangeyte, J.; van der Wal, T.; Soto-Embodas, I.; Gómez-Barbero, M.; Pedersen, S.M. Smart farming technologies--description, taxonomy and economic impact. In Precision Agriculture: Technology and Economic Perspectives; Springer: Berlin/Heidelberg, Germany, 2017; pp. 21–77. [Google Scholar]
- Avancha, S.; Patel, C.; Joshi, A. Ontology-driven adaptive sensor networks. UMBC Stud. Collect. 2004, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Eid, M.; Liscano, R.; Saddik, A. A Novel Ontology for Sensor Networks Data. In Proceedings of the 2006 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, La Coruna, Spain, 12–14 July 2006. [Google Scholar]
- OGC-SWE Open Geospatial Consortium. Interoperability & Open Architectures: An Analysis of Existing Standardisation Processes & Procedures; OGC White Paper; Open Geospatial Consortium: Rockville, MD, USA, 2006. [Google Scholar]
- Fortier, I.; Doiron, D.; Burton, P.; Raina, P. Invited commentary: Consolidating data harmonization—How to obtain quality and applicability? Am. J. Epidemiol. 2011, 174, 261–264. [Google Scholar] [CrossRef] [Green Version]
- Miller, W.G.; Greenberg, N. Harmonization and standardization: Where are we now? J. Appl. Lab. Med. 2021, 6, 510–521. [Google Scholar] [CrossRef]
- Kamyod, C. End-to-end reliability analysis of an IoT based smart agriculture. In Proceedings of the 2018 International Conference on Digital Arts, Media and Technology (ICDAMT), Phayao, Thailand, 25–28 February 2018; pp. 258–261. [Google Scholar]
- Huang, K.-T.; Lee, Y.W.; Wang, R.Y. Quality Information and Knowledge; Prentice Hall PTR: Hoboken, NJ, USA, 1998. [Google Scholar]
- Kwon, O.; Lee, N.; Shin, B. Data quality management, data usage experience and acquisition intention of big data analytics. Int. J. Inf. Manag. 2014, 34, 387–394. [Google Scholar] [CrossRef]
- Office of Policy, United States General Aaccounting. Assessing the Reliability of Computer-Processed Data; GAO: Washington, DC, USA, 1990.
- Elliott, T. How Trustworthy Is Big Data? 2018. Available online: https://www.brinknews.com/how-trustworthy-is-big-data/ (accessed on 9 April 2022).
- Ojha, T.; Misra, S.; Raghuwanshi, N.S. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Comput. Electron. Agric. 2015, 118, 66–84. [Google Scholar] [CrossRef]
- Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.H.D.N. An overview of Internet of Things (IoT) and data analytics in agriculture: Benefits and challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef]
- Blake, R.; Mangiameli, P. The effects and interactions of data quality and problem complexity on classification. J. Data Inf. Qual. 2011, 2, 1–28. [Google Scholar] [CrossRef]
- Naumann, F.; Rolker, C. Assessment Methods for Information Quality Criteria; Humboldt-Universität zu: Berlin, Germany, 2005. [Google Scholar]
- Waga, D. Environmental Conditions’ Big Data Management and Cloud Computing Analytics for Sustainable Agriculture. 2013. Available online: https://ssrn.com/abstract=2349238 (accessed on 9 April 2022).
- Zyrianoff, I.; Heideker, A.; Silva, D.; Kleinschmidt, J.; Soininen, J.-P.; Salmon Cinotti, T.; Kamienski, C. Architecting and deploying IoT smart applications: A performance—Oriented approach. Sensors 2020, 20, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovatsch, M. Scalable Web Technology for the Internet of Things; ETH Zurich: Zurich, Germany, 2015. [Google Scholar]
- Zhou, T.; Lee, X.; Chen, L. Temperature monitoring system based on hadoop and VLC. Procedia Comput. Sci. 2018, 131, 1346–1354. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, W.; Luo, X.; Zhang, Z.; Lu, Y.; Wang, B. Developing an IoT-Enabled Cloud Management Platform for Agricultural Machinery Equipped with Automatic Navigation Systems. Agriculture 2022, 12, 310. [Google Scholar] [CrossRef]
- Idoje, G.; Dagiuklas, T.; Iqbal, M. Survey for smart farming technologies: Challenges and issues. Comput. Electr. Eng. 2021, 92, 107104. [Google Scholar] [CrossRef]
- Montoya-munoz, A.I. An approach based on Fog Computing for providing reliability in IoT Data Collection: A Case Study in a Colombian Coffee Smart Farm. Appl. Sci. 2020, 10, 8904. [Google Scholar] [CrossRef]
- Ning, H.; Li, Y.; Shi, F.; Yang, L.T. Heterogeneous edge computing open platforms and tools for internet of things. Future Gener. Comput. Syst. 2020, 106, 67–76. [Google Scholar] [CrossRef]
- Babcock, B.; Babu, S.; Datar, M.; Motwani, R.; Widom, J. Models and issues in data stream systems. In Proceedings of the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, Madison, WI, USA, 3 June 2002; pp. 1–16. [Google Scholar]
- Safaei, A.A. Real-time processing of streaming big data. Real-Time Syst. 2017, 53, 1–44. [Google Scholar] [CrossRef]
- Al-Thani, N.; Albuainain, A.; Alnaimi, F.; Zorba, N. Drones for Sheep Livestock Monitoring. In Proceedings of the 2020 IEEE 20th Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, 16–18 June 2020; pp. 672–676. [Google Scholar]
- Patel, K.; Sakaria, Y.; Bhadane, C. Real time data processing frameworks. Int. J. Data Min. Knowl. Manag. Process. 2015, 5, 49–63. [Google Scholar] [CrossRef]
- Heemskerk, C.; Boode, A.H.; Arntzen, P.; Fesselet, L. HiPerGreen: Greenhouse crop scouting by a UAS: Lessons learned from cross-domain cooperation in applied research. In Proceedings of the 2020 21st International Conference on Research and Education in Mechatronics (REM), Cracow, Poland, 9–11 December 2020; pp. 1–5. [Google Scholar]
- Maaß, W.; Shcherbatyi, I.; Marquardt, S.; Kritzner, A.; Moser, B. Real-time Smart Farming Services—Yield optimization of potato harvesting. In Land.Technik AgEng 2017: The Forum for Agricultural Innovations; VDI Verlag: Düsseldorf, Germany, 2017; pp. 67–72. ISBN 978-3-18-102300-6. [Google Scholar] [CrossRef]
- Khan, W.Z.; Ahmed, E.; Hakak, S.; Yaqoob, I.; Ahmed, A. Edge computing: A survey. Future Gener. Comput. Syst. 2019, 97, 219–235. [Google Scholar] [CrossRef]
- Awan, K.A.; Din, I.U.; Almogren, A.; Almajed, H. Agritrust—A trust management approach for smart agriculture in cloud-based internet of agriculture things. Sensors 2020, 20, 6174. [Google Scholar] [CrossRef] [PubMed]
- Chukkapalli, S.S.L.; Piplai, A.; Mittal, S.; Gupta, M.; Joshi, A. A Smart-Farming Ontology for Attribute Based Access Control. In Proceedings of the 2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), Baltimore, MD, USA, 25–27 May 2020; pp. 29–34. [Google Scholar]
- Leff, A.; Rayfield, J.T. Integrator: An architecture for an integrated cloud/on-premise data-service. In Proceedings of the 2015 IEEE International Conference on Web Services, New York, NY, USA, 27 June–2 July 2015; pp. 98–104. [Google Scholar]
- Tan, W.X.; Zhao, C.J.; Wu, H.R.; Wang, X.P. An innovative encryption method for agriculture intelligent information system based on cloud computing platform. J. Softw. 2014, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ametepe, A.F.X.; Ahouandjinou, S.A.R.M.; Ezin, E.C. Secure encryption by combining asymmetric and symmetric cryptographic method for data collection WSN in smart agriculture. In Proceedings of the 2019 IEEE International Smart Cities Conference (ISC2), Casablanca, Morocco, 14–17 October 2019; pp. 93–99. [Google Scholar] [CrossRef]
- Hassan, M.U.; Rehmani, M.H.; Chen, J. Privacy preservation in blockchain based IoT systems: Integration issues, prospects, challenges, and future research directions. Future Gener. Comput. Syst. 2019, 97, 512–529. [Google Scholar] [CrossRef]
- Verma, M. Smart contract model for trust based agriculture using Blockchain technology. Int. J. Res. Anal. Rev. 2021, 344, 2348–2349. [Google Scholar]
- Amiri-Zarandi, M.; Dara, R.A.; Fraser, E. LBTM: A lightweight blockchain-based trust management system for social internet of things. J. Supercomput. 2022, 78, 8302–8320. [Google Scholar] [CrossRef]
- Bodkhe, U.; Tanwar, S.; Bhattacharya, P.; Kumar, N. Blockchain for precision irrigation: Opportunities and challenges. Trans. Emerg. Telecommun. Technol. 2020, e4059. [Google Scholar] [CrossRef]
- Bordel, B.; Martin, D.; Alcarria, R.; Robles, T. A Blockchain-based Water Control System for the Automatic Management of Irrigation Communities. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 11–13 January 2019; pp. 17–18. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, A.; Shen, Z.; Chai, Y. Blockchain and IoT based food traceability for smart agriculture. In Proceedings of the 3rd International Conference on Crowd Science and Engineering, Singapore, 28–31 July 2018; pp. 38–43. [Google Scholar] [CrossRef]
- Casado-Vara, R.; Prieto, J.; La Prieta, F.; De Corchado, J.M. How blockchain improves the supply chain: Case study alimentary supply chain. Procedia Comput. Sci. 2018, 134, 393–398. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Sharma, R. Modeling the blockchain enabled traceability in agriculture supply chain. Int. J. Inf. Manag. 2020, 52, 101967. [Google Scholar] [CrossRef]
- Van Zanten, B.T.; Verburg, P.H.; Espinosa, M.; Gomez-Y-Paloma, S.; Galimberti, G.; Kantelhardt, J.; Kapfer, M.; Lefebvre, M.; Manrique, R.; Piorr, A.; et al. European agricultural landscapes, common agricultural policy and ecosystem services: A review. Agron. Sustain. Dev. 2014, 34, 309–325. [Google Scholar] [CrossRef] [Green Version]
- Copa, C.; CEMA, F.E.; Ceettar, C.; Ecpa, E.; Fefac, E.S.A. EU Code of Conduct on Agricultural Data Sharing by Contractual Agreement; Food and Agriculture Organization: Rome, Italy, 2020; Available online: http://www.fao.org/family-farming/detail/en/c/1370911/ (accessed on 9 April 2022).
- Montanarella, L. Agricultural policy: Govern our soils. Nat. News 2015, 528, 32. [Google Scholar] [CrossRef]
- Schimmelpfennig, D. Farm Profits and Adoption of Precision Agriculture. Economic Research Service, United States Department of Agriculture, 2016. Available online: https://www.ers.usda.gov/webdocs/publications/80326/err-217.pdf?v=0, (accessed on 9 April 2022).
- Grover, A.K.; Chopra, S.; Mosher, G.A. Food safety modernization act: A quality management approach to identify and prioritize factors affecting adoption of preventive controls among small food facilities. Food Control 2016, 66, 241–249. [Google Scholar] [CrossRef] [Green Version]
- AFBF. Privacy and Security Issues for Farm Data, Centennial. 2019. Available online: https://www.fb.org/issues/innovation/data-privacy/privacy-and-security-principles-for-farm-data (accessed on 9 April 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amiri-Zarandi, M.; Hazrati Fard, M.; Yousefinaghani, S.; Kaviani, M.; Dara, R. A Platform Approach to Smart Farm Information Processing. Agriculture 2022, 12, 838. https://doi.org/10.3390/agriculture12060838
Amiri-Zarandi M, Hazrati Fard M, Yousefinaghani S, Kaviani M, Dara R. A Platform Approach to Smart Farm Information Processing. Agriculture. 2022; 12(6):838. https://doi.org/10.3390/agriculture12060838
Chicago/Turabian StyleAmiri-Zarandi, Mohammad, Mehdi Hazrati Fard, Samira Yousefinaghani, Mitra Kaviani, and Rozita Dara. 2022. "A Platform Approach to Smart Farm Information Processing" Agriculture 12, no. 6: 838. https://doi.org/10.3390/agriculture12060838
APA StyleAmiri-Zarandi, M., Hazrati Fard, M., Yousefinaghani, S., Kaviani, M., & Dara, R. (2022). A Platform Approach to Smart Farm Information Processing. Agriculture, 12(6), 838. https://doi.org/10.3390/agriculture12060838