Performance of Nigerian Rice Farms from 2010 to 2019: A Stochastic Metafrontier Approach
Abstract
:1. Introduction
2. Methodology
2.1. Stochastic Metafrontier Approach
2.2. Empirical Model
2.3. Data and Descriptive Statistics
3. Estimation Result
3.1. Production Frontier Estimate and Specification Test
3.2. Various Efficiency Measures
4. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Badawi, T.A. Rice-based production systems for food security and poverty alleviation in the Near-East and North Africa: New challenges and technological opportunities. In Proceedings of the FAO Rice Conference, Rome, Italy, 24 September 2010; pp. 12–13. [Google Scholar]
- Balasubramanian, V.; Sie, M.; Hijmans, R.J.; Otsuka, K. Increasing rice production in sub-Saharan Africa: Challenges and opportunities. Adv. Agron. 2007, 94, 55–133. [Google Scholar] [CrossRef]
- Daramola, B. Government Policies and Competitiveness of Nigerian Rice Economy. In Proceedings of the Rice Policy and Food Security in Sub-Saharan Africa, Cotonou, Benin, 7–9 November 2005; p. 125. [Google Scholar]
- Seck, P.A.; Tollens, E.; Wopereis, M.C.S.; Diagne, A.; Bamba, I. Rising trends and variability of rice prices: Threats and opportunities for sub-Saharan Africa. Food Policy 2010, 35, 403–411. [Google Scholar] [CrossRef]
- Chauvin, N.D.; Mulangu, F.; Porto, G. Food Production and Consumption Trends in Sub-Saharan Africa: Prospects for the Transformation of the Agricultural Sector; UNDP Regional Bureau for Africa: New York, NY, USA, 2012; Volume 2, p. 74. [Google Scholar]
- Saito, K.; Dieng, I.; Toure, A.A.; Somado, E.A.; Wopereis, M.C.S. Rice yield growth analysis for 24 African countries over 1960–2012. Glob. Food Sec. 2015, 5, 62–69. [Google Scholar] [CrossRef]
- Okoruwa, V.O.; Ogundele, O.O. Technical efficiency differentials in rice production technologies in Nigeria. In African Economic Research Consortium Research Papers; African Economic Research Consortium: Nairobi, Kenya, 2006; p. 4. [Google Scholar]
- OECD/FAO. OECD, FAO. “Agriculture in Sub-Saharan Africa: Prospects and Challenges for the Next Decade”. OECD-FAO Agricultural Outlook, 2025, No. 181. 2016. Available online: https://www.fao.org/3/i5778e/i5778e.pdf (accessed on 10 March 2022).
- Udemezue, J.C. Analysis of rice production and consumption trends in Nigeria. J. Plant Sci. Crop Prot. 2018, 1, 305. [Google Scholar]
- Akomolafe, K.; Awoyemi, O.; Babatunde, A. Climate change and its effects on agricultural outputs in Nigeria. Asian J. Agric. Ext. Econ. Sociol. 2018, 25, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Cochrane, N.; Childs, N.; Rosen, S. Haiti’s US Rice Imports; Electronic Outlook Report from the Economic Research Service, RCS-16A-01; US Department of Agriculture, Economic Research Service (ERS-NASS): Washington, DC, USA, 2016. [Google Scholar]
- Lançon, F.; David Benz, H. Rice imports in West Africa: Trade regime and food policy formulation. In Proceedings of the 106th Seminar of the EAAE Pro-Poor Development in Low-Income Countries: Food, Agriculture, Trade, and Environment, Montpellier, France, 25 October 2007; pp. 1–16. [Google Scholar]
- Nigatu, G.; Hansen, J.; Childs, N.; Seeley, R. Sub-Saharan Africa is Projected to Be the Leader in Global Rice Imports No. 1490-2017-3240; Amber Waves: The Economics of Food, Farming, Natural Resources, and Rural America; U.S. Dept. of Agriculture, Economic Research Service: Washington, DC, USA, 2017. [Google Scholar]
- Okpiaifo, G.; Durand-Morat, A.; West, G.H.; Nalley, L.L.; Nayga, R.M., Jr.; Wailes, E.J. Consumers’ preferences for sustainable rice practices in Nigeria. Glob. Food Sec. 2020, 14, 100345. [Google Scholar] [CrossRef]
- Yusuf, W.A.; Yusuf, S.A.; Adesope, A.A.; Adebayo, O.Z. Determinants of rice import demand in Nigeria. J. Appl. Sci. Env. Manag. 2020, 24, 923–931. [Google Scholar] [CrossRef]
- Longtau, S.R. Multi-Agency Partnerships in West African Agriculture: A Review and Description of Rice Production Systems in Nigeria; Eco-Systems Development Organisation: Jos, Nigeria, 2003; pp. 1–50. [Google Scholar]
- Dontsop-Nguezet, P.M.; Diagne, A.; Okoruwa, V.O.; Ojehomon, V.E.T. Impact of improved rice technology adoption (NERICA varieties) on income and poverty among rice farming households in Nigeria: A local average treatment effect (LATE) approach. Quart. J. Int. Agric. 2011, 50, 267–291. [Google Scholar]
- Seck, P.A. Can Rice Crisis Be Turned into an Opportunity for Africa? West African Rice Development Association (WARDA): Cotonou, Côte d’Ivoire, 2008; p. 15. [Google Scholar]
- Ako, R.M. Economic recovery and growth plan and nation-building in Nigeria. Int. J. Oper. Res. Manag. Soc. Sci. Educ. 2018, 4, 96–107. [Google Scholar] [CrossRef]
- Kalagbor, S.B.; Harry, D.M. Development policy, plan and economic diversification in Nigeria: Perspectives on economic recovery and growth plan. Eur. J. Dev. Stud. 2021, 1, 43–52. [Google Scholar] [CrossRef]
- Arouna, A.; Devkola, K.P.; Yergo, W.G.; Saito, K.; Frimpong, B.N.; Adegbola, P.Y.; Depieu, M.E.; Kenyi, D.M.; Ibro, G.; Fall, A.A.; et al. Assessing rice production sustainability performance indicators and their gaps in twelve sub-Saharan African countries. Field Crops Res. 2021, 271, 108263. [Google Scholar] [CrossRef] [PubMed]
- Ayinde, O.E.; Adewumi, M.O.; Ojehomon, V.E.T. Determinants of technical efficiency and varietal-gap of rice production in Nigeria: A meta-frontier model approach. In Proceedings of the International Association of Agricultural Economists Conference, Beijing, China, 16–22 August 2009; pp. 1–21. [Google Scholar]
- Tijani, A.A. Analysis of the technical efficiency of rice farms in Ijesha Land of Osun State, Nigeria. Agrekon 2006, 45, 126–135. [Google Scholar] [CrossRef]
- Schmidt, P.; Sickles, R.C. Production frontiers and panel data. J. Bus. Econ. Stat. 1984, 2, 367–374. [Google Scholar]
- Kumbhakar, S.C.; Wang, H.; Horncastle, A. A Practitioner’s Guide to Stochastic Frontier Analysis Using Stata; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Mundlak, Y. Empirical production function free of management bias. J. Farm Econ. 1961, 43, 44–56. [Google Scholar] [CrossRef]
- Kumbhakar, S.C.; Lovell, C.K. Stochastic Frontier Analysis; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Ayanlade, A.; Radeny, M. COVID-19 and food security in Sub-Saharan Africa: Implications of lockdown during agricultural planting seasons. NPJ Sci. Food 2020, 4, 13. [Google Scholar] [CrossRef]
- Oseni, G.; Corral, P.; Goldstein, M.; Winters, P. Explaining gender differentials in agricultural production in Nigeria. Agric. Econ. 2015, 46, 285–310. [Google Scholar] [CrossRef] [Green Version]
- Awotide, B.A.; Karimov, A.A.; Diagne, A. Agricultural technology adoption, commercialization and smallholder rice farmers’ welfare in rural Nigeria. Agric. Food Econ. 2016, 4, 3. [Google Scholar] [CrossRef]
- Liverpool-Tasie, L.S.; Barrett, C.B.; Sheahan, M.B. Understanding fertilizer use and profitability for rice production across Nigeria’s diverse agro ecological conditions. In Proceedings of the Annual Bank Conference on Africa, Paris, France, 23–24 June 2014. [Google Scholar]
- Rahji, M.A.; Omotesho, O.A. Technical inefficiency and competitiveness in production: The case of rice farmers in Niger State, Nigeria. Agrosearch 2007, 8, 67–80. [Google Scholar] [CrossRef] [Green Version]
- Van Der Ploeg, F. Natural resources: Curse or blessing? J. Econ. Lit. 2011, 49, 366–420. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.J.; Huang, T.H.; Liu, N.H. A new approach to estimating the metafrontier production function based on a stochastic frontier framework. J. Product. Anal. 2014, 42, 241–254. [Google Scholar] [CrossRef]
- Ataboh, O.; Umeh, J.; Tsue, P. Determinants of technical efficiency among rice farmers in Kogi State, Nigeria. J. Agric. Sustain. 2014, 6, 39–49. [Google Scholar]
- Coelli, T.J.; Rao, D.S.P.; O’Donnell, C.J.; Battese, G.E. An Introduction to Efficiency and Productivity Analysis, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Green, A.; Mayes, D. Technical inefficiency in manufacturing industries. Econ. J. 1991, 101, 523–538. [Google Scholar] [CrossRef]
- Meeusen, W.; Van Den Broeck, J. Efficiency estimation from Cobb-Douglas production functions with composed error. Int. Econ. Rev. 1977, 18, 435. [Google Scholar] [CrossRef]
- Aigner, D.; Lovell, C.A.K.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Battese, G.E.; Prasada Rao, D.S.; O’Donnell, C.J. A metafrontier production function for estimation of technical efficiencies and technology gaps for firms operating under different technologies. J. Product. Anal. 2004, 21, 91–103. [Google Scholar] [CrossRef]
- O’Donnell, C.J.; Rao, D.S.P.; Battese, G.E. Metafrontier frameworks for the study of firm-level efficiencies and technology ratios. Empir. Econ. 2008, 34, 231–255. [Google Scholar] [CrossRef]
- Chang, B.G.; Huang, T.H.; Kuo, C.Y. A comparison of the technical efficiency of accounting firms among the US, China, and Taiwan under the framework of a stochastic metafrontier production function. J. Product. Anal. 2015, 44, 337–349. [Google Scholar] [CrossRef]
- Mariano, M.J.; Villano, R.; Fleming, E. Technical efficiency of rice farms in different agroclimatic zones in the Philippines: An application of a stochastic metafrontier model. Asian Econ. J. 2011, 25, 245–269. [Google Scholar] [CrossRef]
- Martinez Cillero, M.; Wallace, M.; Thorne, F.; Breen, J. Analyzing the impact of subsidies on beef production efficiency in selected European Union countries. A stochastic metafrontier approach. Am. J. Agric. Econ. 2021, 103, 1903–1923. [Google Scholar] [CrossRef]
- Battese, G.; Coelli, T. A model for technical inefficiency effects in a stochastic frontier production function for panel data. J. Econ. 1995, 20, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.J. Heteroscedasticity and non-monotonic efficiency effects of a stochastic frontier model. J. Product. Anal. 2002, 18, 241–253. [Google Scholar] [CrossRef]
- Chang, H.H.; Wen, F.I. Off-farm work, technical efficiency, and rice production risk in Taiwan. Agric. Econ. 2011, 42, 269–278. [Google Scholar] [CrossRef]
- Heriqbaldi, U.; Purwono, R.; Haryanto, T.; Primanthi, M.R. An analysis of technical efficiency of rice production in Indonesia. Asian Soc. Sci. 2015, 11, 91–102. [Google Scholar] [CrossRef]
- Khai, H.V.; Yabe, M. Technical efficiency analysis of rice production. Int. Soc. Southeast Asian Agric. Sci. 2011, 17, 135–146. [Google Scholar]
- Tan, S.; Heerink, N.; Kuyvenhoven, A.; Qu, F. Impact of land fragmentation on rice producers’ technical efficiency in South-East China. NJAS—Wagening. J. Life Sci. 2010, 57, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Oyewole, C.I.; Ajayi, O.; Ojuekaiye, R.O. Evaluation of yields of seven upland rice (Oryzae sativa) cultivars sown by three methods in Anyigba, Kogi state, Nigeria. Afr. J. Agric. Res. 2010, 5, 2089–2096. [Google Scholar] [CrossRef]
- Osabohien, R. Contributing to agricultural mix: Analysis of the living standard measurement study–integrated survey on agriculture data set. Data Brief 2018, 20, 96–100. [Google Scholar] [CrossRef]
- Oladokun, Y.O.M.; Adenegan, K.O.; Salman, K.K.; Alawode, O.O. Level of asset ownership by women in rural North-East and South-East Nigeria. Wome. Stud. Int. Forum 2018, 70, 68–78. [Google Scholar] [CrossRef]
- Sharp, N.; Sharp, B. Technical efficiency and technological gap of New Zealand dairy farms: A stochastic meta- frontier model. J. Product. Anal. 2015, 44, 39–49. [Google Scholar] [CrossRef]
- Sipiläinen, T.; Kumbhakar, S.C.; Lien, G. Performance of dairy farms in Finland and Norway from 1991 to 2008. Eur. Rev. Agric. Econ. 2014, 41, 63–86. [Google Scholar] [CrossRef]
- Coelli, T. Estimators and hypothesis tests for a stochastic frontier function: A Monte Carlo analysis. J. Product. Anal. 1995, 6, 247–268. [Google Scholar] [CrossRef]
- Schmidt, P.; Lin, T.F. Simple tests of alternative specifications in stochastic frontier models. J. Econom. 1984, 24, 349–361. [Google Scholar] [CrossRef]
- Kodde, F.C.; Palm, D.A. Wald criteria for jointly testing equality and inequality restrictions. Econom. J. Econom. Soc. 1986, 54, 1243–1248. [Google Scholar] [CrossRef]
- Al-Hassan, S. Technical Efficiency of Rice Farmers in Northern Ghana; AERC Research Paper; African Economic Research Consortium: Nairobi, Kenya, 2008; p. 178. [Google Scholar]
- Ogundele, O.O. Technology differentials and resource-use efficiency in rice production in Kaduna State, Nigeria. Ph.D. Thesis, University of Ibadan, Ibadan, Nigeria, 2003. [Google Scholar]
- Peng, S.; Tang, Q.; Zou, Y. Current status and challenges of rice production in China. Plant Prod. Sci. 2009, 12, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.P. Development of hybrid rice to ensure food security. Rice Sci. 2014, 21, 1–2. [Google Scholar] [CrossRef]
- Sheahan, M.; Barrett, C.B. Ten striking facts about agricultural input use in Sub-Saharan Africa. Food Policy 2017, 67, 12–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adelaja, A.; George, J. Effects of conflict on agriculture: Evidence from the Boko Haram insurgency. World Dev. 2019, 117, 184–195. [Google Scholar] [CrossRef]
- Kah, H.K. ’Boko Haram is losing, but so is food production’: Conflict and food insecurity in Nigeria and Cameroon. Afr. Dev. 2017, 42, 177–196. [Google Scholar]
Observations | North | South | Pool |
---|---|---|---|
2018–2019 | 444 | 55 | 499 |
2015–2016 | 252 | 27 | 279 |
2012–2013 | 232 | 36 | 268 |
2010–2011 | 268 | 44 | 312 |
Total | 1196 | 162 | 1358 |
Notation | North | South | Pooled Sample | |
---|---|---|---|---|
Production frontier variables | ||||
Total output (Kg) | Y | 1353.845 | 2415.558 | 1480.500 |
Land (Ha) | X1 | 1.907 | 0.898 | 1.787 |
Labor (AMH) | X2 | 1785.237 | 2702.270 | 1894.632 |
Seed (Kg) | X3 | 76.522 | 101.323 | 79.480 |
Capital (Naira) | X4 | 4502.601 | 4612.228 | 4515.679 |
Technical efficiency drivers | ||||
Household head education (years) | Z1 | 4.671 | 5.074 | 4.719 |
Household size (number) | Z2 | 7.988 | 7.451 | 7.924 |
Age (years) | Z3 | 46.397 | 52.377 | 47.112 |
Variable | North | South | Pooled | ||||
---|---|---|---|---|---|---|---|
Coefficient | SE | Coefficient | SE | Coefficient | SE | ||
Production frontier drivers | |||||||
Constant | 5.659 *** | 1.669 | 18.266 *** | 6.677 | 6.494 *** | 0.315 | |
Land | X1 | −0.375 | 0.260 | 0.814 ** | 0.388 | −0.344 *** | 0.081 |
Labor | X2 | 0.156 | 0.224 | −0.454 | 0.774 | 0.131 *** | 0.046 |
Capital | X3 | 0.417 | 0.344 | −0.882 | 1.549 | 0.400 *** | 0.053 |
Seed | X4 | −0.094 | 0.212 | −0.925 * | 0.531 | −0.228 *** | 0.061 |
Time | t | −0.892 *** | 0.332 | −4.341 *** | 0.772 | −1.121 *** | 0.075 |
Land2 | X11 | 0.013 | 0.018 | 0.103 ** | 0.044 | 0.035 *** | 0.010 |
Labor2 | X22 | 0.013 | 0.014 | 0.099 ** | 0.040 | 0.017 *** | 0.003 |
Capital2 | X33 | 0.014 | 0.022 | 0.080 | 0.108 | 0.019 *** | 0.003 |
Seed2 | X44 | 0.043 *** | 0.016 | 0.163 *** | 0.047 | 0.053 *** | 0.005 |
Time2 | t2 | 0.101 * | 0.055 | 0.351 *** | 0.125 | 0.115 *** | 0.008 |
Land x labor | X12 | 0.024 | 0.024 | 0.042 | 0.040 | 0.045 *** | 0.008 |
Land x capital | X13 | 0.012 | 0.028 | −0.200 *** | 0.050 | −0.012 | 0.012 |
Land x seed | X14 | 0.052 ** | 0.024 | −0.044 | 0.029 | 0.028 ** | 0.013 |
Labor x capital | X23 | −0.064 *** | 0.021 | −0.123 | 0.086 | −0.073 *** | 0.004 |
Labor x seed | X24 | 0.018 | 0.018 | −0.009 | 0.054 | 0.016 *** | 0.005 |
Capital x seed | X34 | −0.019 | 0.020 | −0.045 | 0.056 | −0.012 ** | 0.005 |
Land x time | X1t | 0.012 | 0.028 | 0.260 *** | 0.050 | 0.046 *** | 0.011 |
Labor x time | X2t | 0.037 | 0.023 | 0.047 | 0.063 | 0.050 *** | 0.005 |
Capital x time | X3t | 0.011 | 0.024 | 0.229 ** | 0.114 | 0.012 *** | 0.005 |
Seed x time | X4t | 0.017 | 0.020 | 0.137 *** | 0.051 | 0.024 *** | 0.005 |
Technical efficiency drivers | |||||||
Household head education (years) | Z1 | −0.058 | 0.068 | 0.158 | 0.169 | 0.090 | 0.116 |
Household size (number) | Z2 | 0.127 | 0.179 | −0.650 * | 0.341 | 0.659 | 0.560 |
Age (years) | Z3 | −0.715 | 4.691 | −15.339 | 12.772 | −1.289 | 8.880 |
Age squared (years) | Z4 | −0.043 | 0.614 | 1.916 | 1.642 | 0.097 | 1.202 |
Time | t | −0.477 *** | 0.110 | −0.510 *** | 0.175 | −0.462 ** | 0.193 |
Variance | |||||||
Household head education (years) | Z1 | 0.008 | 0.102 | 0.094 | 0.320 | 0.582 *** | 0.161 |
Household size (number) | Z2 | −0.072 | 0.238 | 0.332 | 0.657 | −1.306 *** | 0.361 |
Age (years) | Z3 | −22.847 ** | 10.821 | 157.182 *** | 57.265 | −1.090 | 11.453 |
Age squared (years) | Z4 | −2.878 ** | 1.407 | −20.125 *** | 7.211 | 0.473 | 1.504 |
Time | t | 0.315 ** | 0.145 | −2.275 *** | 0.594 | 0.617 *** | 0.103 |
Log-likelihood | 1768.952 | 241.421 | 135.397 |
North | South | Pooled | |
---|---|---|---|
a. Technical efficiency estimates | |||
Mean | 0.378 | 0.418 | 0.383 |
Standard dev. | 0.214 | 0.271 | 0.222 |
Minimum | 0.009 | 0.001 | 0.009 |
Maximum | 0.856 | 0.997 | 0.997 |
b. Technological gap ratio estimates | |||
Mean | 0.882 | 0.816 | 0.874 |
Standard dev. | 0.044 | 0.138 | 0.067 |
Minimum | 0.558 | 0.303 | 0.303 |
Maximum | 0.968 | 0.988 | 0.988 |
c. Metafrontier technical efficiency estimates | |||
Mean | 0.333 | 0.339 | 0.333 |
Standard dev. | 0.188 | 0.231 | 0.231 |
Minimum | 0.007 | 0.001 | 0.001 |
Maximum | 0.817 | 0.924 | 0.924 |
TE | TGR | MTE | Observations | |
---|---|---|---|---|
North subregion | ||||
North Central | 0.347 | 0.883 | 0.305 | 201 |
North East | 0.383 | 0.884 | 0.337 | 240 |
North West | 0.402 | 0.878 | 0.353 | 121 |
South subregion | ||||
South East | 0.447 | 0.843 | 0.375 | 113 |
South South | 0.356 | 0.732 | 0.250 | 38 |
South West | 0.327 | 0.824 | 0.279 | 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olasehinde, T.S.; Qiao, F.; Mao, S. Performance of Nigerian Rice Farms from 2010 to 2019: A Stochastic Metafrontier Approach. Agriculture 2022, 12, 1000. https://doi.org/10.3390/agriculture12071000
Olasehinde TS, Qiao F, Mao S. Performance of Nigerian Rice Farms from 2010 to 2019: A Stochastic Metafrontier Approach. Agriculture. 2022; 12(7):1000. https://doi.org/10.3390/agriculture12071000
Chicago/Turabian StyleOlasehinde, Toba Stephen, Fangbin Qiao, and Shiping Mao. 2022. "Performance of Nigerian Rice Farms from 2010 to 2019: A Stochastic Metafrontier Approach" Agriculture 12, no. 7: 1000. https://doi.org/10.3390/agriculture12071000
APA StyleOlasehinde, T. S., Qiao, F., & Mao, S. (2022). Performance of Nigerian Rice Farms from 2010 to 2019: A Stochastic Metafrontier Approach. Agriculture, 12(7), 1000. https://doi.org/10.3390/agriculture12071000