Nitrogen Fertilizer and Nitrapyrin for Greenhouse Gas Reduction in Wolfberry Orchards on the Qinghai–Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Site
2.2. Experimental Design and Field Management
2.3. Gas Sampling and Measurements
2.4. Environmental Factors Measurements
2.5. Calculation
2.6. Statistical Analysis
3. Results
3.1. Environmental Factors
3.2. GHG Emissions
3.2.1. N2O Emission
3.2.2. CH4 Uptake
3.2.3. CO2 Flux
3.3. Wolfberry Yield, GWP and GHGI
4. Discussion
4.1. Effects of N Fertilizer Rate on Yield, GHG Emissions, GWP and GHGI
4.2. Effects of Nitrapyrin on Yield, GHG Emissions, GWP and GHGI
4.3. Effects of N Fertilizer Rate Combined with Nitrapyrin on Yield, GHG Emissions, GWP and GHGI
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, H.Y.; Huang, H.J.; Tang, J.; Chen, W.K.; He, Y.Q. Net Greenhouse Gas Emissions from Agriculture in China: Estimation, Spatial Correlation and Convergence. Sustainability 2019, 11, 4817. [Google Scholar] [CrossRef] [Green Version]
- Carlson, K.M.; Gerber, J.S.; Mueller, N.D.; Herrero, M.; MacDonald, G.K.; Brauman, K.A.; Havlik, P.; O’Connell, C.S.; Johnson, J.A.; Saatchi, S.; et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Change 2017, 7, 63–68. [Google Scholar] [CrossRef]
- Yang, W.; Feng, G.; Tewolde, H.; Li, P.F. CO2 emission and soil carbon sequestration from spring- and fall-applied poultry litter in corn production as simulated with RZWQM2. J. Clean. Prod. 2019, 209, 1285–1293. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, J.B.; He, Y.Y. Research on spatial-temporal characteristics and driving factor of agricultural carbon emissions in china. J. Integr. Agric. 2014, 13, 1393–1403. [Google Scholar] [CrossRef] [Green Version]
- Knoblauch, C.; Maarifat, A.A.; Pfeiffer, E.M.; Haefele, S.M. Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils. Soil Biol. Biochem. 2011, 43, 1768–1778. [Google Scholar] [CrossRef]
- Zhang, W.F.; Dou, Z.X.; He, P.; Ju, X.T.; Powlson, D.; Chadwick, D.; Norse, D.; Lu, Y.L.; Zhang, Y.; Wu, L.; et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl. Acad. Sci. USA 2013, 110, 8375–8380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, D.J.; Zhang, D.F.; Fan, G.H.; Wang, Z.L. Leaf morphology of main Lycium barbarum varieties in Chaidamu area. Sci. Technol. Qinghai Agric. For. 2020, 3, 13–16, 48. [Google Scholar]
- Duan, C.X.; Chen, J.F.; Li, J.B.; Feng, H.; Wu, S.F.; Meng, Q.T.; Meng, Q.T.; Siddique, K.H.M. Effects of organic amendments and ridge-furrow mulching system on soil properties and economic benefits of wolfberry orchards on the Tibetan Plateau. Sci. Total Environ. 2022, 827, 154317. [Google Scholar] [CrossRef]
- Luo, W.P.; Qi, G.M.; Li, H.F. Variation of frost in Qaidam basin and its influence on planting Wolfberry. Sci. Technol. Qinghai Agric. For. 2020, 4, 21–27, 31. [Google Scholar]
- Nie, J.W.; Wang, Y.J.; Tian, Y.; Peng, C.H.; Wang, H.; Liu, Z.Y.; Zhu, B. Effects of combined applying Chinese milk vetch and chemical fertilizers on CH4 and N2O emissions from double cropping paddy fields. Plant Nutr. Fert. Sci. 2018, 24, 676–684. [Google Scholar]
- Lu, J.J.; Liu, X.H.; Xu, S.Q.; Yang, L.Y.; Zhang, Y.; Sheng, H.Y. Effects of Nitrogen Applications on Soil Inorganic Nitrogen in Wolfberry Field of Qaidam. Acta Agric. Boreali-Occident. Sin. 2020, 29, 1389–1398. [Google Scholar]
- Fan, Y.Q.; Hao, X.M.; Carswell, A.; Misselbrook, T.; Ding, R.S.; Li, S.; Kang, S.Z. Inorganic nitrogen fertilizer and high N application rate promote N2O emission and suppress CH4 uptake in a rotational vegetable system. Soil Tillage Res. 2021, 206, 104848. [Google Scholar] [CrossRef]
- Song, Y.C.; Chen, X.L.; Ren, X.L.; Gao, X.D. Combined effects of regulated deficit irrigation and reduced nitrogen fertilization on yield and growth of Chinese wolfberry. Xibei Nongye Xuebao 2019, 28, 1666–1673. [Google Scholar]
- Luo, X.P. Advancement, current status and advantages of wolfberry industry in Qinghai Province. Sci. Technol. Qinghai Agric. For. 2019, 4, 42–45, 81. [Google Scholar]
- Wang, C.G. Discussion on the problems and countermeasures in the development of Lycium Barbarum industry in Haixi Prefecture. South China Agric. 2019, 13, 103–112. [Google Scholar]
- Qiu, Y.H.; Liu, J.S.; Hu, C.X.; Zhao, C.S.; Sun, X.C.; Tan, Q.L. Effects of Nitrogen Application Rates on Nitrous Oxide Emission from a Typical Intensive Vegetable Cropping System. Nongye Huanjing Kexue Xuebao 2010, 29, 2238–2243. [Google Scholar]
- Li, Y.; Ju, X.T. Rational nitrogen application is the key to mitigate agricultural nitrous oxide emission. Nongye Huanjing Kexue Xuebao 2020, 39, 842–851. [Google Scholar]
- Liu, J.G.; You, L.Z.; Amini, M.; Obersteiner, M.; Herrero, M.; Zehnder, A.J.B.; Yang, H. A high-resolution assessment on global nitrogen flow in cropland. Proc. Natl. Acad. Sci. USA 2010, 107, 8035–8040. [Google Scholar] [CrossRef] [Green Version]
- Shcherbak, I.; Millar, N.; Robertson, G.P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. USA 2014, 111, 9199–9204. [Google Scholar] [CrossRef] [Green Version]
- Xie, B.H.; Gu, J.X.; Yu, J.B.; Han, G.X.; Zheng, X.H.; Xu, Y.; Lin, H.T. Effects of N fertilizer application on soil N2O emissions and CH4 uptake: A two-year study in an apple orchard in eastern China. Atmosphere 2017, 8, 181. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Hu, X.K.; Gao, B.; Yang, H.; Huang, C.C.; Ju, X.T. Improved nitrogen management as a key mitigation to net global warming potential and greenhouse gas Intensity on the North China plain. Soil Sci. Soc. Am. J. 2018, 82, 136–146. [Google Scholar] [CrossRef]
- Li, Y.Q.; Liu, G.; Hong, M.; Wu, Y.; Chang, F. Effect of optimized nitrogen application on nitrous oxide emission and ammonia volatilization in Hetao irrigation area. Huanjing Kexue Xuebao 2019, 39, 578–584. [Google Scholar]
- Wang, C.; Chen, B.L.; Yusuyin, Y.; Wang, Q.D.; Chai, Z.P. Effect of nitrogen application rate on ammonia volatilization and nitrous oxide emission in Korla fragrant pear orchard. Agric. Res. Arid Areas 2019, 37, 157–164. [Google Scholar]
- Zhu, Z.J.; Yang, L.L.; Feng, T.; Tong, Y.A. Characteristics of N2O emissions from different fertilization treatments in Weibei dryland apple orchard. Agric. Res. Arid Areas 2020, 38, 59–65. [Google Scholar]
- Mu, C.; Chen, X.H.; Lin, W.J.; Hu, H.N.; Wu, L.Q. Nitrogen balance status and greenhouse gas mitigation potential in typical Oolong tea production areas. Nongye Ziyuan Yu Huanjing Xuebao 2020, 37, 186–194. [Google Scholar]
- He, T.H.; Yuan, J.J.; Luo, J.F.; Lindsey, S.; Xiang, J.; Lin, Y.X.; Liu, D.Y.; Chen, Z.M.; Ding, W.X. Combined application of biochar with urease and nitrification inhibitors have synergistic effects on mitigating CH4 emissions in rice field: A three-year study. Sci. Total Environ. 2020, 743, 140500. [Google Scholar] [CrossRef]
- Akiyama, H.; Yan, X.Y.; Yagi, K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: Meta-analysis. Glob. Change Biol. 2010, 16, 1837–1846. [Google Scholar] [CrossRef]
- Sun, Z.M.; Zhang, K.; Liu, J.T.; Si, H.S.; Wang, Y.Q. Effects of nitrogen regulators on fertilizer nitrogen transformation in meadow cinnamon soil and on pakchoi growth. Ying Yong Sheng Tai Xue Bao 2012, 23, 2497–2503. [Google Scholar]
- Zhou, X.; Wu, L.H.; Dai, F.; Dong, C.H. Effects of combined biochemical inhibitors and fertilization models on CH4 and N2O emission from yellow clayey field during rice growth season. Shengtai Yu Nongcun Huanjing Xuebao 2018, 34, 1122–1130. [Google Scholar]
- Wolt, J.D. A meta-evaluation of nitrapyrin agronomic and environmental effectiveness with emphasis on corn production in the Midwestern USA. Nutr. Cycl. Agroecosyst. 2004, 69, 23–41. [Google Scholar] [CrossRef]
- Ge, S.F. Study on Gross Nitrification-Denitrification and Ammonia Volatilization Losses in Apple Orchard. Master’s Thesis, Shandong Agricultural University, Taian, China, 2011. [Google Scholar]
- Randall, G.W.; Vetsch, J.A. Nitrate losses in subsurface drainage from a corn-soybean rotation as affected by fall and spring application of nitrogen and nitrapyrin. J. Environ. Qual. 2005, 34, 590–597. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Gao, Q. Effects of nitrification inhibitor nitrapyrin application in agricultural ecosystems and influencing factors: A review. Zhongguo Turang Yu Feiliao 2022, 4, 249–258. [Google Scholar]
- Bao, S.D. Soil and Agricultural Chemistry Analysis, 3rd ed.; Li, G.Z., Yang, G.D., Eds.; China Agricultural Press: Beijing, China, 2000; pp. 30–108, 179–180. [Google Scholar]
- Lyu, X.D.; Wang, T.; Ma, Z.M.; Zhao, C.Y.; Siddique, K.H.; Ju, X.T. Enhanced efficiency nitrogen fertilizers maintain yields and mitigate global warming potential in an intensified spring wheat system. Field Crops Res. 2019, 244, 107624. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Bulk Density. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods; Klute, A., Ed.; Soil Science Society of America, American Society of Agronomy, Inc.: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Gao, B.; Ju, X.T.; Su, F.; Meng, Q.F.; Oenema, O.; Christie, P.; Chen, X.P.; Zhang, F.S. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China plain: A two-year field study. Sci. Total Environ. 2014, 472, 112–124. [Google Scholar] [CrossRef]
- Zheng, X.H.; Mei, B.L.; Wang, Y.H.; Xie, B.H.; Wang, Y.S.; Dong, H.B.; Xu, H.; Chen, G.X.; Cai, Z.C.; Yue, J.; et al. Quantification of N2O fluxes from soil-plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008, 311, 211–234. [Google Scholar] [CrossRef]
- Hu, X.K.; Su, F.; Ju, X.T.; Gao, B.; Oenema, O.; Christie, P.; Huang, B.X.; Jiang, R.F.; Zhang, F.S. Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes. Environ. Pollut. 2013, 176, 198–207. [Google Scholar] [CrossRef]
- Huang, T.; Yang, H.; Huang, C.C.; Ju, X.T. Effect of fertilizer N rates and straw management on yield-scaled nitrous oxide emissions in a maize-wheat double cropping system. Field Crops Res. 2017, 204, 1–11. [Google Scholar] [CrossRef]
- Mosier, A.R.; Halvorson, A.D.; Reule, C.A.; Liu, X.J. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. J. Environ. Qual. 2006, 35, 1584–1598. [Google Scholar] [CrossRef] [Green Version]
- Barton, L.; Kiese, R.; Gatter, D.; Butterbach-Bahl, K.; Buck, R.; Hinz, C.; Murphy, D.V. Nitrous oxide emissions from a cropped soil in a semi-arid climate. Glob. Change Biol. 2008, 14, 177–192. [Google Scholar] [CrossRef]
- Guo, S.; Jiang, R.; Qu, H.C.; Wang, Y.L.; Misselbrook, T.; Gunina, A.; Kuzyakov, Y. Fate and transport of urea-N in a rain-fed ridge-furrow crop system with plastic mulch. Soil Tillage Res. 2019, 186, 214–223. [Google Scholar] [CrossRef]
- Zhang, F.S.; Cui, Z.L.; Chen, X.P.; Ju, X.T.; Shen, J.B.; Chen, Q.; Liu, X.J.; Zhang, W.F.; Mi, G.H.; Fan, M.S.; et al. Integrated Nutrient Management for Food Security and Environmental Quality in China. Adv. Agron. 2012, 116, 1–40. [Google Scholar]
- Ge, S.F.; Zhu, Z.L.; Wei, S.C.; Jiang, Y.M. Technical approach and research prospect of saving and improving efficiency of chemical fertilizers for apple in China. Yuanyi Xuebao 2017, 44, 1681–1692. [Google Scholar]
- Yang, L.L.; Wang, Y.H.; Han, W.S.; Ma, L.Y.; Yang, G.C.; Han, Y.Y.; Tong, Y.A. Excessive nitrogen application leads to excess nutrient growth of fruit trees, inhibits reproductive growth, and causes unbalanced nutrient absorption. Nongye Huanjing Kexue Xuebao 2021, 40, 631–639. [Google Scholar]
- Cai, Z.J.; Sun, N.; Wang, B.R.; Xu, M.G.; Huang, J.; Zhang, H.M. Effects of long-term fertilization on PH of red soil, crop yields and uptakes of nitrogen, phosphorous and potassium. Plant Nutr. Fert. Sci. 2011, 17, 71–78. [Google Scholar]
- Zhang, G.; Wang, X.K.; Sun, B.F.; Zhao, H.; Lu, F.; Zhang, L. Status of mineral nitrogen fertilization and net mitigation potential of the state fertilization recommendation in Chinese cropland. Agric. Syst. 2016, 146, 1–10. [Google Scholar] [CrossRef]
- Liu, W.W.; Zhang, G.; Wang, X.K.; Lu, F.; Ouyang, Z.Y. Carbon footprint of main crop production in China: Magnitude, spatial-temporal pattern and attribution. Sci. Total Environ. 2018, 645, 1296–1308. [Google Scholar] [CrossRef]
- Shang, H.L.; Peng, Y.Z.; Zhang, J.R.; Wang, S.Y. Effect of C/N Ratio on Nitrous Oxide Production During Denitrification with Different Electron Acceptors. Huanjing Kexue 2009, 30, 2007–2012. [Google Scholar]
- Venterea, R.T.; Coulter, J.A. Split application of urea does not decrease and may increase nitrous oxide emissions in rainfed corn. Agron. J. 2015, 107, 337–348. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.A. Changing views of nitrous oxide emissions from agricultural soil: Key controlling processes and assessment at different spatial scales. Eur. J. Soil Sci. 2017, 68, 137–155. [Google Scholar] [CrossRef]
- Cao, W.C.; Song, H.; Wang, Y.J.; Qin, W.; Guo, J.H.; Chen, Q.; Wang, J.G. Key production processes and influencing factors of nitrous oxide emissions from agricultural soils. Zhiwu Yingyang Yu Feiliao Xuebao 2019, 25, 1781–1798. [Google Scholar]
- Rodrigues, M.Â.; Coelho, V.; Arrobas, M.; Gouveia, E.; Raimundo, S.; Correia, C.M.; Bento, B. The effect of nitrogen fertilization on the incidence of olive fruit fly, olive leaf spot and olive anthracnose in two olive cultivars grown in rainfed conditions. Sci. Hortic. 2019, 256, 108658. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.G.; Ke, X.; Li, J.M.; Wang, Y.Y.; Cao, G.M.; Guo, X.W.; Chen, K.L. Nitrogen deposition increases global grassland N2O emission rates steeply: A meta-analysis. Catena 2021, 199, 105105. [Google Scholar] [CrossRef]
- Aronson, E.L.; Helliker, B.R. Methane flux in non-wetland soils in response to nitrogen addition: A meta-analysis. Ecology 2010, 91, 3242–3251. [Google Scholar] [CrossRef]
- Wu, X.; Liu, H.F.; Zheng, X.H.; Lu, F.; Wang, S.; Li, Z.S.; Liu, G.H.; Fu, B.J. Responses of CH4 and N2O fluxes to land-use conversion and fertilization in a typical red soil region of southern China. Sci. Rep. 2017, 7, 10571. [Google Scholar] [CrossRef] [Green Version]
- Bhanja, S.N.; Wang, J.Y. Influence of environmental factors on autotrophic, soil and ecosystem respirations in Canadian boreal forest. Ecol. Indic. 2021, 125, 107517. [Google Scholar] [CrossRef]
- Zhao, M.; Guo, S.L.; Wang, R. Diverse soil respiration responses to extreme precipitation patterns in arid and semiarid ecosystems. Appl. Soil Ecol. 2021, 163, 103928. [Google Scholar] [CrossRef]
- Qiu, F.; Jiang, Y.J. Effect of temperature on CO2 emission rate of soil with different organic matter content. China Pet. Chem. Stand. Qual. 2011, 31, 68. [Google Scholar]
- Shang, Q.Y.; Yang, X.X.; Gao, C.M.; Wu, P.P.; Liu, J.J.; Xu, Y.C.; Shen, Q.R.; Zou, J.W.; Guo, S.W. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments. Glob. Change Biol. 2011, 17, 2196–2210. [Google Scholar] [CrossRef]
- Ju, X.T.; Lu, X.; Gao, Z.L.; Chen, X.P.; Su, F.; Kogge, M.; Römheld, V.; Christie, P.; Zhang, F.S. Processes and factors controlling N2O production in an intensively managed low carbon calcareous soil under sub-humid monsoon conditions. Environ. Pollut. 2011, 159, 1007–1016. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Wang, K.; Zheng, X. Responses of N2O and CH4 fluxes to fertilizer nitrogen addition rates in an irrigated wheat-maize cropping system in northern China. Biogeosciences 2012, 9, 839–850. [Google Scholar] [CrossRef] [Green Version]
- Cammarano, D.; Basso, B.; Holland, J.; Gianinetti, A.; Baronchelli, M.; Ronga, D. Modeling spatial and temporal optimal N fertilizer rates to reduce nitrate leaching while improving grain yield and quality in malting barley. Comput. Electron. Agric. 2021, 182, 105997. [Google Scholar] [CrossRef]
- Dawar, K.; Khan, A.; Sardar, K.; Fahad, S.; Saud, S.; Datta, R.; Danish, S. Effects of the nitrification inhibitor nitrapyrin and mulch on N2O emission and fertilizer use efficiency using 15N tracing techniques. Sci. Total Environ. 2021, 757, 143739. [Google Scholar] [CrossRef]
- Vilarrasa-Nogué, M.; Teira-Esmatges, M.R.; Pascual, M.; Villar, J.M.; Rufat, J. Effect of N dose, fertilization duration and application of a nitrification inhibitor on GHG emissions from a peach orchard. Sci. Total Environ. 2020, 699, 134042. [Google Scholar] [CrossRef]
- Lan, T.; Han, Y.; Roelcke, M.; Nieder, R.; Cai, Z.C. Effects of the nitrification inhibitor dicyandiamide (DCD) on gross n transformation rates and mitigating N2O emission in paddy soils. Soil Biol. Biochem. 2013, 67, 174–182. [Google Scholar] [CrossRef]
- Tian, D.; Zhang, Y.Y.; Zhou, Y.Z.; Mu, Y.J.; Liu, J.F.; Zhang, C.L.; Liu, P.F. Effect of nitrification inhibitors on mitigating N2O and NO emissions from an agricultural field under drip fertigation in the North China Plain. Sci. Total Environ. 2017, 598, 87–96. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, S.W.; Ma, S.T.; Zheng, X.K.; Wang, Z.Y.; Lu, C.H. Effects of commonly used nitrification inhibitors-dicyandiamide (DCD), 3,4-dimethylpyrazole phosphate (DMPP), and nitrapyrin-on soil nitrogen dynamics and nitrifiers in three typical paddy soils. Geoderma 2020, 380, 114637. [Google Scholar] [CrossRef]
Year | Treatment | Yield (Mg·ha−1) | Net Income (USD·ha−1) | N2O | CH4 Cumulative Emission (kg·ha−1) | CO2 Cumulative Emission (Mg·ha−1) | GWP (kg·ha−1) | GHGI (CO2-eq kg ·Mg−1) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Cumulative Emission (kg·ha−1) | EFN2O (%) | ||||||||||
2019 | Reference treatment | Con | 7.20 ± 0.24 cd | 37,184 ± 1273 c | 6.84 ± 0.01 a | 0.89 ± 0.01 d | −0.71 ± 0.05 a | 1.67 ± 0.05 a | 2822.18 ± 6.48 a | 391.67 ± 4.27 a | |
CK | 6.37 ± 0.23 e | 33,197 ± 1236 d | 0.91 ± 0.06 g | - | −0.78 ± 0.03 b | 1.66 ± 0.05 a | 347.98 ± 25.43 g | 59.79 ± 4.79 g | |||
N fertilizer without nitrapyrin | N400 | 7.44 ± 0.23 bc | 38,614 ± 1237 abc | 5.72 ± 0.17 b | 1.20 ± 0.04 b | −0.69 ± 0.04 a | 1.70 ± 0.04 a | 2354.72 ± 70.25 b | 316.49 ± 11.99 b | ||
N267 | 7.34 ± 0.25 cd | 38,148 ± 1333 bc | 3.72 ± 0.20 c | 1.05 ± 0.07 c | −0.77 ± 0.08 b | 1.66 ± 0.08 a | 1518.52 ± 81.14 c | 206.88 ± 9.44 c | |||
N133 | 7.03 ± 0.32 d | 36,821 ± 1685 c | 2.70 ± 0.04 e | 1.35 ± 0.01 a | −0.70 ± 0.03 ab | 1.68 ± 0.04 a | 1097.36 ± 18.16 e | 156.10 ± 1.37 d | |||
N fertilizer with nitrapyrin | N400I2.00 | 7.87 ± 0.17 a | 40,841 ± 883 a | 3.14 ± 0.09 d | 0.56 ± 0.01 e | −0.75 ± 0.02 ab | 1.65 ± 0.05 a | 1279.59 ± 37.53 d | 162.59 ± 8.60 d | ||
N267I1.33 | 7.70 ± 0.15 ab | 40,059 ± 810 ab | 2.73 ± 0.11 e | 0.46 ± 0.03 f | −0.69 ± 0.05 a | 1.70 ± 0.07 a | 1111.48 ± 46.69 e | 144.35 ± 8.78 e | |||
N133I0.67 | 7.04 ± 0.25 d | 36,629 ± 1333 c | 1.46 ± 0.03 f | 0.41 ± 0.04 f | −0.76 ± 0.01 ab | 1.66 ± 0.04 a | 581.50 ± 10.52 f | 82.60 ± 0.96 f | |||
2020 | Reference treatment | Con | 7.93 ± 0.29 bc | 41,068 ± 1558 bcd | 9.73 ± 0.63 a | 1.31 ± 0.08 e | −1.40 ± 0.04 ab | 2.25 ± 0.03 a | 3997.62 ± 263.60 a | 504.11 ± 11.71 a | |
CK | 6.71 ± 0.34 f | 37,666 ± 853 f | 0.96 ± 0.13 f | - | −1.30 ± 0.13 ab | 2.15 ± 0.03 a | 351.27 ± 54.53 f | 52.35 ± 2.03 h | |||
N fertilizer without nitrapyrin | N400 | 8.01 ± 0.12 bc | 41,658 ± 626 bc | 8.38 ± 0.18 b | 1.86 ± 0.02 c | −1.35 ± 0.10 ab | 2.22 ± 0.06 a | 3437.61 ± 78.44 b | 429.16 ± 4.10 b | ||
N267 | 7.73 ± 0.14 cd | 40,244 ± 732 cde | 6.22 ± 0.35 c | 1.97 ± 0.13 b | −1.39 ± 0.02 ab | 2.12 ± 0.06 a | 2537.43 ± 145.72 c | 328.26 ± 19.87 c | |||
N133 | 7.45 ± 0.09 de | 39,048 ± 498 ef | 4.64 ± 0.11 d | 2.77 ± 0.03 a | −1.42 ± 0.03 ab | 2.12 ± 0.04 a | 1877.44 ± 45.90 d | 252.01 ± 3.07 e | |||
N fertilizer with nitrapyrin | N400I2.00 | 8.46 ± 0.11 a | 43,995 ± 567 a | 5.99 ± 0.19 c | 1.26 ± 0.02 e | −1.38 ± 0.12 ab | 2.18 ± 0.04 a | 2442.51 ± 81.99 c | 288.71 ± 5.34 d | ||
N267I1.33 | 8.08 ± 0.16 bc | 42,067 ± 768 b | 4.36 ± 0.14 d | 1.27 ± 0.01 e | −1.44 ± 0.12 b | 2.20 ± 0.08 a | 1760.92 ± 62.30 d | 217.94 ± 2.97 f | |||
N133I0.67 | 7.58 ± 0.13 d | 39,546 ± 694 de | 3.07 ± 0.09 e | 1.59 ± 0.04 d | −1.28 ± 0.04 a | 2.17 ± 0.08 a | 1231.04 ± 40.68 e | 162.41 ± 2.53 g | |||
p-value | Year | * | * | * | * | * | * | * | * | ||
N rate | * | * | * | * | NS | NS | * | * | |||
nitrapyrin | * | * | * | * | NS | NS | * | * | |||
Year × N rate | NS | NS | NS | NS | NS | NS | NS | NS | |||
Year × nitrapyrin | NS | NS | NS | NS | NS | NS | NS | NS | |||
N rate × nitrapyrin | NS | NS | NS | NS | NS | NS | NS | NS | |||
Year × nitrapyrin × N rate | NS | NS | NS | NS | NS | NS | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Xu, Y.; Sheng, H.; Gao, Y.; Moir, J.; Zhang, R.; Xie, S. Nitrogen Fertilizer and Nitrapyrin for Greenhouse Gas Reduction in Wolfberry Orchards on the Qinghai–Tibetan Plateau. Agriculture 2022, 12, 1063. https://doi.org/10.3390/agriculture12071063
Lu J, Xu Y, Sheng H, Gao Y, Moir J, Zhang R, Xie S. Nitrogen Fertilizer and Nitrapyrin for Greenhouse Gas Reduction in Wolfberry Orchards on the Qinghai–Tibetan Plateau. Agriculture. 2022; 12(7):1063. https://doi.org/10.3390/agriculture12071063
Chicago/Turabian StyleLu, Jiujin, Yunzhang Xu, Haiyan Sheng, Yajun Gao, Jim Moir, Rong Zhang, and Shouzhong Xie. 2022. "Nitrogen Fertilizer and Nitrapyrin for Greenhouse Gas Reduction in Wolfberry Orchards on the Qinghai–Tibetan Plateau" Agriculture 12, no. 7: 1063. https://doi.org/10.3390/agriculture12071063
APA StyleLu, J., Xu, Y., Sheng, H., Gao, Y., Moir, J., Zhang, R., & Xie, S. (2022). Nitrogen Fertilizer and Nitrapyrin for Greenhouse Gas Reduction in Wolfberry Orchards on the Qinghai–Tibetan Plateau. Agriculture, 12(7), 1063. https://doi.org/10.3390/agriculture12071063