Research on the Adaptability of High-Performance Film for Full Recycling to the Curl-Up Film Collecting Method
Abstract
:1. Introduction
2. Contrast Test on the Tensile Properties of High-Performance Film and Ordinary Polyethylene Film
2.1. Basic Information of the Test Field
2.2. Test Materials and Field Management
2.3. Test Design
2.3.1. Test Factors and Levels
2.3.2. Test Indexes
2.3.3. Determination of Test Parameters
2.3.4. Sample Collection
2.3.5. Test Scheme
3. Test on Curl-Up Force in Film Collecting
3.1. Test Conditions
3.2. Test Method and Design
3.2.1. Test Factors and Levels
3.2.2. Test Method
3.3. Results and Analysis
3.3.1. Results and Analysis of Contrast Test on the Tensile Properties of High-Performance Film and Ordinary Polyethylene Film
3.3.2. Results and Analysis of Test on Curl-Up Force in Film Collecting
4. Field Test on Curl-Up Collecting of Film
4.1. Test Method and Design
4.2. Test Results and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abduwaiti, A.; Liu, X.; Yan, C.; Xue, Y.; Jin, T.; Wu, H.; He, P.; Bao, Z.; Liu, Q. Testing Biodegradable Films as Alternatives to Plastic-Film Mulching for Enhancing the Yield and Economic Benefits of Processed Tomato in Xinjiang Region. Sustainability 2021, 13, 3093. [Google Scholar] [CrossRef]
- Zhongbing, W.; Jun, W. China Rural Statistical Yearbook 2020; Aihua, L., Zhicai, Y., Eds.; China Statistics Press: Beijing, China, 2020; Volume 3, p. 42. [Google Scholar]
- Can, H.; Xufeng, W.; Xiuying, T.; Yan, Z.; Rongchang, Y. Current situation and control strategies of residual film pollution in Xinjiang. Trans. Chin. Soc. Agric. Eng. 2019, 35, 233–234. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, H.; Hu, W.; Qin, X.; Ma, X.; Yan, C.; Wang, H. The status and distribution characteristics of residual mulching film in Xinjiang, China. J. Integr. Agric. 2016, 15, 2639–2646. [Google Scholar] [CrossRef] [Green Version]
- Scarascia-Mugnozza, G.; Schettini, E.; Vox, G.; Malinconico, M.; Immirzi, B.; Pagliara, S. Mechanical properties decay and morphological behaviour of biodegradable films for agricultural mulching in real scale experiment. Polym. Degrad. Stab. 2006, 91, 2801–2808. [Google Scholar] [CrossRef]
- Anunciado, M.B.; Hayes, D.G.; Wadsworth, L.C.; English, M.E.; Schaeffer, S.M.; Sintim, H.Y.; Flury, M. Impact of Agricultural Weathering on Physicochemical Properties of Biodegradable Plastic Mulch Films: Comparison of Two Diverse Climates Over Four Successive Years. J. Polym. Environ. 2020, 29, 1–16. [Google Scholar] [CrossRef]
- Willett, J.L. Mechanical properties of LDPE/granular starch composites. J. Appl. Polym. Sci. 1994, 54, 1685–1695. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, X.; Wen, H.; Zheng, X.; Niu, Q.; Kang, J. Research status and prospect of control technology for residual plastic film pollution in farmland. Trans. Chin. Soc. Agric. Mach. 2017, 48, 1–14. [Google Scholar] [CrossRef]
- Rongqing, L.; Xuegeng, C.; Bingcheng, Z.; Hewei, M.; Peng, J.; Xiangbin, P.; Za, K.; Weimin, L. Problems and countermeasures of cotton residue film recovery and resource reuse in xinjiang. Trans. Chin. Soc. Agric. Eng. 2019, 35, 1–13. [Google Scholar] [CrossRef]
- Marí, A.; Pardo, G.; Cirujeda, A.; Martínez, Y. Economic Evaluation of Biodegradable Plastic Films and Paper Mulches Used in Open-Air Grown Pepper (Capsicum annum L.) Crop. Agronomy 2019, 9, 36. [Google Scholar] [CrossRef] [Green Version]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Troger, J.; Munoz, K.; Fror, O.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Env. 2016, 550, 690–705. [Google Scholar] [CrossRef]
- Zhiyuan, Z.; Jingbin, L.; Xianfei, W.; Yongman, W.; Shuaikang, X.; Zipeng, S. Parameters Optimization and Test of an Arc-Shaped Nail-Tooth Roller-Type Recovery Machine for Sowing Layer Residual Film. Agriculture 2022, 12, 660. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, X.; Shi, Z.; Zhang, C.; Bai, S.; Huang, S. Design and test of film lifting separation conveying device of stripper-plate-type residual film recovery machine. J. Shihezi Univ. (Nat. Sci.) 2022, 1–9. [Google Scholar] [CrossRef]
- Jinping, Q. Independent innovation achievements have been implemented to solve the problem of residual membrane pollution. Sci. Technol. Rev. 2021, 39, 1. [Google Scholar]
- Fan, W.; Zongli, M.; Bin, D.; Wen, L.; Duopeng, W.; Shangtao, C.; Yanfang, W. Study on Tensile Rheological Properties of Polyethylene Melt. China Plast. 2021, 35, 13–18. [Google Scholar] [CrossRef]
- Tingting, Q.; Zhaoxia, H.; Heping, X.; Jinping, Q. Progress on Volume Elongational Rheology Processing Technology of Polymer. Plastics 2020, 49, 85–89 + 94. [Google Scholar]
- Li, L. Residue status and pollution control of farmland mulch film. Farm Staff 2021, 39, 1. [Google Scholar]
- Jiaxi, Z.; Xuenong, W.; Li, Z.C.Y.; Yongxin, J.; Haichun, Z.; Xuanfeng, L.; Yuanyuan, Q.; Xiangjin, W.; Shanshan, Z. Effects of mechanical tensile properties of plastic film on plastic recycling method. Trans. Chin. Soc. Agric. Eng. 2015, 31, 41–47. [Google Scholar] [CrossRef]
- Jingang, W.; Lingyan, G.; Rui, G.; Ling, L. Prediction model of tensile yield stress-molecular structure of polyethylene. J. Synth. Resin. Plast. 2021, 38, 7–10. [Google Scholar] [CrossRef]
- Liwen, S. Design and Experimental Study of Residual Film Rolling Machine. Master’s Thesis, Northwest A&F University, Xianyang, China, 2019. [Google Scholar]
- Qiufang, Z.; Dongxing, Z. Design of Film Removing Wheel for a Polythene Film Collector during Seedling Period. J. Agric. Mech. Res. 2007, 9, 84–86. [Google Scholar] [CrossRef]
- Yan, W.; Silian, S. Experimental Design and MATLAB Data Analysis; Lei, S., Congmian, Z., Eds.; Tsinghua University Press: Beijing, China, 2012; Volume 6, pp. 153–155. [Google Scholar]
- Junyi, G. Experimental Statistical Methods, 4th ed.; Jiaju, P., Fanling, K., Eds.; China Agricultural Press: Beijing, China, 2016; Volume 16, pp. 318–320. [Google Scholar]
- Xuenong, W.; Jie, L.; Xuanfeng, L.; Yongxin, J.; Haichun, Z.; Jiaxi, Z.; Li, Z. Design and test of a coreless-roll packing device for residual film. Trans. Chin. Soc. Agric. Eng. 2022, 38, 28–35. [Google Scholar]
- Lingyang, Z.; Aiping, S.; Qian, S.; Juxiang, D.; Jian, L.; Dongxu, L. Parameter optimization and experiment of the combined residual film reclaimer with upper conveyor chain. J. Agric. Mech. Res. 2022, 45, 164–170. [Google Scholar] [CrossRef]
- Qi, N.; Chao, J.; Yan, Z.; Xuegeng, C.; Xuan, Z.; Hongwen, L. Design and Experiment on Collecting and Separating Device for Strip Plastic Film Baler. Trans. Chin. Soc. Agric. Mach. 2017, 48, 101–107. [Google Scholar]
Levels | Sampling Position | Film Pick-Up Angle | Type of Film |
---|---|---|---|
1 | Position 1 | 30° | High-performance film |
2 | Position 2 | 45° | Ordinary polyethylene film |
3 | Position 3 | 60° | |
4 | 75° |
Samples | 0.008 mm Horizontal | 0.008 mm Vertical | 0.01 mm Horizontal | 0.01 mm Vertical | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ordinary Polyethylene Film | High-Performance Film | Ordinary Polyethylene Film | High-Performance Film | Ordinary Polyethylene Film | High-Performance Film | Ordinary Polyethylene Film | High-Performance Film | |||||||||||||||||||||||||
Days of Film laying/Day | Elongation at Break/% | Tensile Yield Stress/MPa | Elongation at Break/% | Tensile Yield Stress/MPa | Elongation at Break/% | Tensile Yield Stress/MPa | Elongation at Break/% | Tensile Yield Stress/MPa | Elongation at Break/% | Tensile Yield Stress/MPa | Elongation at Break/% | Tensile Yield Stress/MPa | Elongation at Break/% | Tensile Yield Stress/MPa | Elongation at Break/% | Tensile Yield Stress/MPa | ||||||||||||||||
0 | 286.715 | 22.37 | 504.052 | 29.814 | 270.146 | 19.738 | 400.837 | 39.313 | 331.216 | 26.773 | 823.628 | 34.55 | 297.147 | 24.957 | 554.794 | 41.35 | ||||||||||||||||
Samples | 0.008 mm Horizontal near-end position | 0.008 mm Horizontal far-end position | 0.008 mm Vertical near-end position | 0.008 mm Vertical far-end position | 0.01 mm Horizontal near-end position | 0.01 mm Horizontal far-end position | 0.01 mm Vertical near-end position | 0.01 mm Vertical far-end position | ||||||||||||||||||||||||
Ordinary polyethylene film | High-performance film | Ordinary polyethylene film | High-performance film | Ordinary polyethylene film | High-performance film | Ordinary polyethylene film | High-performance film | Ordinary polyethylene film | High-performance film | Ordinary polyethylene film | High-performance film | Ordinary polyethylene film | High-performance film | Ordinary polyethylene film | High-performance film | |||||||||||||||||
Days of film laying/day | Elongation at break/% | Tensile yield stress/MPa | Elongation at break/% | Tensile yield stress/MPa | Elongation at break/% | Tensile yield stress/MPa | Elongation at break/% | Tensile yield stress/MPa | Elongation at break/% | Tensile yield stress/MPa | Elongation at break/% | Tensile yield stress/MPa | Elongation at break/% | Tensile yield stress/MPa | Elongation at break/% | Tensile yield stress/MPa | Elongation at break/% | Tensile yield stress/MPa | Elongation at break/% | Tensile yield stress/MPa | Elongation at break/% | Tensile yield stress/MPa | Elongation at break/% | Tensile yield stress/MPa | Elongation at break/% | Tensile yield stress/MPa | Elongation at break/% | Tensile yield stress/MPa | Elongation at break/% | Tensile yield stress/MPa | Elongation at break/% | Tensile yield stress/MPa |
30 | 246.164 | 19.16 | 481.141 | 25.738 | 217.43 | 18.671 | 467.345 | 24.681 | 223.514 | 17.211 | 371.159 | 33.746 | 211.214 | 15.71 | 366.024 | 32.12 | 289.416 | 23.114 | 781.976 | 29.875 | 263.41 | 22.371 | 740.591 | 29.617 | 260.179 | 21.011 | 513.261 | 36.351 | 243.633 | 20.843 | 463.48 | 35.56 |
60 | 231.313 | 17.13 | 461.457 | 24.363 | 186.431 | 16.241 | 440.531 | 22.1 | 209.131 | 15.678 | 356.166 | 30.925 | 193.864 | 14.133 | 342.711 | 28.167 | 266.147 | 20.416 | 751.88 | 27.2 | 239.172 | 19.997 | 702.467 | 27.542 | 237.638 | 19.371 | 487.531 | 34.172 | 216.137 | 18.361 | 415.167 | 32.3 |
90 | 226.173 | 16.734 | 455.63 | 24.025 | 177.214 | 15.716 | 433.131 | 21.437 | 197.216 | 15.13 | 347.01 | 30.173 | 179.317 | 13.326 | 331.463 | 26.857 | 251.147 | 19.824 | 746.02 | 26.613 | 220.491 | 18.625 | 681.016 | 25.971 | 218.697 | 18.019 | 469.837 | 33.713 | 197.083 | 16.91 | 406.014 | 31.163 |
120 | 213.163 | 16.037 | 450.57 | 23.71 | 163.517 | 14.971 | 423.53 | 20.973 | 188.314 | 14.316 | 339.751 | 29.613 | 165.214 | 12.1 | 322.3 | 26.382 | 243.732 | 18.863 | 739.515 | 26.17 | 223.863 | 17.173 | 663.389 | 24.663 | 208.136 | 17.164 | 460.173 | 33.164 | 181.691 | 16.052 | 398.845 | 29.622 |
150 | 201.21 | 15.616 | 447.214 | 23.338 | 149.73 | 14.1 | 417.502 | 20.313 | 178.132 | 13.18 | 329.383 | 29.088 | 147.612 | 10.937 | 313.918 | 25.626 | 237.281 | 18.014 | 728.165 | 25.841 | 221.316 | 16.538 | 644.807 | 23.546 | 201.066 | 16.62 | 447.136 | 32.721 | 174.25 | 15.166 | 390.649 | 28.65 |
180 | 191.147 | 15.183 | 450.307 | 22.961 | 136.246 | 13.17 | 412.137 | 19.782 | 170.214 | 12.873 | 321.088 | 28.617 | 131.371 | 9.864 | 305.866 | 24.791 | 226.391 | 17.631 | 717.243 | 25.17 | 204.851 | 16.031 | 628.324 | 22.927 | 196.213 | 16.033 | 438.217 | 32.467 | 166.261 | 14.527 | 383.439 | 28.038 |
Samples | 0.008 mm Horizontal Near-End Position | 0.008 mm Horizontal Far-end Position | 0.008 mm Vertical Near-end Position | 0.008 mm Vertical Far-End Position | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ordinary Polyethylene Film | High-Performance Film | Ordinary Polyethylene Film | High-Performance Film | Ordinary Polyethylene Film | High-Performance Film | Ordinary Polyethylene Film | High-Performance Film | |||||||||
Days of Film Laying/Day | Scale of Decrease in Elongation at Break/% | Scale of Decrease in Tensile Yield Stress/% | Scale of Decrease in Elongation at Break/% | Scale of Decrease in Tensile Yield Stress/% | Scale of Decrease in Elongation at Break/% | Scale of Decrease in Tensile Yield Stress/% | Scale of Decrease in Elongation at Break/% | Scale of Decrease in Tensile Yield Stress/% | Scale of Decrease in Elongation at Break/% | Scale of Decrease in Tensile Yield Stress/% | Scale of Decrease in Elongation at Break/% | Scale of Decrease in Tensile Yield Stress/% | Scale of Decrease in Elongation at Break/% | Scale of Decrease in Tensile Yield Stress/% | Scale of Decrease in Elongation at Break/% | Scale of Decrease in Tensile Yield Stress/% |
30 | 14.14331 | 14.34958 | 4.54536 | 13.67143 | 24.16511 | 16.53554 | 7.28238 | 17.21674 | 17.26178 | 12.80272 | 7.40401 | 14.16071 | 21.81487 | 20.40734 | 8.68508 | 18.29675 |
60 | 6.03297 | 10.59499 | 4.09111 | 5.3423 | 14.257 | 13.01484 | 5.73752 | 10.45744 | 6.43494 | 8.90709 | 4.03951 | 8.35951 | 8.21442 | 10.03819 | 6.36925 | 12.30697 |
90 | 2.2221 | 2.31173 | 1.26274 | 1.38735 | 4.94392 | 3.23256 | 1.67979 | 3 | 5.69739 | 3.49534 | 2.57071 | 2.43169 | 7.50371 | 5.71004 | 3.28207 | 4.65083 |
120 | 5.75223 | 4.16517 | 1.11055 | 1.31113 | 7.72907 | 4.74039 | 2.21665 | 2.16448 | 4.51383 | 5.38004 | 2.09187 | 1.85596 | 7.86484 | 9.20006 | 2.76441 | 1.76863 |
150 | 5.60745 | 2.62518 | 0.74483 | 1.56896 | 8.43154 | 5.81791 | 1.42328 | 3.1469 | 5.40693 | 7.93518 | 3.05165 | 1.77287 | 10.65406 | 9.61157 | 2.60068 | 2.86559 |
180 | 5.00124 | 2.7728 | −0.69162 | 1.61539 | 9.00554 | 6.59574 | 1.28502 | 2.61409 | 4.44502 | 2.32929 | 2.51834 | 1.61922 | 11.00249 | 9.81073 | 2.565 | 3.25841 |
Samples | 0.01 mm Horizontal near-end position | 0.01 mm Horizontal far-end position | 0.01 mm Vertical near-end position | 0.01 mm Vertical far-end position | ||||||||||||
Ordinary polyethylene film | High-performance film | Ordinary polyethylene film | High-performance film | Ordinary polyethylene film | High-performance film | Ordinary polyethylene film | High-performance film | |||||||||
Days of film laying/day | Scale of decrease in elongation at break/% | Scale of decrease in tensile yield stress/% | Scale of decrease in elongation at break/% | Scale of decrease in tensile yield stress/% | Scale of decrease in elongation at break/% | Scale of decrease in tensile yield stress/% | Scale of decrease in elongation at break/% | Scale of decrease in tensile yield stress/% | Scale of decrease in elongation at break/% | Scale of decrease in tensile yield stress/% | Scale of decrease in elongation at break/% | Scale of decrease in tensile yield stress/% | Scale of decrease in elongation at break/% | Scale of decrease in tensile yield stress/% | Scale of decrease in elongation at break/% | Scale of decrease in tensile yield stress/% |
30 | 12.62016 | 13.66675 | 5.05714 | 13.53111 | 20.47184 | 16.44194 | 10.08186 | 14.27786 | 12.44098 | 15.8112 | 7.4862 | 13.75203 | 18.00927 | 16.48435 | 16.45908 | 14.00242 |
60 | 8.03998 | 11.67258 | 3.84871 | 8.95397 | 9.20162 | 10.61195 | 5.14778 | 7.00611 | 8.66365 | 7.80544 | 5.01304 | 5.99433 | 11.28583 | 11.90807 | 10.42397 | 9.1676 |
90 | 5.63598 | 2.89969 | 0.77938 | 2.15809 | 7.8107 | 6.86103 | 3.05367 | 5.70402 | 7.97053 | 6.97951 | 3.62931 | 1.3432 | 8.8157 | 7.90262 | 2.20465 | 3.52941 |
120 | 2.95245 | 4.84766 | 0.87196 | 1.6646 | −1.52931 | 7.79597 | 2.58834 | 5.03639 | 4.82906 | 4.74499 | 2.05688 | 1.62845 | 7.80991 | 5.07392 | 1.7657 | 4.94223 |
150 | 2.64676 | 4.50087 | 1.53479 | 1.25716 | 4.13535 | 3.69766 | 2.80107 | 4.52905 | 3.39682 | 3.16942 | 2.83306 | 1.33579 | 4.09541 | 5.51956 | 2.05493 | 3.27481 |
180 | 4.5895 | 2.12612 | 1.49993 | 2.59665 | 7.43959 | 3.06567 | 2.55627 | 2.6289 | 2.41364 | 3.53189 | 1.9947 | 0.77626 | 4.58479 | 4.21337 | 1.84565 | 2.16405 |
Test No. | Sampling Position | Film Pick-Up Angle/° | Type of Film | The Tensile Stress on the Film/MPa |
---|---|---|---|---|
1 | Position 1 | 30 | High-performance film | 21.86 |
2 | Position 2 | 30 | Ordinary polyethylene film | 19.125 |
3 | Position 1 | 45 | Ordinary polyethylene film | 19.364 |
4 | Position 2 | 45 | High-performance film | 19.83 |
5 | Position 3 | 60 | High-performance film | 16.427 |
6 | Position 1 | 60 | Ordinary polyethylene film | 18.217 |
7 | Position 3 | 75 | Ordinary polyethylene film | 15.97 |
8 | Position 1 | 75 | High-performance film | 17.039 |
9 | Position 3 | 30 | High-performance film | 17.513 |
10 | Position 3 | 45 | Ordinary polyethylene film | 16.824 |
11 | Position 2 | 60 | High-performance film | 17.726 |
12 | Position 2 | 75 | Ordinary polyethylene film | 16.013 |
(k1)1 | 19.12 | 19.499 | 18.399 | |
(k1)2 | 18.174 | 18.673 | 17.586 | |
(k1)3 | 16.684 | 17.457 | ||
(k1)4 | 16.341 | |||
R1 | 2.436 | 3.158 | 0.813 |
Indexes | Sources of Variance | Sum of Squares | Degree of Freedom | Mean Square | F Value | Significance |
---|---|---|---|---|---|---|
The tensile stress Y on the film/MPa | Sampling Position | 12.07 | 2 | 6.035 | 6.771 | ** |
Film Pick-up Angle | 16.07 | 3 | 5.357 | 6.01 | ** | |
Type of Film | 0.81 | 1 | 0.81 | 0.909 | ||
Residual error | 4.457 | 5 | 0.891 | |||
Sum | 33.407 | 11 |
Test No. | Type of Collector | Type of Film | Thickness of Film/mm | Film Recycling Rate of the Film Laid in the Same Year/% | Working Performance/km·h |
---|---|---|---|---|---|
1 | 1JRM-2000 | High-performance film | 0.01 | 81.16 | 6.15 |
2 | 1JRM-2000 | High-performance film | 0.008 | 73.26 | 4.79 |
3 | 1JRM-2000 | Ordinary polyethylene film | 0.01 | 57.31 | 3.76 |
4 | 1JRM-2000 | Ordinary polyethylene film | 0.008 | 55.43 | 3.13 |
5 | 11SM-1.2 | High-performance film | 0.01 | 96.11 | 9.37 |
6 | 11SM-1.2 | High-performance film | 0.008 | 85.45 | 8.24 |
7 | 11SM-1.2 | Ordinary polyethylene film | 0.01 | 78.52 | 7.88 |
8 | 11SM-1.2 | Ordinary polyethylene film | 0.008 | 72.49 | 7.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Liu, X.; Jiang, Y.; Zhou, X.; Zhang, L.; Wang, X. Research on the Adaptability of High-Performance Film for Full Recycling to the Curl-Up Film Collecting Method. Agriculture 2022, 12, 1051. https://doi.org/10.3390/agriculture12071051
Liu J, Liu X, Jiang Y, Zhou X, Zhang L, Wang X. Research on the Adaptability of High-Performance Film for Full Recycling to the Curl-Up Film Collecting Method. Agriculture. 2022; 12(7):1051. https://doi.org/10.3390/agriculture12071051
Chicago/Turabian StyleLiu, Jie, Xuanfeng Liu, Yongxin Jiang, Xin Zhou, Li Zhang, and Xuenong Wang. 2022. "Research on the Adaptability of High-Performance Film for Full Recycling to the Curl-Up Film Collecting Method" Agriculture 12, no. 7: 1051. https://doi.org/10.3390/agriculture12071051
APA StyleLiu, J., Liu, X., Jiang, Y., Zhou, X., Zhang, L., & Wang, X. (2022). Research on the Adaptability of High-Performance Film for Full Recycling to the Curl-Up Film Collecting Method. Agriculture, 12(7), 1051. https://doi.org/10.3390/agriculture12071051