Agronomic Performance of Soybean with Bradyrhizobium Inoculation in Double-Cropped Farming
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Experiment Design
2.3. Chemical Analysis of Soil and Plant Samples
2.4. Rhizobial Strains
2.5. Plant Growth and Yield Components
2.6. Statistical Analysis
3. Results
3.1. Impact of Soybean Cultivation with Rhizobium Inoculation on Soil Structure
3.2. Nutrients Returned to the Soil with the Residues of Wheat and Soybean
3.3. Impact of Soybean with Rhizobium Inoculation on Crops Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Allanov, K.; Sheraliev, K.; Ulugov, C.; Ahmurzayev, S.; Sottorov, O.; Khaitov, B.; Park, K.W. Integrated Effects of Mulching Treatment and Nitrogen Fertilization on Cotton Performance under Dryland Agriculture. Commun. Soil Sci. Plant Anal. 2019, 50, 1907–1918. [Google Scholar] [CrossRef]
- Herridge, D.F.; Peoples, M.B.; Boddey, R.M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 2008, 311, 1–18. [Google Scholar] [CrossRef]
- Albareda, M.; Dardanelli, M.S.; Sousa, C.; Megıas, M.; Temprano, F.; Rodrıguez-Navarro, D.N. Factors affecting the attachment of rhizospheric bacteria to bean and soybean roots. FEMS Microbiol. Lett. 2006, 259, 67–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ntambo, M.S.; Chilinda, I.S.; Taruvinga, A.; Hafeez, S.; Anwar, T.; Sharif, R.; Chambi, C.; Kies, L. The effect of rhizobium inoculation with nitrogen fertilizer on growth and yield of soybeans (Glycine max L.). Int. J. Biosci. 2017, 10, 163–172. [Google Scholar]
- Aserse, A.A.; Markos, D.; Getachew, G.; Yli-Halla, M.; Lindström, K. Rhizobial inoculation improves drought tolerance, biomass and grain yields of common bean (Phaseolus vulgaris L.) and soybean (Glycine max L.) at Halaba and Boricha in Southern Ethiopia. Arch. Agron. Soil Sci. 2020, 66, 488–501. [Google Scholar] [CrossRef]
- Garcia, J.; Schmidt, J.E.; Gidekel, M.; Gaudin, A.C. Impact of an antarctic rhizobacterium on root traits and productivity of soybean (Glycine max L.). J. Plant Nutr. 2021, 44, 1818–1825. [Google Scholar] [CrossRef]
- Khaitov, B.; Vollmann, J.; Pyon, J.Y.; Park, K.W. Improvement of Salt Tolerance and Growth in Common Bean (Phaseolus vulgaris L.) by Co-Inoculation with Native Rhizobial Strains. J. Agric. Sci. Technol. 2020, 22, 209–220. [Google Scholar]
- USDA-Natural Resources Conservation Service. Soil Survey Laboratory Information Manual; Burt, R., Ed.; Soil Survey Investigations Report No. 45; Version 2.0.; Aqueous Extraction, Method 4.3.3.; USDA-NRCS: Lincoln, NE, USA, 2011; p. 167.
- Ryan, J.; Estefan, G.; Rashid, A. Soil and Plant Analysis Laboratory Manual, 2nd ed.; International Center for Agricultural Research in the Dry Areas (ICARDA): Allepo, Syria, 2001. [Google Scholar]
- Labconco, C. A Guide to Kjeldahl Nitrogen Determination Methods and Apparatus; Labconco Corporation: Houston, TX, USA, 1998. [Google Scholar]
- National Institute of Agricultural Science and Technology. Methods of Analysis of Soil and Plant; NIAST (National Institute of Agricultural Science and Technology): Suwon, Korea, 2000.
- Danso, S.K.A. Assessment of biological nitrogen fixation. Fertil. Res. 1995, 42, 33–41. [Google Scholar] [CrossRef]
- Somasegaran, P.; Hoben, H.J. Methods in Legume-Rhizobium Technology; NifTAL Project and MIRCEN; Department of Agronomy and Soil Science, Hawaii Institute of Tropical Agriculture and Human Resources, College of Tropical Agriculture and Human Resources, University of Hawaii: Paia, Maui, HI, USA, 1985; 365p. [Google Scholar]
- Horneck, D.A.; Miller, R.O. Determination of total nitrogen in plant tissue. In Handbook or Reference Methods for Plant Analysis; CRC Press: Boca Raton, FL, USA, 1998; pp. 75–83. [Google Scholar]
- Bowman, R.A. A rapid method to determine total phosphorus in soils. Soil Sci. Soc. Am. J. 1988, 52, 1301–1304. [Google Scholar] [CrossRef]
- Horneck, D.A.; Hanson, D. Determination of Potassium and Sodium by Flame Emission Spectrophotometry. In Handbook of Reference Methods for Plant Analysis; CRC Press: Boca Raton, FL, USA, 1998; pp. 153–155. [Google Scholar]
- Ibragimov, N.; Djumaniyazova, Y.; Khaitbaeva, J.; Babadjanova, S.; Ruzimov, J.; Akramkhanov, A.; Lamers, J. Simulating Crop Productivity in a Triple Rotation in the Semi-arid Area of the Aral Sea Basin. Int. J. Plant Prod. 2019, 12, 273–285. [Google Scholar] [CrossRef]
- Passioura, J.B.; Angus, J.F. Improving productivity of crops in water-limited environments. Adv. Agron. 2010, 106, 37–75. [Google Scholar]
- Lemessa, F.; Wakjira, M. Cover crops as a means of ecological weed management in agroecosystems. J. Crop Sci. Biotechnol. 2015, 18, 123–135. [Google Scholar] [CrossRef]
- Dass, A.; Bhattacharyya, R. Wheat residue mulch and anti-transpirants improve productivity and quality of rainfed soybean in semi-arid north-Indian plains. Field Crops Res. 2017, 210, 9–19. [Google Scholar] [CrossRef]
- Zhao, Y.; Pang, H.; Wang, J.; Huo, L.; Li, Y. Effects of straw mulch and buried straw on soil moisture and salinity in relation to sunflower growth and yield. Field Crops Res. 2014, 161, 16–25. [Google Scholar] [CrossRef]
- Panasiewicz, K.; Faligowska, A.; Szymańska, G.; Szukała, J.; Ratajczak, K.; Sulewska, H. The Effect of Various Tillage Systems on Productivity of Narrow-Leaved Lupin-Winter Wheat-Winter Triticale-Winter Barley Rotation. Agronomy 2020, 10, 304. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Gao, Z.; Wang, J.; Xu, W.; Palta, J.A.; Chen, Y. N:P ratio of the grass Bothriochloa ischaemum mixed with the legume Lespedeza davurica under varying water and fertilizer supplies. Plant Soil 2016, 400, 67–79. [Google Scholar] [CrossRef]
- Vance, C.P. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol. 2011, 127, 390–397. [Google Scholar] [CrossRef]
- Hossain, Z.; Wang, X.; Hamel, C.; Knight, J.D.; Morrison, M.J.; Gan, Y. Biological nitrogen fixation by pulse crops on semiarid Canadian prairies. Can. J. Plant Sci. 2016, 97, 119–131. [Google Scholar]
- Williams, C.M.; King, J.R.; Ross, S.M.; Olson, M.A.; Hoy, C.F.; Lopetinsky, K.J. Effects of three pulse crops on subsequent barley, canola, and wheat. Agronomy 2014, 106, 343–350. [Google Scholar] [CrossRef]
- Bourgault, M.; Madramootoo, C.A.; Webber, H.A.; Stulina, G.; Horst, M.G.; Smith, D.L. A short season Canadian soybean cultivar double cropped after winter wheat in Uzbekistan with and without inoculation with Bradyrhizobium. J. Plant Stud. 2015, 4, 314–321. [Google Scholar] [CrossRef] [Green Version]
- Khaitov, B. Effects of Rhizobium inoculation and magnesium application on growth and nodulation of soybean (Glycine max L.). J. Plant Nutr. 2018, 41, 2057–2068. [Google Scholar] [CrossRef]
Year | Month of the Year | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |
Air temperature (°C) | ||||||||||||
2016 | 1.2 | 3.8 | 6.9 | 12.4 | 25.7 | 23.4 | 25.6 | 29.3 | 29.3 | 13.6 | 6.8 | 1.5 |
2017 | −4.0 | −1.2 | 3.5 | 10.3 | 19.8 | 22.3 | 30.4 | 27.8 | 29.7 | 16.7 | 3.7 | −2.5 |
2018 | −2.5 | 0.3 | 4.9 | 11.2 | 20.6 | 27.9 | 30.1 | 29.9 | 26.8 | 15.9 | 2.9 | −1.5 |
Long-term average (last 50 years) | ||||||||||||
−2.3 | 0.2 | 4.5 | 13.9 | 21.3 | 26.4 | 28.0 | 26.0 | 19.4 | 10.7 | 4.0 | −1.7 | |
Rainfall (mm) | ||||||||||||
2016 | 35.5 | 33.6 | 30.2 | 16.8 | 20.4 | 1.7 | 0 | 0 | 3.2 | 7.5 | 8.4 | 21.8 |
2017 | 39.8 | 19.6 | 28.9 | 31.4 | 11.5 | 0.6 | 0 | 1.1 | 1.4 | 6.5 | 22.1 | 31.2 |
2018 | 32.5 | 20.9 | 26.8 | 29.8 | 16.4 | 1.2 | 0 | 0 | 1.0 | 9.1 | 21.5 | 33.2 |
Long-term average (last 50 years) | ||||||||||||
36.1 | 28.7 | 31.4 | 27.4 | 16.2 | 1.4 | 0.0 | 1.1 | 3.0 | 8.7 | 19.4 | 29.6 | |
Relative humidity (%) | ||||||||||||
2016 | 80 | 68 | 62 | 43 | 36 | 28 | 32 | 29 | 35 | 49 | 76 | 77 |
2017 | 79 | 73 | 65 | 36 | 43 | 33 | 30 | 27 | 39 | 47 | 69 | 82 |
2018 | 76 | 67 | 60 | 42 | 43 | 37 | 35 | 31 | 33 | 53 | 79 | 83 |
Long-term average (last 50 years) | ||||||||||||
81 | 74 | 65 | 45 | 44 | 36 | 33 | 28 | 36 | 51 | 75 | 80 |
Treatments | Soil Layer cm | Soil Bulk Density g/cm3 | Total g/kg | Mobile Forms mg/kg | ||||
---|---|---|---|---|---|---|---|---|
Humus | N | P | N-NO3 | P2O5 | K2O | |||
Beginning of the experiment (2016 spring) | ||||||||
Before the experiment | 0–30 | 1.364 ± 0.4 c | 7.50 e | 0.61 d | 0.88 c | 6.06 b | 30.0 c | 180 a |
30–50 | 1.395 ± 0.2 b | 7.31 f | 0.47 e | 0.71 e | 4.32 c | 28.8 c | 160 c | |
End of the experiment (2018 autumn) | ||||||||
Winter wheat–Summer fallow | 0–30 | 1.385 ± 0.7 b | 7.41 e | 0.57 d | 0.80 d | 4.55 c | 28.2 c | 160 c |
30–50 | 1.449 ± 0.4 a | 7.28 e | 0.40 e | 0.65 e | 3.02 e | 25.4 d | 120 f | |
Winter wheat–Soybean | 0–30 | 1.266 ± 0.3 e | 8.25 b | 0.84 b | 0.95 b | 5.25 b | 31.4 c | 160 c |
30–50 | 1.318 ± 0.5 d | 7.70 d | 0.70 c | 0.80 d | 6.12 b | 29.0 c | 150 d | |
Winter wheat–Soybean + R6 | 0–30 | 1.267 ± 0.4 e | 8.27 b | 0.81 b | 0.90 c | 6.55 a | 27.0 c | 160 c |
30–50 | 1.316 ± 0.4 d | 7.70 d | 0.57 d | 0.85 c | 4.02 d | 21.0 d | 140 e | |
Winter wheat–Soybean + USDA110 | 0–30 | 1.243 ± 0.4 f | 8.31 b | 0.84 b | 1.00 b | 6.62 a | 37.8 b | 160 c |
30–50 | 1.308 ±0.6 d | 7.80 d | 0.60 d | 0.90 c | 3.07 e | 28.2 c | 150 d | |
Winter wheat–Soybean R6 + USDA110 | 0–30 | 1.226 ±0.4 h | 8.50 a | 1.05 a | 1.15 a | 6.72 a | 46.0 a | 180 a |
30–50 | 1.367 ±0.3 c | 8.10 c | 0.90 b | 1.00 b | 4.05 c | 27.6 c | 170 b |
Treatments | Winter Wheat | Soybean | Total Straw and Root Residues ton/ha | ||||
---|---|---|---|---|---|---|---|
Straw Residue ton/ha | Root Residue ton/ha | Total ton/ha | Straw Residue ton/ha | Root Residue ton/ha | Total ton/ha | ||
Winter wheat–Summer fallow | 0.78 d | 2.15 d | 2.93 d | - | - | - | 2.93 d |
Winter wheat–Soybean | 0.83 c | 2.67 c | 3.50 c | 0.22 b | 1.04 c | 1.26 c | 4.76 c |
Winter wheat–Soybean + R6 | 0.96 b | 2.65 c | 3.61 b | 0.25 b | 1.20 b | 1.45 b | 5.06 b |
Winter wheat–Soybean + USDA110 | 0.98 b | 2.73 b | 3.71 b | 0.25 b | 1.23 b | 1.48 b | 5.19 b |
Winter wheat–Soybean R6 + USDA110 | 1.16 a | 3.25 a | 4.41 a | 0.45 a | 1.43 a | 1.88 a | 6.29 a |
Treatments | Nutrients Returned with Winter Wheat Residues kg/ha | Nutrients Returned with Soybean Residues kg/ha | Ndfa kg/ha | Total Nutrient Amount kg/ha | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N | P | K | N | P | K | N | P | K | ||
Winter wheat–Summer fallow | 18.3 d | 8.2 d | 10.3 d | - | - | - | - | 18.3 e | 8.2 d | 10.3 c |
Winter wheat–Soybean | 21.7 c | 9.4 c | 12.9 c | 20.1 c | 9.8 b | 20.9 b | - | 41.8 d | 19.2 c | 33.8 b |
Winter wheat–Soybean + R6 | 22.4 b | 10.2 b | 13.4 b | 23.9 b | 9.7 b | 20.7 b | 40.6 c | 86.9 c | 19.9 c | 34.1 b |
Winter wheat–Soybean + USDA110 | 22.4 b | 10.8 b | 13.4 b | 24.4 b | 9.9 b | 21.2 b | 51.9 b | 98.7 b | 20.7 b | 34.6 b |
Winter wheat–Soybean R6+ USDA110 | 29.2 a | 11.9 a | 16.3 a | 27.5 a | 11.3 a | 24.2 a | 62.9 a | 119.6 a | 23.2 a | 40.5 a |
Treatments | Straw Biomass dT/ha | Grain Weight per Spike g | Weight of 1000 Seeds g | Grain Yield dT/ha |
---|---|---|---|---|
Winter wheat–Summer fallow | 75.4 ± 0.6 d | 1.6 c | 42.5 c | 50.4 ±0.8 d |
Winter wheat–Soybean | 84.5 ± 1.1 c | 1.9 b | 43.8 b | 59.8 ±0.1 c |
Winter wheat–Soybean + R6 | 87.6 ± 1.2 b | 1.9 b | 44.5 a | 65.4 ±0.4 b |
Winter wheat–Soybean + USDA110 | 89.4 ± 1.3 b | 2.0 a | 44.9 a | 66.2 ±0.5 b |
Winter wheat–Soybean R6 + USDA110 | 91.5 ± 1.2 a | 2.0 a | 45.2 a | 68.8 ±0.2 a |
Treatments | Number of Pods per Plant Piece | Weight of Grain per Pod g | Weight of 1000 Seeds g | Soybean Yield dT/ha |
---|---|---|---|---|
Winter wheat–Summer fallow | - | - | - | - |
Winter wheat–Soybean | 43.0 ± 0.7 c | 0.29 c | 95 c | 21.7 ±0.2 d |
Winter wheat–Soybean + R6 | 46.6 ± 0.6 b | 0.30 b | 101 b | 24.9 ±0.6 c |
Winter wheat–Soybean + USDA110 | 47.0 ± 0.7 b | 0.31 b | 102 b | 26.9 ±0.6 b |
Winter wheat–Soybean R6 + USDA110 | 50.1 ± 0.6 a | 0.35 a | 105 a | 29.2 ±0.4 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Namozov, F.; Islamov, S.; Atabaev, M.; Allanov, K.; Karimov, A.; Khaitov, B.; Park, K.W. Agronomic Performance of Soybean with Bradyrhizobium Inoculation in Double-Cropped Farming. Agriculture 2022, 12, 855. https://doi.org/10.3390/agriculture12060855
Namozov F, Islamov S, Atabaev M, Allanov K, Karimov A, Khaitov B, Park KW. Agronomic Performance of Soybean with Bradyrhizobium Inoculation in Double-Cropped Farming. Agriculture. 2022; 12(6):855. https://doi.org/10.3390/agriculture12060855
Chicago/Turabian StyleNamozov, Fazliddin, Sokhib Islamov, Maruf Atabaev, Kholik Allanov, Aziz Karimov, Botir Khaitov, and Kee Woong Park. 2022. "Agronomic Performance of Soybean with Bradyrhizobium Inoculation in Double-Cropped Farming" Agriculture 12, no. 6: 855. https://doi.org/10.3390/agriculture12060855
APA StyleNamozov, F., Islamov, S., Atabaev, M., Allanov, K., Karimov, A., Khaitov, B., & Park, K. W. (2022). Agronomic Performance of Soybean with Bradyrhizobium Inoculation in Double-Cropped Farming. Agriculture, 12(6), 855. https://doi.org/10.3390/agriculture12060855