Experimental Study on Optimal Recycling Mechanical Parameters of Cotton Field Mulch film based on Small Soil Trough System
Abstract
:1. Introduction
2. Stress Analysis of Residual Mulch Film at Plough Layer
3. Materials and Methods
3.1. Experiment Device and Materials
3.1.1. Experiment Device of Small Soil Trough System Film Lifting
3.1.2. Treatment of Experiment Samples
3.2. Uniformity Experiment Method
Experiment Factor Level
- (1)
- Soil moisture
- (2)
- Soil compactness
- (3)
- Residual mulch film area
- (4)
- Film lifting angle
- (5)
- Number of dry-wet cycles
- (6)
- Film lifting force experiment after loosening soil by cutter tooth
3.3. Experiment Indexes
- (1)
- Film lifting force
- (2)
- Residual mulch film recycling rate
4. Results
4.1. Influence on the Unloosened Soil Condition on the Change in Film Lifting Force and Residual Film Recycling Rate
4.1.1. Analysis of Influence of Various Factors on the Change in Film Lifting Force
4.1.2. Analysis of Influence of Various Factors on the Change in Residual Mulch Film Recycling Rate
4.2. Analysis of Toothed Loosened Soil Condition on the Change in Film Lifting Force and Residual Film Recycling Rate
4.2.1. The Change in Film Lifting Force after Soil Loosening
4.2.2. Effective Recycling Rate after Soil Loosening
5. Discussion
5.1. Analysis of the Influencing Factors of Film Lifting Force
5.2. Analysis of the Optimal Interval Value of Residual Mulch Film Recycling Machinery
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, D.; Li, H.; Wang, E.; He, W.; Hao, W.; Yan, C.; Li, Y.; Mei, X.; Zhang, Y.; Sun, Z.; et al. An overview of the use of plastic-film mulching in China to increase crop yield and water-use efficiency. Natl. Sci. Rev. 2020, 7, 1523–1526. [Google Scholar] [CrossRef] [PubMed]
- He, H.J.; Wang, Z.H.; Guo, L.; Zheng, X.R.; Zhang, J.Z.; Li, W.H.; Fan, B.H. Distribution characteristics of residual film over a cotton field under long-term film mulching and drip irrigation in an oasis agroecosystem. Soil Tillage Res. 2018, 180, 194–203. [Google Scholar] [CrossRef]
- Qin, S.J.; Li, S.E.; Kang, S.Z.; Du, T.S.; Tong, L.; Ding, R.S. Can the drip irrigation under film mulch reduce crop evapotranspiration and save water under the sufficient irrigation condition? Agric. Water Manag. 2016, 177, 128–137. [Google Scholar] [CrossRef]
- Ding, F.; Yan, C.R.; Wang, J.K. An Overlooked Issue in Black Soil Protection: Plastic Film Accumulation and Pollution. Chin. J. Soil Sci. 2022, 53, 234–240. [Google Scholar]
- Hu, C.; Wang, X.F.; Chen, X.G.; Tang, X.Y.; Zhao, Y.; Yan, C.R. Current situation and control strategies of residual film pollution in Xinjiang. Trans. Chin. Soc. Agric. Eng. 2019, 35, 223–234. [Google Scholar] [CrossRef]
- Niu, R.K.; Wang, X.F.; Hu, C.; Hou, S.L.; Lu, B.; Li, J.B. Analysis of the Current situations of plastic films residue pollution of cotton field in Xinjiang Aksu Area. Xinjiang Agric. Sci. 2016, 53, 283–288. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Q.; Jia, W.Q.; Yan, C.R.; Wang, J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ. Pollut. 2020, 260, 114096. [Google Scholar] [CrossRef] [PubMed]
- Qi, R.M.; Jones, D.L.; Li, Z.; Liu, Q.; Yan, C.R. Behavior of microplastics and plastic film residues in the soil environment: A critical review. Sci. Total Environ. 2020, 703, 134722. [Google Scholar] [CrossRef]
- Liu, C.Z.; Ren, L.Q.; Tong, J.; Feng, Y.J. Soil Adhesion of UHMWPE and Its Composite Materials. Trans. Chin. Soc. Agric. Eng. 1998, 4, 43–47. [Google Scholar]
- Liu, C.; Qi, W.; Wang, C.; Zhang, Z.Y. The Effects of Inorganic Fertilization on Soil Shrinkage in Wetting-drying Cycles. J. Irrig. Drain. 2021, 40, 44–50. [Google Scholar] [CrossRef]
- Ren, L.Q.; Liu, C.Z.; Tong, J.; Li, J.Q. Adhesive Behavior Of Soil Particle Aggregates in the Soil Adhesion System. Trans. Chin. Soc. Agric. Mach. 1997, 28, 5–8. [Google Scholar]
- Ren, L.Q.; Liu, C.Z.; Tong, J.; Li, J.Q. Cohesive Behavior Of Soil Particle Aggregates in the Soil Adhesion System. Trans. Chin. Soc. Agric. Mach. 1997, 28, 2–5. [Google Scholar]
- Wan, Y.; Xue, Q.; Wu, Y.; Zhao, L.Y. Mechanical properties and micromechanisms of compacted clay during drying-wetting cycles. Rock Soil Mech. 2015, 36, 2815–2824. [Google Scholar] [CrossRef]
- Li, L.C.; Li, X.A.; Wang, L.; Hong, B.; Shi, J.F.; Sun, J.Q. The effects of soil shrinkage during centrifuge tests on SWCC and soil microstructure measurements. Bull. Eng. Geol. Environ. 2020, 79, 3879–3895. [Google Scholar] [CrossRef]
- Yan, C.R.; Wang, X.J.; He, W.Q.; Ma, H.; Cao, S.L.; Zhu, G.F. The residue of plastic film in cotton fields in Shihezi, Xinjiang. Acta Ecol. Sin. 2008, 7, 3470–3474. [Google Scholar]
- Hu, C.; Wang, X.F.; Wang, S.G.; Lu, B.; Guo, W.S.; Liu, C.J.; Tang, X.Y. Impact of agricultural residual plastic film on the growth and yield of drip-irrigated cotton in arid region of Xinjiang, China. Int. J. Agric. Biol. Eng. 2020, 13, 160–169. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Chen, X.G.; Wen, H.J. Research and Experiment on the Removal Mechanism of Light Impurities of the Residual Mulch Film Recovery Machine. Agriculture 2022, 12, 775. [Google Scholar] [CrossRef]
- Guo, W.S.; Hu, C.; He, X.W.; Wang, L.; Hou, S.L.; Wang, X.F. Construction of virtual mulch film model based on discrete element method and simulation of its physical mechanical properties. Int. J. Agric. Biol. Eng. 2020, 13, 211–218. [Google Scholar] [CrossRef]
- Guo, H.; Yu, X.D.; Jin, W.; He, N.D.; Guo, W.H. Establishment of prediction model for tensil emechanics of plastic film and prediction of film thickness. J. Chin. Agric. Mech. 2020, 41, 173–178. [Google Scholar] [CrossRef]
- Fang, K.T. Theory, method and application of uniform experimental design—Historical Review. Appl. Stat. Manag. 2004, 3, 69–80. [Google Scholar] [CrossRef]
- Fang, K.T.; Ge, G.N.; Liu, M.Q. Uniform supersaturated design and its construction. Sci. China A Mathem. 2002, 8, 1080. [Google Scholar] [CrossRef]
- Yu, S.X.; Pan, J.P. Reliability prediction model of homogeneous reservoir bank slope based on uniform test and PSORBF. China Rural. Water Hydropower 2022, On-line First. 1–8. [Google Scholar]
- Wei, H.Z.; Wang, J.T. Microcosmic Analysis of Coulomb Equation. J. Zhengzhou Univ. Technol. 2000, 3, 108–110. [Google Scholar]
- Sun, Y.; Jian, J.M.; Tian, Y.T.; Sun, F.C.; Zhang, M.J.; Wang, S.G. Analysis and experiment of filming mechanism of rotary film-lifting device of residual film recycling machine. Trans. Chin. Soc. Agric. Mach. 2018, 49, 304–310. [Google Scholar] [CrossRef]
- Wang, X.N.; Liu, J.; Liu, X.F.; Jiang, Y.X.; Zhang, H.C.; Zhang, J.X.; Zhang, L. Design and test of a coreless-roll packing device for residual film. Trans. Chin. Soc. Agric. Eng. 2022, 38, 28–35. [Google Scholar] [CrossRef]
- Xie, J.H.; Zhang, F.X.; Chen, X.G.; Han, Y.J.; Tang, W. Design and parameter optimization of arc tooth and rolling bundle type plastic film residue collector. Trans. Chin. Soc. Agric. Eng. 2019, 35, 26–37. [Google Scholar] [CrossRef]
Test Number | Soil Moisture/% | Soil Compactness/KPa | Residual Mulch Film Area/cm2 | Film Lifting Angle/° | Number of Dry-Wet Cycles/n |
---|---|---|---|---|---|
1 | 14 | 100 | 10 | 45 | 5 |
2 | 16 | 140 | 40 | 70 | 12 |
3 | 18 | 180 | 70 | 20 | 4 |
4 | 20 | 220 | 4 | 50 | 11 |
5 | 22 | 260 | 20 | 75 | 3 |
6 | 24 | 90 | 50 | 30 | 9 |
7 | 26 | 120 | 80 | 60 | 2 |
8 | 28 | 160 | 6 | 80 | 7 |
9 | 30 | 200 | 30 | 40 | 1 |
10 | 32 | 240 | 60 | 65 | 6 |
Test Number | Soil Moisture | Soil Compactness | Residual Mulch Film Area | Film Lifting Angle /° | Number of Dry-Wet Cycles | Mean Value of Film Lifting Force/N | Recycling Rate of Residual Mulch Film |
---|---|---|---|---|---|---|---|
1 | 14 | 100 | 10 | 45 | 5 | 8.553 | 90.43% |
2 | 16 | 140 | 40 | 70 | 12 | 15.386 | 22.48% |
3 | 18 | 180 | 70 | 20 | 4 | 6.748 | 94.61% |
4 | 20 | 220 | 4 | 50 | 11 | 13.518 | 28.86% |
5 | 22 | 260 | 20 | 75 | 3 | 6.382 | 95.68% |
6 | 24 | 90 | 50 | 30 | 9 | 10.902 | 65.63% |
7 | 26 | 120 | 80 | 60 | 2 | 5.784 | 100% |
8 | 28 | 160 | 6 | 80 | 7 | 9.712 | 38.79% |
9 | 30 | 200 | 30 | 40 | 1 | 5.665 | 100% |
10 | 32 | 240 | 60 | 65 | 6 | 9.313 | 71.54% |
Source of Variance | Sum of Squares | Degree of Freedom | Variance | F Value | Fα Value | Significance Level |
---|---|---|---|---|---|---|
0.0071 | 1 | 0.0071 | 0.0224 | 7.7086 | non-significant | |
3.0847 | 1 | 3.0847 | 9.7063 | 21.1977 | significant | |
0.0051 | 1 | 0.0051 | 0.0160 | non-significant | ||
3.3949 | 1 | 3.3949 | 10.6825 | significant | ||
26.1444 | 1 | 26.1444 | 82.2670 | highly significant | ||
Regression | 113.2151 | 5 | 22.6430 | 71.2494 | 6.2561 | highly significant |
Surplus | 1.2712 | 4 | 0.3178 | 15.5219 | ||
Sum | 114.4863 | 9 |
Source of Variance | Sum of Squares | Degree of Freedom | Variance | F Value | Fα Value | Significance Level |
---|---|---|---|---|---|---|
1.1637 | 1 | 1.1637 | 0.0276 | 7.7086 | non-significant | |
1.9559 | 1 | 1.9559 | 0.0464 | 21.1977 | significant | |
25.5716 | 1 | 25.5716 | 0.6068 | non-significant | ||
122.0977 | 1 | 122.0977 | 4.8974 | significant | ||
253.29 | 1 | 253.29 | 60.1054 | highly significant | ||
Regression | 794.93 | 5 | 158.99 | 37.7280 | 6.2561 | highly significant |
Surplus | 168.5611 | 4 | 42.1403 | 15.5219 | ||
Sum | 811.79 | 9 |
Test Number | Soil Moisture | Soil Compactness | Residual Mulch Film Area | Film Lifting Angle /° | Number of Dry Wet Cycles | Mean Value of Film Lifting Force/N | Recycling Rate of Residual Mulch Film |
---|---|---|---|---|---|---|---|
1 | 14 | 100 | 10 | 45 | 5 | 4.036 | 100% |
2 | 16 | 140 | 40 | 70 | 12 | 4.228 | 97.64% |
3 | 18 | 180 | 70 | 20 | 4 | 4.521 | 100% |
4 | 20 | 220 | 4 | 50 | 11 | 5.191 | 100% |
5 | 22 | 260 | 20 | 75 | 3 | 7.594 | 84.12% |
6 | 24 | 90 | 50 | 30 | 9 | 6.357 | 94.29% |
7 | 26 | 120 | 80 | 60 | 2 | 6.788 | 98.37% |
8 | 28 | 160 | 6 | 80 | 7 | 7.143 | 89.18% |
9 | 30 | 200 | 30 | 40 | 1 | 8.952 | 90.94% |
10 | 32 | 240 | 60 | 65 | 6 | 6.021 | 100% |
Source of Variance | Sum of Squares | Degree of Freedom | Variance | F Value | Fα Value | Significance Level |
---|---|---|---|---|---|---|
0.4297 | 1 | 0.4297 | 2.5156 | 7.7086 | significant | |
0.0223 | 1 | 0.0223 | 0.0785 | 21.1977 | non-significant | |
0.0054 | 1 | 0.0054 | 0.0189 | non-significant | ||
0.0037 | 1 | 0.0037 | 0.0130 | non-significant | ||
4.6212 | 1 | 4.6212 | 16.2991 | significant | ||
Regression | 21.9465 | 5 | 4.3893 | 15.4809 | 6.2561 | significant |
Surplus | 1.1341 | 4 | 0.2835 | 15.5219 | ||
Sum | 23.0806 | 9 |
Source of Variance | Sum of Squares | Degree of Freedom | Variance | F Value | fα Value | Significance Level |
---|---|---|---|---|---|---|
2.3412 | 1 | 2.3412 | 0.5389 | 7.7086 | non-significant | |
7.8105 | 1 | 7.8105 | 1.7978 | 21.1977 | non-significant | |
4.249 | 1 | 4.249 | 0.9780 | non-significant | ||
32.5466 | 1 | 32.5466 | 7.4915 | significant | ||
132.9778 | 1 | 132.9778 | 30.6084 | significant | ||
Regression | 268.1219 | 5 | 53.6244 | 12.3431 | 6.2561 | significant |
Surplus | 17.3780 | 4 | 4.3445 | 15.5219 | ||
Sum | 285.4998 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.; Xu, Z.; Wang, X.; Wang, L.; Xing, J.; Guo, W. Experimental Study on Optimal Recycling Mechanical Parameters of Cotton Field Mulch film based on Small Soil Trough System. Agriculture 2022, 12, 1041. https://doi.org/10.3390/agriculture12071041
Hu C, Xu Z, Wang X, Wang L, Xing J, Guo W. Experimental Study on Optimal Recycling Mechanical Parameters of Cotton Field Mulch film based on Small Soil Trough System. Agriculture. 2022; 12(7):1041. https://doi.org/10.3390/agriculture12071041
Chicago/Turabian StyleHu, Can, Zhengxin Xu, Xufeng Wang, Long Wang, Jianfei Xing, and Wensong Guo. 2022. "Experimental Study on Optimal Recycling Mechanical Parameters of Cotton Field Mulch film based on Small Soil Trough System" Agriculture 12, no. 7: 1041. https://doi.org/10.3390/agriculture12071041
APA StyleHu, C., Xu, Z., Wang, X., Wang, L., Xing, J., & Guo, W. (2022). Experimental Study on Optimal Recycling Mechanical Parameters of Cotton Field Mulch film based on Small Soil Trough System. Agriculture, 12(7), 1041. https://doi.org/10.3390/agriculture12071041