Spatial-Temporal Variability of Soil Organic Carbon Density and Its Related Factors in Fengqiu County of Yellow River Basin, China: A Model and GIS Technique Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Sampling Sites Selection and Data Collection
2.3. Soil Sampling and Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Description of SOCD Statistics in 1981 and 2011
3.2. Variability of SOCD from 1981 to 2011
3.3. Spatial-Temporal Variability of SOC Stock and Carbon Sequestration Potential
3.4. Effect of Related Factors on SOC Sequestration Rate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stockmann, U.; Padarian, J.; McBratney, A.; Minasny, B.; de Brogniez, D.; Montanarella, L.; Hong, S.; Rawlins, B.; Field, D. Global soil organic carbon assessment. Glob. Food Secur. 2015, 6, 9–16. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houghton, R.A. Balancing the Global Carbon Budget. Annu. Rev. Earth Planet. Sci. 2007, 35, 313–347. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef]
- Lemke, P.; Ren, R.; Alley, I. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridgeshire, UK, 2007; pp. 337–383. [Google Scholar]
- Chen, L.; Jing, X.; Flynn, D.F.; Shi, Y.; Kühn, P.; Scholten, T.; He, J. Changes of carbon stocks in alpine grassland soils from 2002 to 2011 on the Tibetan Plateau and their climatic causes. Geoderma 2017, 288, 166–174. [Google Scholar] [CrossRef]
- Smith, P.; Davies, C.; Ogle, S.; Zanchi, G.; Bellarby, J.; Bird, D.; Boddey, R.; McNamara, N.; Powlson, D.; Cowie, A.; et al. Towards an integrated global framework to assess the impacts of land use and management change on soil carbon: Current capability and future vision. Glob. Chang. Biol. 2012, 18, 2089–2101. [Google Scholar] [CrossRef]
- Shao, X.; Yan, C. Comparion of soil moisture dynamics based on sufer7.0 between different dry farming areas in the yellow river basin. J. Nat. Resour. 2005, 6, 49–56. (In Chinese) [Google Scholar]
- Li, F.; Mu, D.; Li, M. On the storage and distribution characteristics of soil organic carbon in Haihe basin. J. Saf. Environ. 2015, 1, 355–359. (In Chinese) [Google Scholar]
- Pan, G.; Zhou, P.; Li, L.; Zhang, X. Core issues and research progresses of soil science of C sequestration. Acta Pedol. Sin. 2007, 2, 327–337. (In Chinese) [Google Scholar]
- Gogoi, B.; Borah, N.; Baishya, A.; Dutta, S.; Nath, D.; Das, R.; Bhattacharryya, D.; Sharma, K.; Mishra, G.; Francaviglia, R. Yield trends, soil carbon fractions and sequestration in a rice-rice system of North-East India: Effect of 32 years of INM practices. Field Crop. Res. 2021, 272, 108289. [Google Scholar] [CrossRef]
- Wang, C.; Liu, H.; Wang, H.; Zhao, X.; Wang, Z.; Zhan, J. Spatial and Temporal Changes in Soil Carbon Storage in the Lower Yellow River Basin, Shangdong Province. Earth Environ. 2014, 2, 228–237. (In Chinese) [Google Scholar]
- Ran, L.; Lu, X.X.; Xin, Z. Erosion-induced massive organic carbon burial and carbon emission in the Yellow River basin, China. Biogeosciences 2014, 11, 945–959. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; He, W.; Li, X.; Liu, E.; Liu, S. Review on the Mechanism of Soil Organic Carbon Sequestration and Its Influence Factors in Cropland Soils. Chin. J. Agrometeorol. 2010, 4, 487–494. (In Chinese) [Google Scholar]
- Kaya, F.; Basayigit, L. Digital Mapping of Soil Organic Matter Using Open Source Accessible Products of ESA® in Arable Plain. In Proceedings of the ESA-ECMWF WORKSHOP Machine Learning for Earth System Observation and Prediction, Virtual Event, 15–18 November 2021; pp. 15–18. [Google Scholar]
- Huang, Y.; Sun, W. Changes in topsoil organic carbon of croplands in mainland China over the last two decades. Chin. Sci. Bull. 2006, 51, 1785–1803. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, X.; Lv, J. Size and dynamics of soil organic carbon stock in cropland of the Eastern Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 2016, 222, 125–132. [Google Scholar] [CrossRef]
- Liao, Q.; Zhang, X.; Li, Z.; Pan, G.; Smith, P.; Jin, Y.; Wu, X. Increase in soil organic carbon stock over the last two decades in China’s Jiangsu Province. Glob. Chang. Biol. 2009, 15, 861–875. [Google Scholar] [CrossRef]
- Hou, P.; Xv, X.; Pan, G. Influence of land use change on topsoil organ ic carbon stock: A case study of Wujiang Municipality. J. Nanjing Agric. Univ. 2007, 2, 68–72. (In Chinese) [Google Scholar]
- Fang, J.; Guo, Z.; Piao, S.; Chen, A. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci. China Ser. D Earth Sci. 2007, 50, 1341–1350. [Google Scholar] [CrossRef]
- Xu, S.; Shi, X.; Zhao, Y.; Yu, D.; Wang, S.; Tan, M.; Sun, W.; Li, C. Spatially explicit simulation of soil organic carbon dynamics in China’s paddy soils. Catena 2012, 92, 113–121. [Google Scholar] [CrossRef]
- Tiessen, H.; Stewart, J.W.B. Particle-size Fractions and their Use in Studies of Soil Organic Matter: II. Cultivation Effects on Organic Matter Composition in Size Fractions. Soil Sci. Soc. Am. J. 1983, 47, 509–514. [Google Scholar] [CrossRef]
- Hassink, J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 1997, 191, 77–87. [Google Scholar] [CrossRef]
- Bottner, P.; Austrui, F.; Cortez, J.; Billès, G.; Coûteaux, M.M. Decomposition of 14C- and 15N-labelled plant material, under controlled conditions, in coniferous forest soils from a north-south climatic sequence in western Europe. Soil Biol. Biochem. 1998, 30, 597–610. [Google Scholar] [CrossRef]
- Pan, G.; Xu, X.; Smith, P.; Pan, W.; Lal, R. An increase in topsoil SOC stock of China’s croplands between 1985 and 2006 revealed by soil monitoring. Agric. Ecosyst. Environ. 2010, 136, 133–138. [Google Scholar] [CrossRef]
- Li, C.-S. Loss Of Soil Carbon Threatens Chinese Agriculture: A Comparison On Agroecosystem Carbon Pool In China And The U.S. Quat. Sci. 2000, 20, 345–350. (In Chinese) [Google Scholar]
- Liu, S.; An, N.; Yang, J.; Dong, S.; Wang, C.; Yin, Y. Prediction of soil organic matter variability associated with different land use types in mountainous landscape in southwestern Yunnan province, China. CATENA 2015, 133, 137–144. [Google Scholar] [CrossRef]
- Lal, R. Offsetting China’s CO2 emissions by soil carbon sequestration. Clim. Chang. 2004, 65, 263–275. [Google Scholar] [CrossRef]
- Fengqiu Soil Investigation Office. Fengqiu Soil; X.S.I.O.: Xinxiang, China, 1984. (In Chinese) [Google Scholar]
- SSSSC. The Second State Soil Survey of China; China Agriculture Press: Beijing, China, 1997. (In Chinese) [Google Scholar]
- Carter, M.R.; Gregorich, E.G. Soil Sampling and Methods of Analysis, 2nd ed.; Taylor & Francis Group: Oxford, UK, 2006. [Google Scholar]
- Lu, R. The Chemical Analysis of Agricultural Soil; China Agriculture Science and Technique Press: Beijing, China, 1999; pp. 278–282. (In Chinese) [Google Scholar]
- Pan, G.; Li, L.; Wu, L.; Zhang, X. Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Glob. Change Biol. 2004, 10, 79–92. [Google Scholar] [CrossRef]
- Qin, Z.C.; Huang, Y. Quantification of soil organic carbon sequestration potential in cropland:A model approach. SCIENTIA SINICA Vitae 2010, 53, 868–884. [Google Scholar]
- Emmendorfer, L.R.; Dimuro, G.P. A Novel Formulation for Inverse Distance Weighting from Weighted Linear Regressio. In Proceedings of the Computational Science–ICCS 2020, Amsterdam, The Netherlands, 3–5 June 2020; pp. 576–589. [Google Scholar]
- Fan, M.; Lal, R.; Cao, J.; Qiao, L.; Su, Y.; Jiang, R.; Zhang, F. Plant-Based Assessment of Inherent Soil Productivity and Contributions to China’s Cereal Crop Yield Increase since 1980. PLoS ONE 2013, 8, e74617. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Cui, Z.; Chen, X.; Ju, X.; Shen, J.; Chen, Q.; Liu, X.; Zhang, W.; Mi, G.; Fan, M.; et al. Integrated Nutrient Management for Food Security and Environmental Quality in China. Adv. Agron. 2012, 116, 1–40. [Google Scholar]
- Xin, X.; Zhang, J.; Zhu, A.; Zhang, C. Effects of long-term (23 years) mineral fertilizer and compost application on physical properties of fluvo-aquic soil in the North China Plain. Soil Tillage Res. 2016, 156, 166–172. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, W.; Xin, X.; Zhu, A.; Ding, S. Poor physical structural components restrict soil fertility and crop productivity for wheat–maize cropping. Nutr. Cycl. Agroecosyst. 2020, 117, 169–184. [Google Scholar] [CrossRef]
- Duan, Y.; Chen, L.; Zhang, J.; Li, D.; Han, X.; Zhu, B.; Li, Y.; Zhao, B.; Huang, P. Long-term fertilisation reveals close associations between soil organic carbon composition and microbial traits at aggregate scales. Agric. Ecosyst. Environ. 2020, 306, 107169. [Google Scholar] [CrossRef]
- Courtier-Murias, D.; Simpson, A.J.; Marzadori, C.; Baldoni, G.; Ciavatta, C.; Fernández, J.M.; López-De-Sá, E.G.; Plaza, C. Unraveling the long-term stabilization mechanisms of organic materials in soils by physical fractionation and NMR spectroscopy. Agric. Ecosyst. Environ. 2013, 171, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Wilson, B.; Ghoshal, S.; Senapati, N.; Mandal, B. Organic amendments influence soil quality and carbon sequestration in the Indo-Gangetic plains of India. Agric. Ecosyst. Environ. 2012, 156, 134–141. [Google Scholar] [CrossRef]
- Srivastava, P.; Singh, R.; Bhadouria, R.; Tripathi, S.; Raghubanshi, A.S. Temporal change in soil physicochemical, microbial, aggregate and available C characteristic in dry tropical ecosystem. CATENA 2020, 190, 104553. [Google Scholar] [CrossRef]
- Liang, C.; Amelung, W.; Lehmann, J.; Kästner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Chang. Biol. 2019, 25, 3578–3590. [Google Scholar] [CrossRef] [PubMed]
- Liptzin, D.; Norris, C.; Cappellazzi, S.; Bean, G.; Cope, M.; Greub, K.; Rieke, E.; Tracy, P.; Aberle, E.; Ashworth, A.; et al. An evaluation of carbon indicators of soil health in long-term agricultural experiments. Soil Biol. Biochem. 2022, 172, 108708. [Google Scholar] [CrossRef]
- Zhang, C.; Li, W.; Zhao, Z.; Zhou, Y.; Zhang, J.; Wu, Q. Spatiotemporal Variability and Related Factors of Soil Organic Carbon in Henan Province. Vadose Zone J. 2018, 17, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wang, M.; Hu, S.; Zhang, X.; Ouyang, Z.; Zhang, G.; Huang, B.; Zhao, S.; Wu, J.; Xie, D.; et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl. Acad. Sci. USA 2018, 115, 4045–4050. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Zhang, C.; Lui, C.; Cai, T.; Zhang, J. Spatial variability of soil organic carbon sequestration rate and its influencing factors in Fengqiu County, Henan, China. Chin. J. Appl. Ecol. 2016, 27, 1479–1488. (In Chinese) [Google Scholar]
- Procter, A.; Fay, P.; Gill, R.; Polley, H.; Jackson, R. Soil type determines response of soil microbial activity to an atmospheric CO2 gradient. In Proceedings of the ESA Convention 2010, Pittsburgh, PA, USA, 1–6 August 2010. [Google Scholar]
- Blanco-Canqui, H.; Lal, R. Soil structure and organic carbon relationships following 10 years of wheat straw management in no-till. Soil Tillage Res. 2007, 95, 240–254. [Google Scholar] [CrossRef]
- Miao, C.; Meng, Y.; Ahmadzai, M.; Zhou, J. Effects of long-term different fertilizations on biomass and nutrient content of maize root. Chin. J. Appl. Ecol. 2015, 26, 2387–2396. (In Chinese) [Google Scholar]
- Pan, G.; Zhou, P.; Li, Z.; Smith, P.; Li, L.; Qiu, D.; Zhang, X.; Xu, X.; Shen, S.; Chen, X. Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China. Agric. Ecosyst. Environ. 2009, 131, 274–280. [Google Scholar] [CrossRef]
- Zheng, J.; Cheng, K.; Pan, G.X.; Pete, S.; Li, L.; Zhang, X.; Zheng, J.; Han, X.; Du, Y. Perspectives on studies on soil carbon stocks and the carbon sequestration potential of China. Chin. Sci. Bull. 2011, 56, 3748–3758. [Google Scholar] [CrossRef] [Green Version]
- Abu-Hashim, M.; Elsayed, M.; Belal, A.-E. Effect of land-use changes and site variables on surface soil organic carbon pool at Mediterranean Region. J. Afr. Earth Sci. 2016, 114, 78–84. [Google Scholar] [CrossRef]
Item | Range | Min | Max | S.D. | C.V. | Median | Mean |
---|---|---|---|---|---|---|---|
SOCD1981 (Mg ha−1) | 17.40 | 8.93 | 26.33 | 4.98 | 3.80 | 15.20 | 15.66 |
SOCD2011 (Mg ha−1) | 45.80 | 8.49 | 54.29 | 9.42 | 4.32 | 24.74 | 26.09 |
Group | Subgroup | Genus | Area (ha) | SOC Stock (t) | Growth Rate of Carbon Stock (%) | Carbon Sequestration Potential (Mg ha−1) | ||
---|---|---|---|---|---|---|---|---|
Year 1981 | Year 2011 | Saturation Value | ||||||
Aeolian sandy soil | Aeolian sandy soil | Fixed aeolian sandy soil | 1196.00 | 19,270.10 | 33,284.24 | 41,035.26 | 72.72 | 6.48 |
Semifixed aeolian sandy soil | 260.00 | 2323.07 | 2573.48 | 7119.58 | 10.78 | 17.49 | ||
Fluvo-aquic soil | Fluvo-aquic soil | Cinnamon-combined soil | 3336.67 | 57,965.42 | 78,736.85 | 129,417.92 | 35.83 | 15.19 |
Yellow fluvo-aquic soil | Anthropogenic-alluvial soil | 4662.67 | 70,279.96 | 112,098.90 | 184,395.62 | 59.50 | 15.51 | |
Yellow fluvo-aquic soil | Combined soil | 46,817.34 | 757,287.74 | 1,275,688.45 | 1,829,766.68 | 68.45 | 11.83 | |
Yellow fluvo-aquic soil | Sandy soil | 6907.33 | 116,200.20 | 141,799.10 | 222,493.29 | 22.03 | 11.68 | |
Yellow fluvo-aquic soil | Silting soil | 9134.67 | 161,702.23 | 248,191.40 | 360,832.81 | 53.49 | 12.33 | |
Salined flavo-aquic soil | Salined flavo-aquic soil | 14,170.00 | 208,999.07 | 368,370.67 | 542,950.02 | 76.25 | 12.32 |
Type of Factors | Impact Factors | Correlation Coefficient | Significance Level |
---|---|---|---|
Soil type | Subgroup | 0.21 | * |
Texture | 0.10 | — | |
Topography | Groundwater table (m) | 0.13 | — |
Elevation (m) | −0.06 | — | |
Fertility | pH | −0.51 | ** |
Total nitrogen (g kg−1) | 0.61 | ** | |
Total phosphorus (g kg−1) | 0.48 | ** | |
Total potassium (g kg−1) | 0.11 | — | |
Artificial measures | Returning straw | 0.39 | * |
Fertilization | 0.27 | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Zhang, C.; Yang, Q.; Gao, S.; Lu, C.; Zhang, J. Spatial-Temporal Variability of Soil Organic Carbon Density and Its Related Factors in Fengqiu County of Yellow River Basin, China: A Model and GIS Technique Approach. Agriculture 2022, 12, 1073. https://doi.org/10.3390/agriculture12081073
Zhao Z, Zhang C, Yang Q, Gao S, Lu C, Zhang J. Spatial-Temporal Variability of Soil Organic Carbon Density and Its Related Factors in Fengqiu County of Yellow River Basin, China: A Model and GIS Technique Approach. Agriculture. 2022; 12(8):1073. https://doi.org/10.3390/agriculture12081073
Chicago/Turabian StyleZhao, Zhanhui, Congzhi Zhang, Qiang Yang, Songfeng Gao, Chunyang Lu, and Jiabao Zhang. 2022. "Spatial-Temporal Variability of Soil Organic Carbon Density and Its Related Factors in Fengqiu County of Yellow River Basin, China: A Model and GIS Technique Approach" Agriculture 12, no. 8: 1073. https://doi.org/10.3390/agriculture12081073
APA StyleZhao, Z., Zhang, C., Yang, Q., Gao, S., Lu, C., & Zhang, J. (2022). Spatial-Temporal Variability of Soil Organic Carbon Density and Its Related Factors in Fengqiu County of Yellow River Basin, China: A Model and GIS Technique Approach. Agriculture, 12(8), 1073. https://doi.org/10.3390/agriculture12081073