Integrating Traditional Wheat-Based Foods with High Health Value Flours: Castanea spp. Agro-Biodiversity in Bakery Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Preparation of Chestnut Flours
2.2. Extraction Protocols
2.3. Spectrophotometric Analysis
2.4. Chromatographic Analysis
2.5. Cookie Preparation
2.6. Hedonistic Analysis
2.7. Data Analysis
3. Results and Discussion
3.1. Total Polyphenolic Content and Antioxidant Capacity
3.2. Phytochemical Composition and Nutritional Properties
3.3. Multivariate Analysis
3.4. Hedonistic Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Vasconcelos, M.D.C.B.M.; Bennett, R.N.; Rosa, E.A.S.; Cardoso, J.V.F. Primary and secondary metabolite composition of kernels from three cultivars of portuguese chestnut (Castanea sativa Mill.) at different stages of industrial transformation. J. Agric. Food Chem. 2007, 55, 3508–3516. [Google Scholar] [CrossRef] [PubMed]
- Beccaro, G.; Bounous, G.; De Biaggi, M.; Donno, D.; Marinoni, D.T.; Zou, F.; Mellano, M.G. Botany, anatomy, and nut composition. In The Chestnut Handbook; CRC Press: Boca Raton, FL, USA, 2019; pp. 5–34. [Google Scholar]
- Beccaro, G.L.; Donno, D.; Lione, G.G.; De Biaggi, M.; Gamba, G.; Rapalino, S.; Riondato, I.; Gonthier, P.; Mellano, M.G. Castanea spp. Agrobiodiversity conservation: Genotype influence on chemical and sensorial traits of cultivars grown on the same clonal rootstock. Foods 2020, 9, 1062. [Google Scholar] [CrossRef] [PubMed]
- De Vasconcelos, M.C.; Bennett, R.N.; Rosa, E.A.; Ferreira-Cardoso, J.V. Composition of european chestnut (castanea sativa mill.) and association with health effects: Fresh and processed products. J. Sci. Food Agric. 2010, 90, 1578–1589. [Google Scholar] [CrossRef]
- Zhu, F. Properties and food uses of chestnut flour and starch. Food Bioproc. Technol. 2017, 10, 1173–1191. [Google Scholar] [CrossRef]
- Šoronja-Simović, D.; Pajin, B.; Šubarić, D.; Dokić, L.; Šereš, Z.; Nikolić, I.J. Quality, sensory and nutritional characteristics of cookies fortified with chestnut flour. J. Food Proc. Preserv. 2017, 41, e12887. [Google Scholar] [CrossRef]
- Cirlini, M.; Dall’Asta, C.; Silvanini, A.; Beghe, D.; Fabbri, A.; Galaverna, G.; Ganino, T. Volatile fingerprinting of chestnut flours from traditional emilia romagna (Italy) cultivars. Food Chem. 2012, 134, 662–668. [Google Scholar] [CrossRef]
- Mete, M.; Dülger Altıner, D. Chestnut flour and applications of utilization. Int. J. Food Eng. Res. 2017, 3, 9–16. [Google Scholar]
- Durazzo, A.; Turfani, V.; Azzini, E.; Maiani, G.; Carcea, M. Phenols, lignans and antioxidant properties of legume and sweet chestnut flours. Food Chem. 2013, 140, 666–671. [Google Scholar] [CrossRef]
- Mir, S.A.; Bosco, S.J.D.; Shah, M.A. Technological and nutritional properties of gluten-free snacks based on brown rice and chestnut flour. J. Saudi Soc. Agric. Sci. 2019, 18, 89–94. [Google Scholar] [CrossRef]
- Neri, L.; Dimitri, G.; Sacchetti, G. Chemical composition and antioxidant activity of cured chestnuts from three sweet chestnut (Castanea sativa Mill.) ecotypes from italy. J. Food Compos. Anal. 2010, 23, 23–29. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar]
- Benzie, I.F.; Strain, J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [PubMed]
- Donno, D.; Mellano, M.G.; Prgomet, Z.; Beccaro, G.L. Advances in ribes x nidigrolaria rud. Bauer and a. Bauer fruits as potential source of natural molecules: A preliminary study on physico-chemical traits of an underutilized berry. Sci. Hortic. 2018, 237, 20–27. [Google Scholar] [CrossRef]
- Soifoini, T.; Donno, D.; Jeannoda, V.; Rakotoniaina, E.; Hamidou, S.; Achmet, S.M.; Solo, N.R.; Afraitane, K.; Giacoma, C.; Beccaro, G.L. Bioactive compounds, nutritional traits, and antioxidant properties of artocarpus altilis (parkinson) fruits: Exploiting a potential functional food for food security on the comoros islands. J. Food Qual. 2018; in press. [Google Scholar] [CrossRef] [Green Version]
- Donno, D.; Hassani, S.; Sofoini, T.; Mellano, M.G.; Riondato, I.; Gamba, G.; Beccaro, G.L. Traditional foods and sustainable rural development: Exploiting the case of the comoros tea as a potential source of bioactive compounds. Sustainability 2021, 13, 5815. [Google Scholar] [CrossRef]
- Lim, J.J. Hedonic scaling: A review of methods and theory. Food Qual. Pref. 2011, 22, 733–747. [Google Scholar] [CrossRef]
- Crawley, M. The R Book, 2nd ed.; John Wiley & Sons: Chichester, UK, 2013. [Google Scholar]
- Field, A. Discovering Statistics Using IBM Spss Statistics; Sage: Newbury Park, CA, USA, 2013. [Google Scholar]
- Dinç, İ.; Sigdel, M.; Dinç, S.; Sigdel, M.S.; Pusey, M.L.; Aygün, R.S. Evaluation of normalization and pca on the performance of classifiers for protein crystallization images. In Proceedings of the IEEE SOUTHEASTCON 2014, Lexington, KY, USA, 13–16 March 2014; pp. 1–6. [Google Scholar]
- Donno, D.; Mellano, M.G.; Gamba, G.; Riondato, I.; Beccaro, G.L. Analytical strategies for fingerprinting of antioxidants, nutritional substances, and bioactive compounds in foodstuffs based on high performance liquid chromatography–mass spectrometry: An overview. Foods 2020, 9, 1734. [Google Scholar] [CrossRef]
- Inkaya, A.N.; Gocmen, D.; Ozturk, S.; Koksel, H. Investigation on the functional properties of chestnut flours and their potential utilization in low-fat cookies. Food Sci. Biotechnol. 2009, 18, 1404–1410. [Google Scholar]
- De Biaggi, M.; Rapalino, S.; Donno, D.; Mellano, M.G.; Beccaro, G.L. Genotype influence on chemical composition and sensory traits of chestnut in 18 cultivars grown on the same rootstock and at the same agronomic conditions. In Proceedings of the VI International Chestnut Symposium 1220, Samsun, Turkey, 9–13 October 2018; pp. 215–220. [Google Scholar]
- Mellano, M.G.; Donno, D.; Sabrina, R.; Beccaro, G.L. Fingerprint chimico e sensoriale dei frutti di 18 cultivar di castanea sativa ed ibride euro-giapponesi innestate su portinnesto clonale. In Proceedings of the VII CONVEGNO NAZIONALE CASTAGNO, Napoli, Italy, 14–16 September 2020; pp. 200–204. [Google Scholar]
- Torra, M.; Belorio, M.; Ayuso, M.; Carocho, M.; Ferreira, I.C.; Barros, L.; Gómez, M.J.F. Chickpea and chestnut flours as non-gluten alternatives in cookies. Foods 2021, 10, 911. [Google Scholar] [CrossRef]
- Fabro, M.; Raso, R.; Donno, D.; Riondato, I.; Beccaro, G.L. Il germoplasma di c. Sativa in friuli venezia giulia: Nuovi ritrovamenti e strategie regionali di valorizzazione della filiera. In Proceedings of the VII CONVEGNO NAZIONALE CASTAGNO, Napoli, Italy, 14–16 September 2020; pp. 77–82. [Google Scholar]
- Donno, D.; Mellano, M.G.; De Biaggi, M.; Riondato, I.; Rakotoniaina, E.N.; Beccaro, G.L. New findings in prunus padus l. Fruits as a source of natural compounds: Characterization of metabolite profiles and preliminary evaluation of antioxidant activity. Molecules 2018, 23, 725. [Google Scholar] [CrossRef] [Green Version]
- Gould, M.N. Cancer chemoprevention and therapy by monoterpenes. Environ. Health Perspect. 1997, 105, 977. [Google Scholar] [PubMed]
- De Cassia da Silveira e Sa, R.; Andrade, L.N.; de Sousa, D.P. A review on anti-inflammatory activity of monoterpenes. Molecules 2013, 18, 1227–1254. [Google Scholar] [CrossRef]
- Link, A.; Balaguer, F.; Goel, A. Cancer chemoprevention by dietary polyphenols: Promising role for epigenetics. Biochem. Pharmacol. 2010, 80, 1771–1792. [Google Scholar] [CrossRef] [Green Version]
- Chiva-Blanch, G.; Visioli, F. Polyphenols and health: Moving beyond antioxidants. J. Berry Res. 2012, 2, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Donno, D.; Mellano, M.G.; Riondato, I.; De Biaggi, M.; Andriamaniraka, H.; Gamba, G.; Beccaro, G.L. Traditional and unconventional dried fruit snacks as a source of health-promoting compounds. Antioxidants 2019, 8, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landete, J.M. Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, functions and health. Food Res. Int. 2011, 44, 1150–1160. [Google Scholar] [CrossRef]
- Ammar, I.; Ennouri, M.; Bouaziz, M.; Ben Amira, A.; Attia, H. Phenolic profiles, phytchemicals and mineral content of decoction and infusion of opuntia ficus-indica flowers. Plant Food Human Nutr. 2015, 70, 388–394. [Google Scholar] [CrossRef]
- Seeram, N.P. Berry fruits: Compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J. Agric. Food Chem. 2008, 56, 627–629. [Google Scholar] [CrossRef]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly) phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [Green Version]
- De Biaggi, M.; Donno, D.; Mellano, M.G.; Riondato, I.; Rakotoniaina, E.N.; Beccaro, G.L. Cornus mas (L.) fruit as a potential source of natural health-promoting compounds: Physico-chemical characterisation of bioactive components. Plant Food Human Nutr. 2018, 73, 89–94. [Google Scholar] [CrossRef]
- Donno, D.; Mellano, M.G.; Gamba, G.; Riondato, I.; Beccaro, G.L. Mulberry: An ornamental tree that gives bioactive compounds for human health. In Proceedings of the International Society for Horticultural Science (ISHS), Leuven, Belgium, 3–4 March 2021; pp. 205–214. [Google Scholar]
- Ertürk, Ü.; Mert, C.; Soylu, A. Chemical composition of fruits of some important chestnut cultivars. Braz. Arch. Biol. Technol. 2006, 49, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, B.; Rangel, J.; Valentão, P.C.; Andrade, P.B.; Pereira, J.A.; Bölke, H.; Seabra, R.M.J. Organic acids in two portuguese chestnut (Castanea sativa Miller) varieties. Food Chem. 2007, 100, 504–508. [Google Scholar] [CrossRef]
- Delgado, T.; Pereira, J.A.; Ramalhosa, E.; Casal, S. Comparison of different drying methods on the chemical and sensory properties of chestnut (Castanea sativa M.) slices. Eur. Food Res. Technol. 2017, 243, 1957–1971. [Google Scholar] [CrossRef]
- de Vasconcelos, M.; Nunes, F.; Viguera, C.G.; Bennett, R.N.; Rosa, E.A.S.; Ferreira-Cardoso, J.V. Industrial processing effects on chestnut fruits (Castanea sativa Mill.) 3. Minerals, free sugars, carotenoids and antioxidant vitamins. Int. J. Food Sci. Technol. 2010, 45, 496–505. [Google Scholar] [CrossRef]
- Künsch, U.; Schärer, H.; Patrian, B.; Höhn, E.; Conedera, M.; Sassella, A.; Jermini, M.; Jelmini, G. Effects of roasting on chemical composition and quality of different chestnut (Castanea sativa Mill) varieties. J. Sci. Food Agric. 2001, 81, 1106–1112. [Google Scholar] [CrossRef]
- Lamothe, L.M.; Lê, K.-A.; Samra, R.A.; Roger, O.; Green, H.; Macé, K. The scientific basis for healthful carbohydrate profile. Crit. Rev. Food Sci. Nutr. 2019, 59, 1058–1070. [Google Scholar] [CrossRef] [Green Version]
- Nicoletti, M. Nutraceuticals and botanicals: Overview and perspectives. Int. J. Food Sci. Nutr. 2012, 63 (Suppl. 1), 2–6. [Google Scholar] [CrossRef]
- Fioccardi, A.; Donno, D.; Razafindrakoto, Z.R.; Gamba, G.; Beccaro, G.L. First phytochemical study of six tree and shrub species with high health-promoting potential from madagascar: Innovative uses for food and medicinal applications. Sci. Hortic. 2022, 299, 111010. [Google Scholar] [CrossRef]
- Alary, R.; Buissonade, C.; Joudrier, P.; Gautier, M.-F.J. Detection and discrimination of cereal and leguminous species in chestnut flour by duplex pcr. Eur. Food Res. Technol. 2007, 225, 427–434. [Google Scholar] [CrossRef]
- Alary, R.; Serin, A.; Duviau, M.P.; Jourdrier, P.; Gautier, M.F. Quantification of common wheat adulteration of durum wheat pasta using real-time quantitative polymerase chain reaction (pcr). Cereal Chem. 2002, 79, 553–558. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Jeleń, H.H. The potential of different techniques for volatile compounds analysis coupled with pca for the detection of the adulteration of olive oil with hazelnut oil. Food Chem. 2008, 110, 751–761. [Google Scholar] [CrossRef]
- Esteki, M.; Farajmand, B.; Kolahderazi, Y.; Simal-Gandara, J. Chromatographic fingerprinting with multivariate data analysis for detection and quantification of apricot kernel in almond powder. Food Anal. Method 2017, 10, 3312–3320. [Google Scholar] [CrossRef]
- Lione, G.; Giordano, L.; Sillo, F.; Gonthier, P. Testing and modelling the effects of climate on the incidence of the emergent nut rot agent of chestnut gnomoniopsis castanea. Plant Pathol. 2015, 64, 852–863. [Google Scholar] [CrossRef]
- Donno, D.; Beccaro, G.L.; Carlen, C.; Ancay, A.; Cerutti, A.K.; Mellano, M.G.; Bounous, G. Analytical fingerprint and chemometrics as phytochemical composition control tools in food supplement analysis: Characterization of raspberry bud-preparations of different cultivars. J. Sci. Food Agric. 2016, 96, 3157–3168. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Koutsoumpou, M.; Liakou, V.; Kontakos, S.; Kontominas, M.G. Characterization and geographical discrimination of saffron from greece, spain, iran, and morocco based on volatile and bioactivity markers, using chemometrics. Eur. Food Res. Technol. 2017, 243, 1577–1591. [Google Scholar] [CrossRef]
- Schutz, H.G.; Cardello, A.V. A labeled affective magnitude (lam) scale for assessing food liking/disliking. J. Sens. Stud. 2001, 16, 117–159. [Google Scholar] [CrossRef]
- Villanueva, N.D.; Da Silva, M.A. Comparative performance of the nine-point hedonic, hybrid and self-adjusting scales in the generation of internal preference maps. Food Qual. Pref. 2009, 20, 1–12. [Google Scholar] [CrossRef]
- Lawless, H.T.; Popper, R.; Kroll, B.J. A comparison of the labeled magnitude (lam) scale, an 11-point category scale and the traditional 9-point hedonic scale. Food Qual. Pref. 2010, 21, 4–12. [Google Scholar] [CrossRef]
- Dundar, A.; Gocmen, D.; Ozturk, S.; Koksel, H. Effects of chestnut flour on cookie quality. In Proceedings of the 6th International Congress Flour-Bread’11 and 8th Croatian Congress of Cereal Technologists, Opatija, Croatia, 12–14 October 2011; Faculty of Food Technology Osijek, University of Josip Juraj Strossmayer: Osijek, Croatia, 2012; pp. 118–125. [Google Scholar]
Flour ID Code | Species | Cultivar | Region | Province |
---|---|---|---|---|
SATI | C. sativa | Brunette | Piemonte | Cuneo |
C. sativa | Gentile | |||
C. sativa | Garrone Rosso | |||
C. sativa | Contessa | |||
C. sativa | Gabiana | |||
FRIU | C. sativa | Ciuffa | Friuli Venezia Giulia | Pordenone/ Udine |
C. sativa | Obiacco | |||
C. sativa | Muron | |||
BOUC | C. sativa × C. crenata | Bouche de Bétizac | Piemonte | Cuneo |
CANA | C. sativa | Canalutta | Friuli Venezia Giulia | Pordenone/ Udine |
ANTR | C. sativa | Marrone Antrodocano | Lazio | Rieti |
LUNI | C. sativa | Bresciana | Toscana | Massa-Carrara |
C. sativa | Carpinese | |||
C. sativa | Rossola |
Cinnamic Acids | Flavonols | Benzoic Acids | Catechins | Tannins | Monoterpenes | Vitamin C | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CA | FL | BA | CT | TA | MT | VC | |||||||||||||||
(mg/100 g DW) | (mg/100 g DW) | (mg/100 g DW) | (mg/100 g DW) | (mg/100 g DW) | (mg/100 g DW) | (mg/100 g DW) | |||||||||||||||
Sample | Mean Value | SD | Tukey Test | Mean Value | SD | Tukey Test | Mean Value | SD | Tukey Test | Mean Value | SD | Tukey Test | Mean Value | SD | Tukey Test | Mean Value | SD | Tukey Test | Mean Value | SD | Tukey Test |
ANTR | 21.09 | 0.98 | a | 14.36 | 1.82 | d | 2.23 | 0.13 | a | 7.74 | 0.27 | a | 22.32 | 2.81 | a | 391.7 | 28.6 | a | 15.6 | 2.23 | a |
BOUC | 21.44 | 1.21 | a | 2.55 | 0.15 | a | 39.29 | 5.84 | bc | 27.57 | 2.5 | b | 36.34 | 4.88 | c | 461.57 | 8.77 | b | 15.75 | 0.65 | a |
CANA | 24.82 | 0.95 | a | 4.57 | 0.17 | ab | 35.85 | 2.11 | b | 26.68 | 4 | b | 29.63 | 3.14 | bc | 389.92 | 7.66 | a | 12.27 | 2.23 | a |
FRIU | 25.44 | 3.9 | a | 6.95 | 0.16 | c | 47.58 | 3.4 | c | 22.49 | 3.41 | b | 29.55 | 1.9 | bc | 415.7 | 25.3 | ab | 15.11 | 2.38 | a |
LUNI | 21.44 | 2.98 | a | 5.67 | 0.75 | bc | 47.14 | 3.94 | c | 29.49 | 2.44 | b | 30.94 | 3.98 | bc | 370.33 | 3.84 | a | 13.66 | 2.49 | a |
SATI | 21.37 | 1.05 | a | 4.91 | 0.19 | bc | 43.25 | 1.64 | bc | 26.94 | 1.83 | b | 26.25 | 2.61 | a | 375.8 | 22.8 | a | 14.77 | 1.82 | a |
Organic Acids | Sugars | |||||
---|---|---|---|---|---|---|
OA | SU | |||||
(mg/100 g DW) | (g/100g DW) | |||||
Sample | Mean Value | SD | Tukey Test | Mean Value | SD | Tukey Test |
ANTR | 481.80 | 6.86 | a | 5.34 | 0.63 | a |
BOUC | 1229.20 | 4.77 | b | 6.12 | 0.76 | a |
CANA | 1439.50 | 16.20 | c | 12.08 | 0.61 | b |
FRIU | 1486.90 | 34.60 | c | 12.07 | 2.34 | b |
LUNI | 1239.90 | 10.90 | b | 7.27 | 1.28 | a |
SATI | 1251.80 | 31.40 | b | 7.03 | 0.20 | a |
Judgement | |||
---|---|---|---|
(1–9 scale) | |||
Sample | Mean Value | SD | Tukey Test |
ANTR | 5.93 | 0.79 | b |
BOUC | 6.88 | 0.18 | c |
CANA | 7.09 | 0.46 | c |
FRIU | 4.38 | 0.19 | a |
LUNI | 6.74 | 0.52 | bc |
SATI | 5.55 | 0.59 | b |
Sample | ||||||||
---|---|---|---|---|---|---|---|---|
Judgment Value | Hedonistic Attribute | Hedonistic Category | ANTR | BOUC | CANA | FRIU | LUNI | SATI |
1 | dislike extremely | dislike | 15.79% | 9.38% | 18.18% | 48.28% | 11.11% | 18.18% |
2 | dislike very much | |||||||
3 | dislike moderately | |||||||
4 | dislike slightly | neither dislike nor like | 60.53% | 40.63% | 18.18% | 41.38% | 41.67% | 60.61% |
5 | indifferent | |||||||
6 | like slightly | |||||||
7 | like moderately | like | 23.68% | 65.63% | 63.64% | 10.34% | 47.22% | 30.30% |
8 | like very much | |||||||
9 | like extremely |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donno, D.; Fabro, M.; Mellano, M.G.; Gamba, G.; Fioccardi, A.; Beccaro, G.L. Integrating Traditional Wheat-Based Foods with High Health Value Flours: Castanea spp. Agro-Biodiversity in Bakery Products. Agriculture 2022, 12, 946. https://doi.org/10.3390/agriculture12070946
Donno D, Fabro M, Mellano MG, Gamba G, Fioccardi A, Beccaro GL. Integrating Traditional Wheat-Based Foods with High Health Value Flours: Castanea spp. Agro-Biodiversity in Bakery Products. Agriculture. 2022; 12(7):946. https://doi.org/10.3390/agriculture12070946
Chicago/Turabian StyleDonno, Dario, Michele Fabro, Maria Gabriella Mellano, Giovanni Gamba, Annachiara Fioccardi, and Gabriele Loris Beccaro. 2022. "Integrating Traditional Wheat-Based Foods with High Health Value Flours: Castanea spp. Agro-Biodiversity in Bakery Products" Agriculture 12, no. 7: 946. https://doi.org/10.3390/agriculture12070946
APA StyleDonno, D., Fabro, M., Mellano, M. G., Gamba, G., Fioccardi, A., & Beccaro, G. L. (2022). Integrating Traditional Wheat-Based Foods with High Health Value Flours: Castanea spp. Agro-Biodiversity in Bakery Products. Agriculture, 12(7), 946. https://doi.org/10.3390/agriculture12070946