Effect of Humus, Compost, and Vermicompost Extracts on the Net Energy Concentration, Net Energy of Lactation, and Energy Yield of Dactylis glomerata and Lolium perenne
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Location
2.2. Experimental Factors
2.3. Weather Conditions
2.4. Analysis
- NE—Net energy concentration in 1 kg DM,
- CF—Crude fibre content (% DM).
- NEL—net energy of lactation (MJ kg−1 DM),
- CF—crude fibre content (% DM),
- TP—total protein (% DM).
- PE—forage energy yield (JP ha−1),
- P—dry matter yield (dt ha−1),
- CF—crude fibre content (% DM),
- TP—total protein content (% DM).
3. Results and Discussion
3.1. Net Energy Concentration in 1 kg DM
3.2. Net Energy of Lactation
3.3. The Yield of Feed Energy
4. Conclusions
- Of the applied biological materials, humic substances applied together with mineral fertilizer had the greatest impact on net energy value and net energy of lactation (NEL).
- The use of compost extract contributed to a substantial increase in the yield of feed energy. Other biological substances applied together with mineral fertilizer also had a positive impact.
- Lolium perenne feed had a higher net energy of lactation and concentration of net energy than Dactylis glomerata; in turn, the latter one had a higher annual yield of feed energy than the former.
- Weather conditions in various years of research differentiated feed energy values. In 2020, the year with the largest amount of rainfall during most months of the growing period, the feed had the highest value of energy concentration, net energy, and net energy of lactation.
- Due to the complexity of the environment (soil, climate, plant), it is impossible to provide a universal combination of fertilizers that increases the energy value of forage. Therefore, it is important to carry out practical field experiments that will indicate the optimal fertilizer combinations suitable for the selected region.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kujawiak, R.; Zarudzki, R. DLG system in feeding dairy cows. Nowocz. Zyw. Zwierząt 2001, 6, 18–19. (In Polish) [Google Scholar]
- Jonker, J.S.; Kohn, R.A.; Erdman, R.A. Milk urea nitrogen target concentratsis for lactating dairy cows fed according to national research council recommendations. J. Dairy Sci. 1999, 82, 1261–1273. [Google Scholar] [CrossRef] [Green Version]
- Juszczak, J.; Ziemiński, R. The urea content in milk as an indicator of the protein-energy ratio in the feed dose for dairy cows. Adv. Agric. Sci. 1997, 3, 73–82. (In Polish) [Google Scholar]
- Abas, I.; Ozpinar, H.; Can Kutay, H.; Kahraman, R. Determination of the Metabolizable Energy (ME) and Net Energy Lactation (NEL) Content of Some Feeds in the Marmara Region by In vitro Gas Technique. Turk. J. Vet. Anim. Sci. 2005, 29, 751–757. [Google Scholar]
- Ciepiela, G.A.; Jankowska, J.; Kolczarek, R. Yield of feed units obtained from cocksfoot cultivated in pure sowing and in mixtures with leguminous plants. Zesz. Nauk. WSA Łomża 2008, 37, 83–88. (In Polish) [Google Scholar]
- Vulchinkov, Z.; Katova, A. Forage productivity evaluation in cocksfoot (Dactylis glomerata L.) accessions. Bulg. J. Crop Sci. 2020, 57, 101–108. [Google Scholar]
- Kosolapova, T.V.; Tulinov, A.G. Assessment of adaptability parameters of cocksfoot in the conditions of the Komi Republic. Russ. Agric. Sci. 2022, 47, 562–567. [Google Scholar] [CrossRef]
- Zhouri, L.; Kallida, R.; Shaimi, N.; Barre, P.; Volaire, F.; Gaboun, F.; Fakiri, M. Evaluation of cocksfoot (Dactylis glomerata L.) population for drought survival and behavior. Saudi J. Biol. Sci. 2019, 26, 49–56. [Google Scholar] [CrossRef]
- Nguyen, T.M.; Meixue, Z.; David, P.; Rowan, W.S. Aerenchyma formation in adventitious roots of tall fescue and cocksfoot under waterlogged conditions. Agronomy 2021, 11, 2487. [Google Scholar]
- Siaudinis, G.; Jasinskas, A.; Karcauskiene, D.; Sarauskis, E.; Lekaviciene, K.; Repsiene, R. The dependence of cocksfoot productivity of liming and nitrogen application and the assessment of qualitative parameters and environmental impact using biomass for biofuels. Sustainability 2020, 12, 8208. [Google Scholar] [CrossRef]
- Reed, K.F.M. Improving the adaptation of perennial ryegrass, tall fescue, Phalaris, and cocksfoot for Australia. N. Z. J. Agric. Res. 1996, 39, 457–464. [Google Scholar] [CrossRef]
- Butler, T.J.; Muir, J.P.; Provin, T.L. Phosphorus fertilization of annual ryegrass and comparison of soil phosphorus extractants. J. Plant Nutr. 2007, 30, 9–20. [Google Scholar] [CrossRef]
- Kotecki, A. Climate change for the European Green Deal. In Proceedings of the Scientific Conference: The Role of Agricultural Sciences in the Implementation of the Concept of a Sustainable Food System “from Farm to Fork”, Chełm, Poland, 7–8 June 2022. (In Polish). [Google Scholar]
- Sosnowski, J. The value of production, energy and food of Festulolium brauni (K. Richt.) A. Camus microbiologically and mineral suppled. Fragm. Agron. 2012, 29, 115–122. (In Polish) [Google Scholar]
- Sosnowski, J.; Jankowski, K. Effect of soil medium amendment on chemical composition and digestibility of Lolium multiflorum Lam. Sci. Nat. Technol. 2013, 7, 15. (In Polish) [Google Scholar]
- Truba, M.; Wiśniewska-Kadżajan, B.; Jankowski, K. The influence of biology preparations and mineral fertilization NPK on fiber fractions content in Dactylis glomerata and Lolium perenne. Fragm. Agron. 2017, 34, 107–116. (In Polish) [Google Scholar]
- Truba, M.; Wiśniewska-Kadżajan, B.; Sosnowski, J.; Malinowska, E.; Jankowski, K.; Makarewicz, A. The effect of soil conditioners on cellulose, hemicellulose, and the ADL fibre fraction concentration in Dactylis glomerata and Lolium perenne. J. Ecol. Eng. 2017, 18, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Truba, M.; Jankowski, K.; Wiśniewska-Kadżajan, B.; Malinowska, E. The effect of soil conditioners on the content of soluble carbohydrates, digestible protein and the carbohydrate-protein ratio in Lolium perenne and Dactylis glomerata. Environ. Prot. Nat. Resour. 2018, 29, 1–8. [Google Scholar] [CrossRef]
- Truba, M.; Jankowski, K.; Wiśniewska-Kadżajan, B.; Sosnowski, J.; Malinowska, E.; Barszczewski, J. The effects of soil conditioners on total protein and crude fiber concentration in selected grass species. Appl. Ecol. Environ. Res. 2018, 16, 2729–2739. [Google Scholar] [CrossRef]
- Schad, P.; van Huyssteen, C.; Micheli, E. International soil classification system for naming soils and creating legends for soil maps: World Soil Resources Reports. In World Reference Base for Soil Resources 2014; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014. [Google Scholar]
- Wiśniewska-Kadżajan, B. Effect of mushroom substrate on the feed quality from the permanent meadow. J. Ecol. Eng. 2014, 15, 45–49. [Google Scholar]
- Kolczarek, R.; Jankowska, J.; Ciepiela, G.A.; Jodełka, J. The nutritional value of sward from a permanent meadow depending on the type of fertilization. Wiad. Mel. i Łąk. 2008, 4, 181–183. (In Polish) [Google Scholar]
- Downing, T.; Gamroth, M. Nonstructural Carbohydrates in Cool-Season Grasses; Special Report 1079; Oregon State University: Corvallis, OR, USA, 2007. [Google Scholar]
- Tilvikiene, V.; Kadziuliene, Z.; Dabkevicius, Z.; Sarunaite, L.; Slepetys, J.; Pociene, L.; Slepetiene, A.; Ceceviciene, J. The yield and variation of chemical composition of cocksfoot biomass after five years of digestate application. Grassl. Sci. Eur. 2014, 19, 468–470. [Google Scholar]
- Jankowski, K.; Truba, M.; Wiśniewska-Kadżajan, B.; Sosnowski, J.; Malinowska, E. The effect of soil conditioners on yield of dry matter, protein, and sugar in grass. Acta Agroph. 2018, 25, 45–58. [Google Scholar] [CrossRef]
- Centralny Ośrodek Badania Odmian Roślin Uprawnych. Synthesis of the Results of Registry Experiments, Poaceae (Grass) 2013–2016; Centralny Ośrodek Badania Odmian Roślin Uprawnych: Słupia Wielka, Poland, 2017; 142p. (In Polish)
Name | CE | VE | HE |
---|---|---|---|
Macronutrients (g kg−1) | |||
N | 1.2 | 0.6 | 0.2 |
P | 0.2 | 0.3 | 1.3 |
K | 2.9 | 0.7 | 4.6 |
Ca | - | - | 3.0 |
Mg | 0.1 | - | 0.5 |
Na | 0.2 | - | - |
Micronutrients (mg kg−1) | |||
Mn | 0.3 | - | 15 |
Fe | - | - | 500 |
Zn | - | - | 3 |
Cu | - | - | 1 |
Mo | - | - | - |
Microorganisms | |||
lactic acid bacteria, photosynthetic bacteria, Azotobacter, Pseudomonas, yeast, Actinomycetes | Endo micorrhiza, fungi, bacteria, enzymes of earthworms | Useful microorganisms |
Year | Month | |||||||
---|---|---|---|---|---|---|---|---|
Apr. | May | June | July | Aug. | Sept. | Oct. | Means | |
Temperature (°C) | ||||||||
2019 | 13.1 | 17.0 | 18.3 | 20.4 | 20.6 | 15.9 | 9.6 | 16.4 |
2020 | 8.6 | 11.7 | 19.3 | 19.0 | 20.2 | 15.5 | 12.0 | 15.2 |
2021 | 6.6 | 12.4 | 20.4 | 22.7 | 17.1 | 12.9 | 8.6 | 14.4 |
Means | 9.4 | 13.7 | 19.3 | 20.7 | 19.3 | 14.8 | 10.1 | 15.3 |
Multiannual means | 8.5 | 14.0 | 17.4 | 19.8 | 18.9 | 13.2 | 7.9 | 14.2 |
Precipitation (mm) | ||||||||
2019 | 5.9 | 59.8 | 35.9 | 29.7 | 49.3 | 17.4 | 9.5 | 29.6 |
2020 | 6.0 | 63.5 | 118.5 | 67.7 | 18.0 | 38.8 | 17.6 | 47.2 |
2021 | 42 | 30 | 34 | 50 | 95 | 42 | 6 | 42.7 |
Means | 18.0 | 51.1 | 62.8 | 49.1 | 54.1 | 32.7 | 11.0 | 39.8 |
Multiannual means | 33.0 | 52.0 | 52.0 | 65.0 | 56.0 | 48.0 | 28.0 | 47.7 |
Fertiliser Effect | Means | ||||||||
---|---|---|---|---|---|---|---|---|---|
0 | NPK | CE | VE | HE | CE + NPK | VE + NPK | HE + NPK | ||
Means for species | |||||||||
Dactylis glomerata | 1.010 Ba | 1.020 Aa | 0.993 Ba | 1.018 Ba | 1.037 Ba | 1.026 Ba | 1.022 Ba | 1.047 Ba | 1.022 B |
Lolium perenne | 1.104 Aab | 1.048 Ab | 1.053 Ab | 1.145 Aa | 1.113 Aab | 1.109 Aab | 1.089 Aab | 1.121 Aa | 1.098 A |
Means for growing seasons | |||||||||
2019 | 1.030 Aa | 1.032 Aa | 1.045 Aa | 1.097 Aa | 1.080 Aa | 1.094 Aa | 1.053 Aa | 1.088 Aa | 1.065 AB |
2020 | 1.105 Aa | 1.072 Aa | 1.037 Aa | 1.083 Aa | 1.063 Aa | 1.050 Aa | 1.083 Aa | 1.116 Aa | 1.076 A |
2021 | 1.037 Aa | 0.997 Aa | 0.987 Aa | 1.066 Aa | 1.082 Aa | 1.058 Aa | 1.030 Aa | 1.048 Aa | 1.038 B |
Means for harvests | |||||||||
I | 1.035 Aa | 0.971 Ba | 1.005 Ba | 1.054 Aa | 0.997 Ba | 1.033 Aa | 1.014 Aa | 1.055 Aa | 1.020 B |
II | 1.035 Aa | 1.038 ABa | 1.091 ABa | 1.050 Aa | 1.041 ABa | 1.077 Aa | 1.076 Aa | 1.082 Aa | 1.061 AB |
III | 1.102 Aa | 1.100 Aa | 1.112 Aa | 1.094 Aa | 1.089 Aa | 1.091 Aa | 1.077 Aa | 1.114 Aa | 1.097 A |
Mean | 1.057 ab | 1.034 ab | 1.023 b | 1.082 a | 1.075 ab | 1.067 ab | 1.056 ab | 1.084 a |
Fertiliser Effect | Mean | ||||||||
---|---|---|---|---|---|---|---|---|---|
0 | NPK | CE | VE | HE | CE + NPK | VE + NPK | HE + NPK | ||
Means within species | |||||||||
Dactylis glomerata | 5.70 Ba | 5.73 Aa | 5.64 Aa | 5.73 Ba | 5.79 Ba | 5.77 Ba | 5.76 Ba | 5.83 Ba | 5.74 B |
Lolium perenne | 5.99 Aab | 5.82 Ab | 5.80 Ab | 6.12 Aa | 6.03 Aa | 6.03 Aa | 5.97 Aab | 6.06 Aa | 5.98 A |
Means within growing seasons | |||||||||
2019 | 5.74 Aa | 5.77 Aa | 5.77 Aa | 5.96 Aa | 5.91 Aa | 5.98 Aa | 5.86 Aa | 5.96 Aa | 5.87 AB |
2020 | 5.99 Aa | 5.90 Aa | 5.78 Aa | 5.93 Aa | 5.88 Aa | 5.83 Aa | 5.96 Aa | 6.05 Aa | 5.92 A |
2021 | 5.80 Aa | 5.65 Aa | 5.62 Aa | 5.88 Aa | 5.94 Aa | 5.88 Aa | 5.77 Aa | 5.83 Aa | 5.80 B |
Mean within harvests | |||||||||
I | 5.76 Aa | 5.56 Ba | 5.64 Ba | 5.82 Aa | 5.65 Ba | 5.78 Aa | 5.72 Aa | 5.85 Aa | 5.72 B |
II | 5.76 Aa | 5.78 Aa | 5.93 Aa | 5.82 Aa | 5.81 Aa | 5.93 Aa | 5.93 Aa | 5.94 Aa | 5.86 AB |
III | 6.01 Aa | 6.01 Aa | 6.01 Aa | 5.98 Aa | 5.97 Aa | 5.98 Aa | 5.94 Aa | 6.06 Aa | 6.00 A |
Mean | 5.84 ab | 5.77 b | 5.72 b | 5.92 ab | 5.91 ab | 5.90 ab | 5.86 ab | 5.95 a |
Fertiliser Effect | Means | ||||||||
---|---|---|---|---|---|---|---|---|---|
0 | NPK | CE | VE | HE | CE + NPK | VE + NPK | HE + NPK | ||
Means within species | |||||||||
Dactylis glomerata | 9970 Ab | 13,871 Ab | 13,572 Ab | 14,606 Aab | 12,519 Ab | 18,658 Aa | 17,614 Aab | 16,820 Aab | 14,704 A |
Lolium perenne | 9432 Ab | 13,912 Aab | 10,751 Ab | 11,643 Ab | 10,775 Ab | 15,583 Aab | 15,951 Aa | 14,791 Aab | 12,855 B |
Means within growing seasons | |||||||||
2019 | 9771 Ab | 15,171 Aab | 13,711 Ab | 14,782 Aab | 12,989 Ab | 18,553 Aa | 18,312 Aa | 16,591 Aab | 14,985 A |
2020 | 10,199 Ab | 15,879 Aab | 13,082 Ab | 13,775 Ab | 11,481 Ab | 19,850 Aa | 18,639 Aa | 17,160 Aab | 15,008 A |
2021 | 9133 Ab | 10,624 Bab | 9693 Aab | 10,816 Aab | 10,472 Aab | 12,960 Bab | 13,396 Bab | 13,667 Aa | 11,345 B |
Mean | 9700 c | 13,892 b | 12,162 bc | 13,124 b | 11,647 bc | 17,121 a | 16,782 a | 15,806 ab | |
Means within harvests | |||||||||
I | 3427 Ac | 4641 Ab | 4102 Abc | 4562 Abc | 3982 Abc | 5873 Aa | 5711 Aab | 5327 Aab | 4703 AB |
II | 3281 Ac | 4682 Ab | 4301 Abc | 4410 Abc | 4028 Abc | 5941 Aa | 5829 Aab | 5363 Aab | 4729 A |
III | 2952 Ab | 4535 Aab | 3851 Ab | 4087 Ab | 3515 Ab | 5269 Aa | 5218 Aab | 5087 Aab | 4314 B |
Mean | 3220 c | 4620 b | 4085 bc | 4353 bc | 3841 c | 5695 a | 5586 a | 5259 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sosnowski, J.; Truba, M.; Jarecka, K. Effect of Humus, Compost, and Vermicompost Extracts on the Net Energy Concentration, Net Energy of Lactation, and Energy Yield of Dactylis glomerata and Lolium perenne. Agriculture 2022, 12, 1092. https://doi.org/10.3390/agriculture12081092
Sosnowski J, Truba M, Jarecka K. Effect of Humus, Compost, and Vermicompost Extracts on the Net Energy Concentration, Net Energy of Lactation, and Energy Yield of Dactylis glomerata and Lolium perenne. Agriculture. 2022; 12(8):1092. https://doi.org/10.3390/agriculture12081092
Chicago/Turabian StyleSosnowski, Jacek, Milena Truba, and Katarzyna Jarecka. 2022. "Effect of Humus, Compost, and Vermicompost Extracts on the Net Energy Concentration, Net Energy of Lactation, and Energy Yield of Dactylis glomerata and Lolium perenne" Agriculture 12, no. 8: 1092. https://doi.org/10.3390/agriculture12081092
APA StyleSosnowski, J., Truba, M., & Jarecka, K. (2022). Effect of Humus, Compost, and Vermicompost Extracts on the Net Energy Concentration, Net Energy of Lactation, and Energy Yield of Dactylis glomerata and Lolium perenne. Agriculture, 12(8), 1092. https://doi.org/10.3390/agriculture12081092