Modeling the Water and Nitrogen Management Practices in Paddy Fields with HYDRUS-1D
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experiment Design
2.2. Measurements and Analysis
2.3. Model Description
2.3.1. Soil Water Flow
2.3.2. Evapotranspiration and Root Water Uptake
2.3.3. N Transport and Transformation
2.4. Initial and Time-Variable Boundary Conditions
2.5. Model Input Parameters
2.6. Model Simulation and Evaluation
- Scenarios Design and Model Runs
- Model Performance Criteria
3. Results and Discussion
3.1. Model Calibration and Validation
3.2. Analysis of Field Water Dynamics and Balance
3.3. Analysis of N Concentration Dynamics and N Balance
3.4. Scenarios of Paddy Controlled Drainage and N Fertilizer Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, L.; Ni, J.; Fleskens, L.; Wang, H.; Xuan, Y. Modelling Fertilizer Use in Relation to Farmers’ Household Characteristics in Three Gorges Reservoir Area, China. Agriculture 2021, 11, 472. [Google Scholar] [CrossRef]
- Fageria, N.K. Yield Physiology of Rice. J. Plant Nutr. 2007, 30, 843–879. [Google Scholar] [CrossRef]
- Diaz, R.J.; Rosenberg, R. Spreading Dead Zones and Consequences for Marine Ecosystems. Science 2008, 321, 926–929. [Google Scholar] [CrossRef] [PubMed]
- Cameira, M.D.R.; Santos Pereira, L. Innovation Issues in Water, Agriculture and Food. Water 2019, 11, 1230. [Google Scholar] [CrossRef] [Green Version]
- Jayaraman, S.; Dang, Y.P.; Naorem, A.; Page, K.L.; Dalal, R.C. Conservation Agriculture as a System to Enhance Ecosystem Services. Agriculture 2021, 11, 718. [Google Scholar] [CrossRef]
- Kim, J.S.; Oh, S.Y.; Oh, K.Y. Nutrient Runoff from a Korean Rice Paddy Watershed during Multiple Storm Events in the Growing Season. J. Hydrol. 2006, 327, 128–139. [Google Scholar] [CrossRef]
- Han, H.; Gao, R.; Cui, Y.; Gu, S. Transport and Transformation of Water and Nitrogen under Different Irrigation Modes and Urea Application Regimes in Paddy Fields. Agric. Water Manag. 2021, 255, 107024. [Google Scholar] [CrossRef]
- Tamini, T.; Mermoud, A. Water and Nitrate Dynamics under Irrigated Onion in a Semi-Arid Area. Irrig. Drain. 2002, 51, 77–86. [Google Scholar] [CrossRef]
- Pandey, A.; Li, F.; Askegaard, M.; Rasmussen, I.A.; Olesen, J.E. Nitrogen Balances in Organic and Conventional Arable Crop Rotations and Their Relations to Nitrogen Yield and Nitrate Leaching Losses. Agric. Ecosys. Environ. 2018, 265, 350–362. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, H.; Pan, J.; Luo, J.; Liu, J.; Gu, B.; Liu, S.; Zhai, L.; Lindsey, S.; Zhang, Y.; et al. Nitrogen Application Rates Need to Be Reduced for Half of the Rice Paddy Fields in China. Agric. Ecosys. Environ. 2018, 265, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Zeng, W.; Lei, G.; Wu, J.; Huang, J. Predicting the Rooting Depth, Dynamic Root Distribution and the Yield of Sunflower under Different Soil Salinity and Nitrogen Applications. Ind. Crops Prod. 2021, 170, 113749. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, H.; Guo, B.; Xu, K.; Dai, Q.; Wei, H.; Gao, H.; Hu, Y.; Cui, P.; Huo, Z. Effects of Nitrogen Level on Yield and Quality of Japonica Soft Super Rice. J. Integr. Agric. 2017, 16, 1018–1027. [Google Scholar] [CrossRef]
- Stone, E.C.; Hornberger, G.M. Impacts of Management Alternatives on Rice Yield and Nitrogen Losses to the Environment: A Case Study in Rural Sri Lanka. Sci. Total Environ. 2016, 542, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yu, Z.; Zhang, W.; Shao, Q.; Zhang, Y.; Luo, Y.; Jiao, X.; Xu, J. Responses of Rice Yield, Irrigation Water Requirement and Water Use Efficiency to Climate Change in China: Historical Simulation and Future Projections. Agric. Water Manag. 2014, 146, 249–261. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, W.; Zhuang, Q.; Luo, Y. Adaptation of Paddy Rice in China to Climate Change: The Effects of Shifting Sowing Date on Yield and Irrigation Water Requirement. Agric. Water Manag. 2020, 228, 105890. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; Peng, S.; Castañeda, A.R.; Visperas, R.M. Yield and Water Use of Irrigated Tropical Aerobic Rice Systems. Agric. Water Manag. 2005, 74, 87–105. [Google Scholar] [CrossRef]
- Li, J.; Qian, X.; Zhang, M.; Fu, K.; Zhu, W.; Zhao, Q.; Shen, G.; Wang, Z.; Chen, X. Methodology for Studying Nitrogen Loss from Paddy Fields under Alternate Wetting and Drying Irrigation in the Lower Reaches of the Yangtze River in China. Agric. Water Manag. 2021, 254, 106963. [Google Scholar] [CrossRef]
- Ouyang, W.; Chen, S.; Wang, X.; Shan, Y. Paddy Rice Ecohydrology Pattern and Influence on Nitrogen Dynamics in Middle-to-High Latitude Area. J. Hydrol. 2015, 529, 1901–1908. [Google Scholar] [CrossRef]
- Nan, Z.; Wang, X.; Du, Y.; Melching, C.S.; Shang, X. Critical Period and Pathways of Water Borne Nitrogen Loss from a Rice Paddy in Northeast China. Sci. Total Environ. 2021, 753, 142116. [Google Scholar] [CrossRef]
- Rudra, R.P.; Mekonnen, B.A.; Shukla, R.; Shrestha, N.K.; Goel, P.K.; Daggupati, P.; Biswas, A. Currents Status, Challenges, and Future Directions in Identifying Critical Source Areas for Non-Point Source Pollution in Canadian Conditions. Agriculture 2020, 10, 468. [Google Scholar] [CrossRef]
- Hua, L.; Zhai, L.; Liu, J.; Guo, S.; Li, W.; Zhang, F.; Fan, X.; Liu, H. Characteristics of Nitrogen Losses from a Paddy Irrigation-Drainage Unit System. Agric. Ecosyst. Environ. 2019, 285, 106629. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Jiao, X.; Li, H.; Hu, T.; Jiang, H.; Mahmoud, A. Effects of Biochar on Water Quality and Rice Productivity under Straw Returning Condition in a Rice-Wheat Rotation Region. Sci. Total Environ. 2021, 819, 152063. [Google Scholar] [CrossRef] [PubMed]
- Kroes, J.; van Dam, J.; Supit, I.; de Abelleyra, D.; Veron, S.; de Wit, A.; Boogaard, H.; Angelini, M.; Damiano, F.; Groenendijk, P.; et al. Agrohydrological Analysis of Groundwater Recharge and Land Use Changes in the Pampas of Argentina. Agric. Water Manag. 2019, 213, 843–857. [Google Scholar] [CrossRef]
- Devkota, K.P.; Hoogenboom, G.; Boote, K.J.; Singh, U.; Lamers, J.P.A.; Devkota, M.; Vlek, P.L.G. Simulating the Impact of Water Saving Irrigation and Conservation Agriculture Practices for Rice—Wheat Systems in the Irrigated Semi-Arid Drylands of Central Asia. Agric. For. Meteorol. 2015, 214–215, 266–280. [Google Scholar] [CrossRef]
- Amarasingha, R.P.R.K.; Suriyagoda, L.D.B.; Marambe, B.; Gaydon, D.S.; Galagedara, L.W.; Punyawardena, R.; Silva, G.L.L.P.; Nidumolu, U.; Howden, M. Simulation of Crop and Water Productivity for Rice (Oryza sativa L.) Using APSIM under Diverse Agro-Climatic Conditions and Water Management Techniques in Sri Lanka. Agric. Water Manag. 2015, 160, 132–143. [Google Scholar] [CrossRef]
- Yuan, S.; Peng, S.; Li, T. Evaluation and Application of the ORYZA Rice Model under Different Crop Managements with High-Yielding Rice Cultivars in Central China. Field Crops Res. 2017, 212, 115–125. [Google Scholar] [CrossRef]
- Shekhar, S.; Mailapalli, D.R.; Raghuwanshi, N.S. Simulating Nitrogen Transport in Paddy Crop Irrigated with Alternate Wetting and Drying Practice. Paddy Water Environ. 2021, 19, 499–513. [Google Scholar] [CrossRef]
- Li, Y.; Šimůnek, J.; Wang, S.; Yuan, J.; Zhang, W. Modeling of Soil Water Regime and Water Balance in a Transplanted Rice Field Experiment with Reduced Irrigation. Water 2017, 9, 248. [Google Scholar] [CrossRef] [Green Version]
- Šimůnek, J.; Genuchten, M.T.; Šejna, M. Development and Applications of the HYDRUS and STANMOD Software Packages and Related Codes. Vadose Zone J. 2008, 7, 587–600. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.-W.; Yoon, K.-S.; Choi, D.-H.; Lim, S.-S.; Choi, W.-J.; Choi, S.-M.; Lim, B.-J. Water Management Practices and SCS Curve Numbers of Paddy Fields Equipped with Surface Drainage Pipes. Agric. Water Manag. 2012, 110, 78–83. [Google Scholar] [CrossRef]
- Howell, T.A. LYSIMETRY. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Oxford, UK, 2005; pp. 379–386. ISBN 978-0-12-348530-4. [Google Scholar]
- Shao, G.; Deng, S.; Liu, N.; Yu, S.; Cheng, M.; She, D. Effects of Controlled Irrigation and Drainage on Growth, Grain Yield and Water Use in Paddy Rice. Eur. J. Agron. 2014, 53, 1–9. [Google Scholar] [CrossRef]
- Tsubo, M.; Fukai, S.; Basnayake, J.; Tuong, T.P.; Bouman, B.; Harnpichitvitaya, D. Estimating Percolation and Lateral Water Flow on Sloping Land in Rainfed Lowland Rice Ecosystem. Plant Prod. Sci. 2005, 8, 354–357. [Google Scholar] [CrossRef]
- Tan, X.; Shao, D.; Gu, W.; Liu, H. Field Analysis of Water and Nitrogen Fate in Lowland Paddy Fields under Different Water Managements Using HYDRUS-1D. Agric. Water Manag. 2015, 150, 67–80. [Google Scholar] [CrossRef]
- Yoshida, S.; Forno, D.A.; Cock, J.; Gomez, K. Laboratory Manual for Physiological Studies of Rice. In Laboratory Manual for Physiological Studies of Rice, 3rd ed.; International Rice Research Institute: Los Baños, Philippines, 1976. [Google Scholar]
- Van Genuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil. Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements. In FAO Irrigation and Drainage Paper; FAO: Rome, Italy, 1998; Volume 56. [Google Scholar]
- Belmans, C.; Wesseling, J.G.; Feddes, R.A. Simulation Model of the Water Balance of a Cropped Soil: SWATRE. J. Hydrol. 1983, 63, 271–286. [Google Scholar] [CrossRef]
- Phogat, V.; Yadav, A.K.; Malik, R.S.; Kumar, S.; Cox, J. Simulation of Salt and Water Movement and Estimation of Water Productivity of Rice Crop Irrigated with Saline Water. Paddy Water Environ. 2010, 8, 333–346. [Google Scholar] [CrossRef]
- Feddes, R.A.; Kowalik, P.J.; Zaradny, H. Simulation of Field Water Use and Crop Yield. In Simulation of Plant Growth and Crop Production; Pudoc: Wageningen, The Netherlands, 1978. [Google Scholar]
- Singh, R.; van Dam, J.C.; Feddes, R.A. Water Productivity Analysis of Irrigated Crops in Sirsa District, India. Agric. Water Manag. 2006, 82, 253–278. [Google Scholar] [CrossRef]
- Phogat, V.; Skewes, M.A.; Cox, J.W.; Alam, J.; Grigson, G.; Šimůnek, J. Evaluation of Water Movement and Nitrate Dynamics in a Lysimeter Planted with an Orange Tree. Agric. Water Manag. 2013, 127, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.-H.; Yin, X.-M.; Zhang, Y.-L.; Shen, Q.-R. Mechanisms of Enhanced Rice Growth and Nitrogen Uptake by Nitrate. Pedosphere 2007, 17, 697–705. [Google Scholar] [CrossRef]
- Hanson, B.R.; Šimůnek, J.; Hopmans, J.W. Evaluation of Urea–Ammonium–Nitrate Fertigation with Drip Irrigation Using Numerical Modeling. Agric. Water Manag. 2006, 86, 102–113. [Google Scholar] [CrossRef]
- Mo’allim, A.A.; Kamal, M.R.; Muhammed, H.H.; Mohd Soom, M.A.; Mohamed Zawawi, M.A.B.; Wayayok, A.; Che Man, H.B. Assessment of Nutrient Leaching in Flooded Paddy Rice Field Experiment Using Hydrus-1D. Water 2018, 10, 785. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Tong, J.; Hu, B.X.; Li, J.; Wei, W. Simulating Water and Nitrogen Loss from an Irrigated Paddy Field under Continuously Flooded Condition with Hydrus-1D Model. Environ. Sci. Pollut. Res. 2017, 24, 15089–15106. [Google Scholar] [CrossRef]
- Li, Y.; Šimůnek, J.; Zhang, Z.; Jing, L.; Ni, L. Evaluation of Nitrogen Balance in a Direct-Seeded-Rice Field Experiment Using Hydrus-1D. Agric. Water Manag. 2015, 148, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Jyotiprava Dash, C.; Sarangi, A.; Singh, D.K.; Singh, A.K.; Adhikary, P.P. Prediction of Root Zone Water and Nitrogen Balance in an Irrigated Rice Field Using a Simulation Model. Paddy Water Environ. 2015, 13, 281–290. [Google Scholar] [CrossRef]
- Chowdary, V.M.; Rao, N.H.; Sarma, P.B.S. A Coupled Soil Water and Nitrogen Balance Model for Flooded Rice Fields in India. Agric. Ecosyst. Environ. 2004, 103, 425–441. [Google Scholar] [CrossRef]
- Akay, O.; Fox, G.A.; Šimůnek, J. Numerical Simulation of Flow Dynamics during Macropore–Subsurface Drain Interactions Using HYDRUS. Vadose Zone J. 2008, 7, 909–918. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, B.; Lin, L.; Zepp, H. Agroforestry System Reduces Subsurface Lateral Flow and Nitrate Loss in Jiangxi Province, China. Agric. Ecosyst. Environ. 2011, 140, 441–453. [Google Scholar] [CrossRef]
- Meng, Y.; Yu, S.; Yu, Y.; Jiang, L. Flooding Depth and Duration Concomitantly Influence the Growth Traits and Yield of Rice. Irrig. Drain. 2022, 71, 94–107. [Google Scholar] [CrossRef]
- Li, Y.; Šimůnek, J.; Jing, L.; Zhang, Z.; Ni, L. Evaluation of Water Movement and Water Losses in a Direct-Seeded-Rice Field Experiment Using Hydrus-1D. Agric. Water Manag. 2014, 142, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Sodano, M.; Said-Pullicino, D.; Fiori, A.F.; Catoni, M.; Martin, M.; Celi, L. Sorption of Paddy Soil-Derived Dissolved Organic Matter on Hydrous Iron Oxide–Vermiculite Mineral Phases. Geoderma 2016, 261, 169–177. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Zhang, Y.; Li, T.; Ge, H.; Xia, S.; Gu, J.; Zhang, H.; Lü, B.; Wu, X.; et al. Rice Root Morphological and Physiological Traits Interaction with Rhizosphere Soil and Its Effect on Methane Emissions in Paddy Fields. Soil Biol. Biochem. 2019, 129, 191–200. [Google Scholar] [CrossRef]
- Wang, C.; Sun, H.; Zhang, J.; Zhang, X.; Lu, L.; Shi, L.; Zhou, S. Effects of Different Fertilization Methods on Ammonia Volatilization from Rice Paddies. J. Clean. Prod. 2021, 295, 126299. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, D.; Yu, Y. Investigation into the Effects of Straw Retention and Nitrogen Reduction on CH4 and N2O Emissions from Paddy Fields in the Lower Yangtze River Region, China. Sustainability 2020, 12, 1683. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.W.; Kim, P.J.; Khan, M.I.; Lee, S.-J. Effect of Rice Planting on Nitrous Oxide (N2O) Emission under Different Levels of Nitrogen Fertilization. Agronomy 2021, 11, 217. [Google Scholar] [CrossRef]
- Tan, X.; Shao, D.; Gu, W. Effects of Temperature and Soil Moisture on Gross Nitrification and Denitrification Rates of a Chinese Lowland Paddy Field Soil. Paddy Water Environ. 2018, 16, 687–698. [Google Scholar] [CrossRef]
- Chen, S.-K.; Liu, C.W. Analysis of Water Movement in Paddy Rice Fields (I) Experimental Studies. J. Hydrol. 2002, 260, 206–215. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, Y.; Min, J.; Wang, S.; Shi, W.; Xing, G. Nitrogen Runoff Dominates Water Nitrogen Pollution from Rice-Wheat Rotation in the Taihu Lake Region of China. Agric. Ecosyst. Environ. 2012, 156, 1–11. [Google Scholar] [CrossRef]
- Surendran, U.; Raja, P.; Jayakumar, M.; Subramoniam, S.R. Use of Efficient Water Saving Techniques for Production of Rice in India under Climate Change Scenario: A Critical Review. J. Clean. Prod. 2021, 309, 127272. [Google Scholar] [CrossRef]
Soil Layer (cm) | Soil Particle Fraction (%) | Bulk Density (g cm−3) | Organic Matter (%) | pH (H2O) | ||
---|---|---|---|---|---|---|
Sand | Silt | Clay | ||||
0–20 | 40.21 (9.06) | 38.22 (6.43) | 21.57 (3.26) | 1.36 (0.23) | 1.24 (0.06) | 6.94 (0.06) |
20–40 | 39.12 (6.31) | 39.16 (4.71) | 21.72 (2.63) | 1.40 (0.19) | 1.35 (0.06) | 6.97 (0.05) |
40–60 | 38.87 (5.46) | 39.86 (4.06) | 21.27 (2.83) | 1.43 (0.20) | 1.20 (0.08) | 6.85 (0.07) |
60–160 | 40.25 (5.02) | 38.12 (3.72) | 21.63 (2.41) | 1.48 (0.21) | - | 6.80 (0.04) |
Irrigation Criteria (cm) | Returning Green | Tillering | Jointing-Booting | Heading-Flowering | Milky Ripening | Yellow Ripening |
---|---|---|---|---|---|---|
Lower threshold | 1.0 | −20.0 | −30.0 | −20.0 | −30.0 | Naturally drying |
Upper threshold | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
Depth (cm) | θr (cm3 cm−3) | θs (cm3 cm−3) | α (cm−1) | n | Ks (cm day−1) |
---|---|---|---|---|---|
0–20 | 0.066 | 0.418 | 0.0095 | 1.526 | 15.19 |
20–40 | 0.065 | 0.408 | 0.0095 | 1.521 | 7.48 |
40–60 | 0.063 | 0.399 | 0.0096 | 1.512 | 11.27 |
60–160 | 0.062 | 0.391 | 0.0108 | 1.484 | 9.08 |
Depth (cm) | DL (cm) | Kd (cm3 g−1) | Kv (day−1) | Kn (day−1) | Kdn (day−1) | Km (day−1) | Kh (day−1) |
---|---|---|---|---|---|---|---|
0–20 | 7.5 | 3.5 | 0.03 | 0.08 | 0.25 | 0.0045 | 0.74 |
20–40 | 5.5 | 3.5 | 0.03 | 0.02 | 0.05 | 0.0045 | 0.74 |
40–60 | 6.2 | 3.5 | 0.01 | 0.03 | 0.01 | 0 | 0 |
60–160 | 16 | 3.5 | 0.01 | 0.02 | 0.01 | 0 | 0 |
Period | Type (Units for RMSE) | Depth (cm) | RMSE | NSE | R2 |
---|---|---|---|---|---|
Calibration 2020 | hp (cm) | 0 | 0.382 | 0.980 | 0.981 |
NH4+-N concentration (mg L−1) | 0 | 4.608 | 0.451 | 0.669 | |
20 | 0.729 | 0.609 | 0.712 | ||
40 | 0.399 | 0.729 | 0.845 | ||
60 | 0.002 | 0.605 | 0.608 | ||
NO3−-N concentration (mg L−1) | 0 | 2.310 | 0.756 | 0.895 | |
20 | 1.139 | 0.911 | 0.921 | ||
40 | 0.461 | 0.880 | 0.881 | ||
60 | 0.230 | 0.947 | 0.947 | ||
Validation 2021 | hp (cm) | 0 | 0.373 | 0.981 | 0.983 |
NH4+-N concentration (mg L−1) | 0 | 5.570 | 0.393 | 0.537 | |
20 | 0.453 | 0.576 | 0.704 | ||
40 | 0.436 | 0.773 | 0.777 | ||
60 | 0.011 | 0.440 | 0.517 | ||
NO3−-N concentration (mg L−1) | 0 | 2.568 | 0.767 | 0.881 | |
20 | 1.407 | 0.892 | 0.893 | ||
40 | 0.190 | 0.960 | 0.962 | ||
60 | 0.116 | 0.952 | 0.957 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; Yu, S.; Ma, T.; Ding, J.; He, P.; Li, Y.; Dai, Y.; Zeng, G. Modeling the Water and Nitrogen Management Practices in Paddy Fields with HYDRUS-1D. Agriculture 2022, 12, 924. https://doi.org/10.3390/agriculture12070924
Chen K, Yu S, Ma T, Ding J, He P, Li Y, Dai Y, Zeng G. Modeling the Water and Nitrogen Management Practices in Paddy Fields with HYDRUS-1D. Agriculture. 2022; 12(7):924. https://doi.org/10.3390/agriculture12070924
Chicago/Turabian StyleChen, Kaiwen, Shuang’en Yu, Tao Ma, Jihui Ding, Pingru He, Yao Li, Yan Dai, and Guangquan Zeng. 2022. "Modeling the Water and Nitrogen Management Practices in Paddy Fields with HYDRUS-1D" Agriculture 12, no. 7: 924. https://doi.org/10.3390/agriculture12070924
APA StyleChen, K., Yu, S., Ma, T., Ding, J., He, P., Li, Y., Dai, Y., & Zeng, G. (2022). Modeling the Water and Nitrogen Management Practices in Paddy Fields with HYDRUS-1D. Agriculture, 12(7), 924. https://doi.org/10.3390/agriculture12070924