Information Perception Method for Fruit Trees Based on 2D LiDAR Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Equipment
2.2. Fruit Tree Information Perception Method
2.3. Fruit Tree Point Cloud Data Collection Method Based on 2D-ICP
2.4. Fruit Tree Position Detection Algorithm
2.4.1. Introduction to LAPO and DBSCAN Algorithms
2.4.2. Fruit Tree Detection Algorithm Based on LAPO-DBSCAN
- A.
- Preparation.
- B. Detailed steps.
2.4.3. Algorithm Improvement
2.4.4. Simulation Data Verification
3. Results
3.1. Experimental Scene
3.2. Algorithm Verification
3.2.1. Experiment on Fruit Tree Information Acquisition
3.2.2. Experiment on Fruit Tree Position Acquisition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dworak, V.; Selbeck, J.; Ehlert, D. Ranging sensors for vehicle-based measurement of crop stand and orchard parameters: A review. Trans. ASABE 2011, 54, 1497–1510. [Google Scholar] [CrossRef]
- Qiu, Q.; Han, J. 2.5-dimensional angle potential field algorithm for the real-time autonomous navigation of outdoor mobile robots. Sci. China Inf. Sci. 2011, 54, 2100. [Google Scholar] [CrossRef] [Green Version]
- Lehtomäki, M.; Jaakkola, A.; Hyyppä, J.; Kukko, A.; Kaartinen, H. Detection of Vertical Pole-Like Objects in a Road Environment Using Vehicle-Based Laser Scanning Data. Remote Sens. 2010, 2, 641–664. [Google Scholar] [CrossRef] [Green Version]
- Bargoti, S.; Underwood, J.P.; Nieto, J.I.; Sukkarieh, S. A Pipeline for Trunk Localisation Using LiDAR in Trellis Structured Orchards. In Field and Service Robotics; Springer International Publishing: Cham, Switzerland, 2015; Volume 105. [Google Scholar]
- Underwood, J.P.; Jagbrant, G.; Nieto, J.I.; Sukkarieh, S. Lidar-Based Tree Recognition and Platform Localization in Orchards. J. Field Robot. 2015, 32, 1056–1074. [Google Scholar] [CrossRef]
- Cabo, C.; Ordóñez, C.; López-Sánchez, C.A.; Armesto, J. Automatic dendrometry: Tree detection, tree height and diameter estimation using terrestrial laser scanning. Int. J. Appl. Earth Obs. 2018, 69, 164. [Google Scholar] [CrossRef]
- De Conto, T.; Olofsson, K.; Görgens, E.B.; Rodriguez, L.C.E.; Almeida, G. Performance of stem denoising and stem modelling algorithms on single tree point clouds from terrestrial laser scanning. Comput. Electron. Agric. 2017, 143, 165–176. [Google Scholar] [CrossRef]
- Gené-Mola, J.; Gregorio, E.; Guevara, J.; Auat, F.; Sanz-Cortiella, R.; Escolà, A.; Llorens, J.; Morros, J.-R.; Ruiz-Hidalgo, J.; Vilaplana, V. Fruit detection in an apple orchard using a mobile terrestrial laser scanner. Biosyst. Eng. 2019, 187, 171–184. [Google Scholar] [CrossRef]
- Antonarakis, A.S.; Richards, K.S.; Brasington, J.; Bithell, M.; Muller, E. Retrieval of vegetative fluid resistance terms for rigid stems using airborne lidar. J. Geogr. Res. Biogeosci. 2015, 113, 96. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Lim, S.; Shen, X.; Yebra, M. A hybrid method for segmenting individual trees from airborne lidar data. Comput. Electron. Agric. 2019, 163, 104871. [Google Scholar] [CrossRef]
- Liu, P.; Chen, J.; Zhang, M. Automatic control system of orchard tractor based on laser navigation. Trans. CSAE 2011, 27, 196–199. [Google Scholar]
- Wang, D.; Liu, J.; Wang, J. Identification and classification of scanned target in forest based on hierarchical cluster. Trans. CSAE 2011, 27, 173–177. [Google Scholar]
- Pierzchała, M.; Giguère, P.; Astrup, R. Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM. Comput. Electron. Agric. 2018, 145, 217–225. [Google Scholar] [CrossRef]
- Zhou, J.; Hu, C. Inter-row Localization Method for Agricultural Robot Working in Close Planting Orchard. Trans. CSAE 2015, 46, 22–28. [Google Scholar]
- Zhang, C.; Yong, L.; Chen, Y.; Zhang, S.; Ge, L.; Wang, S.; Li, W. A Rubber-Tapping Robot Forest Navigation and Information Collection System Based on 2D LiDAR and a Gyroscope. Sensors 2019, 19, 2136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Guo, C.; Gao, Z.; Sugirbay, A.; Chen, J.; Chen, Y. Research on 2D Laser Automatic Navigation Control for Standardized Orchard. Appl. Sci. 2020, 10, 2763. [Google Scholar] [CrossRef]
- Monnier, F.; Vallet, B.; Soheilian, B. Trees detection from laser point clouds acquired in dense urban areas by a mobile mapping system. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 3, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, M.; Khot, L.R.; Sankaran, S.; Jacoby, P.W. Evaluation of mobile 3D light detection and ranging based canopy mapping system for tree fruit crops. Comput. Electron. Agric. 2019, 158, 284–293. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Zhang, B.; Zhou, J.; Tian, G.; Xiong, Y.; Gu, B. Automated robust crop-row detection in maize fields based on position clustering algorithm and shortest path method. Comput. Electron. Agric. 2018, 154, 165–175. [Google Scholar] [CrossRef]
- Underwood, J.P.; Hung, C.; Whelan, B.; Sukkarieh, S. Mapping almond orchard canopy volume, flowers, fruit and yield using lidar and vision sensors. Comput. Electron. Agric. 2016, 130, 83–96. [Google Scholar] [CrossRef]
- Narváez, F.J.Y.; del Pedregal, J.S.; Prieto, P.A.; Torres-Torriti, M.; Cheein, F.A.A. LiDAR and thermal images fusion for ground-based 3D characterisation of fruit trees. Biosyst. Eng. 2016, 151, 479–494. [Google Scholar] [CrossRef]
- Astolfi, P.; Gabrielli, A.; Bascetta, L.; Matteucci, M. Vineyard Autonomous Navigation in the Echord++ GRAPE Experiment. IFAC-PapersOnLine 2018, 51, 704–709. [Google Scholar] [CrossRef]
- Chen, X.; Wang, S.A.; Zhang, B.; Luo, L. Multi-feature fusion tree trunk detection and orchard mobile robot localization using camera/ultrasonic sensors. Comput. Electron. Agric. 2018, 147, 71–108. [Google Scholar] [CrossRef]
- Nematollahi, A.F.; Rahiminejad, A.; Vahidi, B. A Novel Physical Based Meta-Heuristic Optimization Method Known as Lightning Attachment Procedure Optimization. Appl. Soft Comput. 2017, 59, 596–621. [Google Scholar] [CrossRef]
- Zheng, T.; Luo, W. An Enhanced Lightning Attachment Procedure Optimization with Quasi-Opposition-Based Learning and Dimensional Search Strategies. Comput. Intell. Neurosci. 2019, 2019, 1589303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, L.; Yang, S.; Ye, Z.W.; Huang, Q.; Huang, Y.K. An Image Segmentation Method Based on Two-Dimensional Entropy and Chaotic Lighting Attachment Procedure Optimization Algorithm. Int. J. Pattern Recognit. Artif. Intell. 2020, 34, 2054030. [Google Scholar]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining; AAAI Press: Portland, OR, USA, 1996; pp. 226–231. [Google Scholar]
- Guo, C.L.; Liu, G.; Zhang, W.J.; Feng, J. Apple tree canopy leaf spatial location automated extraction based on point cloud data. Comput. Electron. Agric. 2019, 166, 104975. [Google Scholar] [CrossRef]
- Liu, X.; Hu, C.H.; Li, P.P. Automatic segmentation of overlapped poplar seedling leaves combining Mask R-CNN and DBSCAN. Comput. Electron. Agric. 2020, 178, 105753. [Google Scholar] [CrossRef]
- Niu, R.X.; Zhang, X.Y.; Wang, J.; Zhu, H.; Huang, J.; Chen, Z.W. Orchard Trunk Detection Algorithm for Agricultural Robot Based on Laser Radar. Trans. CSAE 2020, 51, 21–27. [Google Scholar]
2D LiDAR Sensor Specifications | Parameter Index |
---|---|
Detection range (m) | 30 |
Ranging accuracy (mm) | ±30 |
Scanning angle (°) | 360 |
Angle resolution (°) | 0.18 |
Scanning frequency (Hz) | 10 |
Algorithm Type | Times | Results (%) | Average Handling Time (s) | |
---|---|---|---|---|
LAPO | 100 | Positive detection rate | 97.00% | 0.41 |
False detection rate | 3.00% | |||
LAPO-DBSCAN | 100 | Positive detection rate | 99.42% | 0.07 |
False detection rate | 0.58% |
Fruit Tree Information | |||||||
---|---|---|---|---|---|---|---|
The outline length of the fruit tree on the left (m) | 3.83 | 5.03 | 4.08 | 2.82 | 2.67 | 2.98 | 3.92 |
The outline length of the fruit tree on the right (m) | 2.83 | 4.40 | 4.24 | 2.98 | 3.61 | 3.30 | 4.46 |
Distance between left and right fruit trees (m) | 4 | ||||||
Distance between adjacent fruit trees on the same side (m) | 3 |
The Coordinates of the Left Fruit Tree (m) | The Coordinates of the Right Fruit Tree (m) |
---|---|
(−2.34, 0.95) | (1.86, 1.61) |
(−2.27, 4.08) | (1.94, 4.51) |
(−2.23, 7.59) | (1.37, 7.18) |
(−2.63, 10.57) | (1.28, 11.16) |
(−2.71, 14.23) | (1.88, 15.32) |
(−2.11, 17.84) | (1.76, 18.05) |
(−2.55, 20.29) | (2.21, 20.68) |
Algorithm Type | Times | Results (%) | Average Handling Time (s) | |
---|---|---|---|---|
LAPO-DBSCAN | 100 | Positive detection rate | 96.69% | 1.14 |
False detection rate | 3.31% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Geng, C.; Zhu, G.; Shen, R.; Gu, H.; Liu, W. Information Perception Method for Fruit Trees Based on 2D LiDAR Sensor. Agriculture 2022, 12, 914. https://doi.org/10.3390/agriculture12070914
Wang Y, Geng C, Zhu G, Shen R, Gu H, Liu W. Information Perception Method for Fruit Trees Based on 2D LiDAR Sensor. Agriculture. 2022; 12(7):914. https://doi.org/10.3390/agriculture12070914
Chicago/Turabian StyleWang, Yong, Changxing Geng, Guofeng Zhu, Renyuan Shen, Haiyang Gu, and Wanfu Liu. 2022. "Information Perception Method for Fruit Trees Based on 2D LiDAR Sensor" Agriculture 12, no. 7: 914. https://doi.org/10.3390/agriculture12070914
APA StyleWang, Y., Geng, C., Zhu, G., Shen, R., Gu, H., & Liu, W. (2022). Information Perception Method for Fruit Trees Based on 2D LiDAR Sensor. Agriculture, 12(7), 914. https://doi.org/10.3390/agriculture12070914