Humic and Acetic Acids Have the Potential to Enhance Deterioration of Select Plastic Soil-Biodegradable Mulches in a Mediterranean Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location and Design
2.2. Mulch Materials Used in Experiment
2.3. Field Plot Establishment
2.4. Soil Temperature and Moisture
2.5. Scanning Electron Microscopy of BDM Mulch Surfaces
2.6. BDM Surface Deterioration
2.7. Visible BDM In-Soil Degradation
2.8. Statistical Analysis
3. Results
3.1. Soil Moisture and Temperature
3.2. Scanning Electron Microscopy of BDM Surfaces
3.3. Mulch Surface Deterioration
3.4. Mulch In-Soil Degradation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sintim, H.Y.; Flury, M. Is biodegradable plastic mulch the solution to agriculture’s plastic problem. Environ. Sci. Technol. 2017, 51, 1068–1069. [Google Scholar] [CrossRef]
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Shah, W.; Wu, W. Use of plastic mulch in agriculture and strategies to mitigate the associated environmental concerns. In Advances in Agronomy, 1st ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 231–287. [Google Scholar] [CrossRef]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation. Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef] [PubMed]
- Sintim, H.; Bary, A.; Hayes, D.; Wadsworth, L.; Anunciado, M.; English, M.; Bandopadhyay, S.; Schaeffer, S.; DeBruyn, J.; Miles, C.; et al. In situ degradation of biodegradable plastic mulch films in compost and agricultural soils. Sci. Total Environ. 2020, 727, 138668. [Google Scholar] [CrossRef]
- Hayes, D.G.; Anunciado, M.B.; DeBruyn, J.M.; Bandopadhyay, S.; Schaeffer, S.; English, M.; Ghimire, S.; Miles, C.; Flury, M.; Sintim, H.Y. Biodegradable plastic mulch films for sustainable crop production. In Polymers for Agri-Food Applications, 1st ed.; Springer: Cham, Switzerland, 2019; pp. 183–213. [Google Scholar] [CrossRef]
- DeVetter, L.W.; Shrestha, S.; Hayes, D. What Is A Soil-Biodegradable Plastic Mulch Composed Of? Washington State University. 2021. Available online: https://s3.wp.wsu.edu/uploads/sites/2181/2021/07/What-is-in-a-BDM.pdf (accessed on 12 August 2021).
- Brodhagen, M.; Peyron, M.; Miles, C.A.; Inglis, D.A. Biodegradable plastic agricultural mulches and key features of microbial degradation. Appl. Microbiol. Biotechnol. 2015, 99, 1039–1056. [Google Scholar] [CrossRef]
- Brodhagen, M.; Goldberger, J.R.; Hayes, D.G.; Inglis, D.A.; Marsh, T.L.; Miles, C. Policy considerations for limiting unintended residual plastic in agricultural soils. Environ. Sci. Policy 2017, 69, 81–84. [Google Scholar] [CrossRef] [Green Version]
- ASTM International. Standard Specification for Labeling of Plastics Designed to Be Aerobically Composted in Municipal or Industrial Facilities, D6400–12; ASTM International: West Conshohocken, PA, USA, 2012; Available online: https://www.astm.org/d6400-21.html (accessed on 22 August 2020).
- Dentzman, K.; Hayes, D. The Role of Standards for Use Biodegradable Plastic Mulches: Truth and Myths. University of Tennessee. 2019. Available online: https://ag.tennessee.edu/biodegradablemulch/Documents/Standards%20Factsheet%20Formatted%20revised%2015Jan2019.pdf (accessed on 5 December 2020).
- European Norms (EN). European Standard 17033; Plastics—Biodegradable Mulch Films for Use in Agriculture and Horticulture–Requirements and Test Methods. European Committee for Standardization: Brussels, Belgium, 2018. Available online: https://www.en-standard.eu/csn-en-17033-plastics-biodegradable-mulch-films-for-use-in-agriculture-and-horticulture-requirements-and-test-methods/ (accessed on 21 March 2020).
- D5988–12; Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials in Soil. ASTM International: West Conshohocken, PA, USA, 2012. Available online: https://www.astm.org/d5988-12.html (accessed on 10 March 2020).
- Sintim, H.; Bandopadhyay, S.; English, M.E.; Bary, A.; Liquet y Gonzalez, J.E.; DeBruyn, J.M.; Schaeffer, S.M.; Miles, C.A.; Flury, M. Four years of continuous use of soil-biodegradable plastic mulch: Impact on soil and groundwater quality. Geoderma 2021, 381, 114665. [Google Scholar] [CrossRef]
- Zhang, H.; Flury, M.; Miles, C.; Liu, H.; DeVetter, L.W. Soil-biodegradable plastic mulches undergo minimal in-soil degradation in a perennial raspberry system after 18 months. Horticulturae 2020, 6, 47. [Google Scholar] [CrossRef]
- Anunciado, M.B.; Hayes, D.G.; Astner, A.F.; Wadsworth, L.C.; Cowan-Banker, C.D.; Liquet y Gonzalez, J.E.; DeBruyn, J.M. Effect of environmental weathering on biodegradation of biodegradable plastic mulch films under ambient soil and composting conditions. J. Polym. Environ. 2021, 29, 2916–2931. [Google Scholar] [CrossRef]
- Chinaglia, S.; Tosin, M.; Degli-Innocenti, F. Biodegradation rate of biodegradable plastics at molecular level. Polym. Degrad. Stab. 2018, 147, 237–244. [Google Scholar] [CrossRef]
- Anunciado, M.B. Changes of Physicochemical Properties of Biodegradable Mulch Due to Weathering and Their Influence on Biodegradation. Ph.D. Thesis, University of Tennessee, Knoxville, TN, USA, 2020. [Google Scholar]
- Anunciado, M.B.; Hayes, D.G.; Wadsworth, L.C.; English, M.E.; Schaeffer, S.M.; Sintim, H.Y.; Flury, M. Impact of agricultural weathering on physicochemical properties of biodegradable plastic mulch films: Comparison of two diverse climates over four successive years. J. Polym. Environ. 2020, 29, 1–16. [Google Scholar] [CrossRef]
- Hayes, D.G.; Wadsworth, L.C.; Sintim, H.Y.; Flury, M.; English, M.; Schaeffer, S.; Saxton, A.M. Effect of diverse weathering conditions on the physicochemical properties of biodegradable plastic mulches. Polym. Test. 2017, 62, 454–467. [Google Scholar] [CrossRef]
- Li, C.; Moore-Kucera, J.; Miles, C.; Leonas, K.; Lee, J.; Corbin, A.; Inglis, D. Degradation of potentially biodegradable plastic mulch films at three diverse U.S. locations. Agroecol. Sustain. Food Syst. 2014, 38, 861–889. [Google Scholar] [CrossRef]
- Li, C.; Moore-Kucera, J.; Lee, J.; Corbin, A.; Brodhagen, M.; Inglis, D. Effects of biodegradable mulch on soil quality. Appl. Soil Ecol. 2014, 79, 59–69. [Google Scholar] [CrossRef]
- Sintim, H.Y.; Bandopadhyay, S.; English, M.E.; Bary, A.I.; DeBruyn, J.M.; Schaeffer, S.M.; Miles, C.A.; Reganold, J.P.; Flury, M. Impacts of biodegradable plastic mulches on soil health. Ecosyst. Environ. 2019, 273, 36–49. [Google Scholar] [CrossRef]
- Bandopadhyay, S.; Sintim, H.Y.; DeBruyn, J.M. Effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems. PeerJ 2020, 8, e9015. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.; Saraiva, A.; Carvalho, L.; Duarte, E. The use of biodegradable mulch films on strawberry crop in Portugal. Sci. Hortic. 2014, 173, 65–70. [Google Scholar] [CrossRef]
- USDA 2019 Web Soil Survey. Available online: https://websoilsurvey.sc.egov.usda.gov (accessed on 5 May 2020).
- Miles, C.; Wallace, R.; Wszelaki, A.; Martin, J.; Cowan, H.; Walters, T.; Inglis, D. Deterioration of potentially biodegradable alternatives to black plastic mulch in three tomato production regions. HortScience 2012, 47, 1270–1277. [Google Scholar] [CrossRef]
- Folk, R.L. SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks. J. Sediment. Res. 1993, 63, 990–999. [Google Scholar] [CrossRef]
- De Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.3-2. 2021. Available online: https://cran.r-project.org/web/packages/agricolae/index.html (accessed on 18 April 2022).
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2020. Available online: https://www.R-project.org/ (accessed on 18 April 2022).
- Anunciado, M.; Wadsworth, L.; Ghimire, S.; Miles, C.; Moore, J.; Wszelaki, A.; Hayes, D. Deterioration of soil-biodegradable mulch films during storage and its impact on specialty crop production. HortTechnology 2021, 31, 798–809. [Google Scholar] [CrossRef]
- Thompson, A.A.; Samuelson, M.B.; Kadoma, I.; Soto-Cantu, E.; Drijber, R.; Wortman, S.E. Degradation rate of bio-based agricultural mulch is influenced by mulch composition and biostimulant application. J. Polym. Environ. 2019, 27, 498–509. [Google Scholar] [CrossRef]
- Cowan, J.S.; Saxton, A.; Liu, H.; Leonas, K.; Inglis, D.; Miles, C. Visual assessments of biodegradable mulch deterioration are not indicative of mulch degradation. HortScience 2016, 51, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Samuelson, M.B.; Reid, E.V.; Drijber, R.; Jeske, E.; Blanco-Canqui, H.; Mamo, M.; Kadoma, I.; Wortman, S.E. Effects of compost, cover crops, and local conditions on degradation of two agricultural mulches in soil. Renew. Agric. Food Syst. 2021, 37, 128–141. [Google Scholar] [CrossRef]
- Galinato, S.P.; Velandia, M.; Ghimire, S. Economic Feasibility of Using Alternative Plastic Mulches: A Pumpkin Case Study in Western WA TB68E. Washington State University Extension. 2020. Available online: https://pubs.extension.wsu.edu/economic-feasibility-of-using-alternative-plastic-mulches-a-pumpkin-case-study-in-western-washington (accessed on 24 April 2022).
- Pietrosanto, A.; Scarfato, P.; Di Maio, L.; Rossella Nobile, M.; Incarnato, L. Evaluation of the suitability of poly(lactide)/poly(butylene-adipate-co-aerephthalate) blown films for chilled and frozen food packaging applications. Polymers 2020, 12, 804. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, A. Glass transition and melting temperatures. In Introduction to Plastic Engineering, 1st ed.; William Andrews Publishing: Norwich, NY, USA, 2018; pp. 1–16. [Google Scholar]
- Rudnik, E.; Briassoulis, D. Comparative biodegradation in soil behavior of two biodegradable polymers based on renewable resources. J. Polym. Environ. 2011, 19, 18–39. [Google Scholar] [CrossRef]
- Rudnik, E.; Briassoulis, D. Degradation behavior of poly(lactic acid) films and fibers in soil under Mediterranean field conditions and laboratory simulations testing. Ind. Crops Prod. 2011, 33, 648–658. [Google Scholar] [CrossRef]
- Miles, C.; DeVetter, L.; Ghimire, S.; Hayes, D.G. Suitability of biodegradable plastic mulches for organic and sustainable agricultural production systems. HortScience 2017, 52, 10–15. [Google Scholar] [CrossRef]
- Weng, Y.X.; Wang, L.; Zhang, M.; Wang, X.L.; Wang, Y.Z. Biodegradation behavior of P(3HB,4HB)/PLA blends in real soil environments. Polym. Test. 2013, 32, 60–70. [Google Scholar] [CrossRef]
- Tachibana, Y.; Maeda, T.; Ito, O.; Maeda, Y.; Kunioka, M. Utilization of a biodegradable mulch sheet produced from poly(lactic acid)/Ecoflex®/modified starch in Mandarin orange groves. Int. J. Mol. Sci. 2009, 10, 3599–3615. [Google Scholar] [CrossRef] [Green Version]
- Griffin-LaHue, D.; Ghimire, S.; Yu, Y.; Scheenstra, E.J.; Miles, C.A.; Flury, M. In-field degradation of soil-biodegradable plastic mulch films in a Mediterranean climate. Sci. Total Environ. 2022, 806, 150238. [Google Scholar] [CrossRef]
- Ohtake, Y.; Kobayashi, T.; Asabe, H.; Murakami, N. Studies on biodegradation of LDPE-observation of LDPE films scattered in agricultural fields or in garden soil. Polym. Degrad. Stab. 1998, 60, 79–84. [Google Scholar] [CrossRef]
- Jin, J.; Wang, M.; Lu, W.; Zhang, L.; Jiang, Q.; Jin, Y.; Lu, K.; Sun, S.; Cao, Q.; Wang, Y.; et al. Effect of plants and their root exudate on bacterial activities during rhizobacterium-plant remediation of phenol from water. Environ. Int. 2019, 127, 114–124. [Google Scholar] [CrossRef]
- Jensen, E.S.; Peoples, M.B.; Hauggaard-Nielsen, H. Faba bean in cropping systems. Field Crops Res. 2010, 115, 203–216. [Google Scholar] [CrossRef] [Green Version]
Mulch Treatments z | Thickness (µM) | Extruder y | Primary Feedstocks |
---|---|---|---|
BASF 0.6 | 15.2 | PolyExpert Inc., Laval, QC, Canada | PLA + PBAT x |
Novamont 0.6 | 15.2 | Dubois Agrinovation, Saint Remi, QC, Canada | Starch-based, PBAT copolyester |
Novamont 0.7 | 17.8 | Dubois Agrinovation, Saint Remi, QC, Canada | Starch-based, PBAT copolyester |
WeedGuard Plus | 254.0 | Sunshine Paper Co. LLC, Aurora, CO, USA | Cellulosic |
Degradation Treatments | Manufacturer | Dilution Rate | Application Rate | Key Product Ingredient(s) |
---|---|---|---|---|
Actagro liquid humus (humic acid 10.0%) | Actagro; Osceola, AR, USA | 3.8 L humic acid to 37.9 L of water | 280.6 L/ha | Mixture of organic (humic and fluvic) acids with 22% derived from leonardite y and 2% soluble potash |
Weed Pharm (acetic acid 20.0%) | Pharm Solution, Inc.; Destin, FL, USA | 3.8 L Weed Pharm to 7.6 L of water | 280.6 L/ha | Acetic acid |
Compost tea z | Cascasde Cuts; Bellingham, WA, USA | 3.8 L compost tea to 7.6 L of water | 561.2 L/ha | Compost based solution with unspecified bacteria and fungi |
Compost (dairy-based) | Smit’s Compost; Lynden, WA, USA | ----- | 5 cm depth | Compost with unspecified bacteria and fungi (total nutrient analysis of dry material: 1.9% N, 0.5% P, 0.8% K, 1.7% Ca, 0.6% Mg, 0.2% Na, 0.4% S, 27.8 ppm B) |
Mulch Treatments | Soil Volumetric Content (m3·m3) z | |||||
---|---|---|---|---|---|---|
May–August | September–December | January–April | ||||
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |
BASF 0.6 | 0.21 | 0.20 | 0.27 | 0.20 | 0.30 | 0.19 |
Novamont 0.6 | 0.20 | 0.10 | 0.26 | 0.20 | 0.30 | 0.28 |
Novamont 0.7 | 0.18 | 0.12 | 0.24 | 0.18 | 0.26 | 0.22 |
WeedGuard Plus | 0.25 | 0.20 | 0.29 | 0.20 | 0.31 | 0.27 |
Mulch Treatments | Soil Temperature (°C) z | |||||
---|---|---|---|---|---|---|
May–August | September–December | January–April | ||||
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |
BASF 0.6 | 21.1 | 23.4 | 10.4 | 11.3 | 7.2 | 7.7 |
Novamont 0.6 | 20.9 | 21.8 | 9.9 | 10.6 | 6.9 | 8.2 |
Novamont 0.7 | 21.6 | 23.3 | 10.1 | 10.4 | 6.7 | 7.7 |
WeedGuard Plus | 18.4 | 19.3 | 9.4 | 10.0 | 6.7 | 7.5 |
Split-Split Plot Analysis of Variance (ANOVA) | p-Value z |
---|---|
Significance | |
mulch treatment x | 0.10 |
degradation product y | 0.24 |
collection timing w | 0.76 |
mulch treatment:degradation product | 0.89 |
collection timing:mulch treatment | 0.02 |
collection timing:degradation product | 0.008 |
collection timing:mulch treatment:degradation product | 0.46 |
Mulch Treatment | Degradation Product z | Percent Soil 2019–2020 | Exposure (PSE %) 2020–2021 |
---|---|---|---|
BASF 0.6 | Control | 67.5 abcd y | 85.6 abcd |
Humic acid | 78.1 abc | 91.9 ab | |
Acetic acid | 85.0 abc | 88.8 ab | |
Compost tea/compost | 68.8 abcd | 71.3 cd | |
Novamont 0.6 | Control | 88.8 ab | 90.6 ab |
Humic acid | 79.4 abc | 86.3 abcd | |
Acetic acid | 85.0 abc | 86.9 abcd | |
Compost tea/compost | 78.8 abc | 88.8 ab | |
Novamont 0.7 | Control | 60.9 bcd | 70.6 d |
Humic acid | 90.0 ab | 88.1 abc | |
Acetic acid | 37.3 d | 78.8 bcd | |
Compost tea/compost | 52.5 cd | 80.0 bcd | |
WeedGuard Plus | Control | 100.0 a | 100.0 a |
Humic acid | 100.0 a | 100.0 a | |
Acetic acid | 100.0 a | 100.0 a | |
Compost tea/compost | 100.0 a | 100.0 a | |
p-value | 0.03 | 0.03 |
Mulch Treatment | Degradation Product | Mulch Area Loss 6 Months | Post-Burial (%) 12 Months |
---|---|---|---|
BASF 0.6 | Control | 10.5 | 15.0 |
Humic acid | 4.9 | 16.6 | |
Acetic acid | 5.7 | 11.1 | |
Compost tea | 7.1 | 4.3 | |
Novamont 0.6 | Control | 21.2 | 25.5 |
Humic acid | 14.3 | 18.0 | |
Acetic acid | 24.1 | 36.8 | |
Compost tea | 19.9 | 24.3 | |
Novamont 0.7 | Control | 11.4 | 16.3 |
Humic acid | 17.4 | 22.4 | |
Acetic acid | 7.6 | 23.4 | |
Compost tea | 5.4 | 9.1 | |
p-value | 0.66 | 0.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madrid, B.; Zhang, H.; Miles, C.A.; Kraft, M.; Griffin-LaHue, D.; Wasko DeVetter, L. Humic and Acetic Acids Have the Potential to Enhance Deterioration of Select Plastic Soil-Biodegradable Mulches in a Mediterranean Climate. Agriculture 2022, 12, 865. https://doi.org/10.3390/agriculture12060865
Madrid B, Zhang H, Miles CA, Kraft M, Griffin-LaHue D, Wasko DeVetter L. Humic and Acetic Acids Have the Potential to Enhance Deterioration of Select Plastic Soil-Biodegradable Mulches in a Mediterranean Climate. Agriculture. 2022; 12(6):865. https://doi.org/10.3390/agriculture12060865
Chicago/Turabian StyleMadrid, Brenda, Huan Zhang, Carol A. Miles, Michael Kraft, Deirdre Griffin-LaHue, and Lisa Wasko DeVetter. 2022. "Humic and Acetic Acids Have the Potential to Enhance Deterioration of Select Plastic Soil-Biodegradable Mulches in a Mediterranean Climate" Agriculture 12, no. 6: 865. https://doi.org/10.3390/agriculture12060865
APA StyleMadrid, B., Zhang, H., Miles, C. A., Kraft, M., Griffin-LaHue, D., & Wasko DeVetter, L. (2022). Humic and Acetic Acids Have the Potential to Enhance Deterioration of Select Plastic Soil-Biodegradable Mulches in a Mediterranean Climate. Agriculture, 12(6), 865. https://doi.org/10.3390/agriculture12060865