Effects of Dietary Mixture Enriched in Polyunsaturated Fatty Acids and Probiotic on Performance, Biochemical Response, Breast Meat Fatty Acids, and Lipid Indices in Broiler Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Broilers and Housing
2.3. Dietary Treatments
2.4. Performance Measurements and Sample Collection
2.5. Blood Biochemical Analysis
2.6. Analyses and Calculations
2.6.1. Chemical Composition
2.6.2. Amino Acids Determination
2.6.3. Fatty Acids Determination
2.6.4. Microbial Analyses
2.6.5. Lipid Indices Calculation
2.7. Statistical Analysis
3. Results
3.1. Performance and Carcass Traits
3.2. Biochemical Plasma Profile
3.3. Fatty Acids Profile in Breast Muscle
3.4. Lipid Indices in Breast Muscle
4. Discussion
4.1. Performance and Carcass Traits
4.2. Biochemical Plasma Profile
4.3. Fatty Acids Profile in Breast Muscle
4.4. Lipid Indices in Breast Muscle
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, N.; Huang, X.; He, W.; Yao, Y.; Wu, N.; Xu, M.; Du, H.; Zhao, Y.; Tu, Y. A Review on Recent Advances of Egg Byproducts: Preparation, Functional Properties, Biological Activities and Food Applications. Food Res. Int. 2021, 147, 110563. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhu, H.; Zhang, L.; Chen, H. Consumer Preference for Nutritionally Fortified Eggs and Impact of Health Benefit Information. Foods 2022, 11, 1145. [Google Scholar] [CrossRef] [PubMed]
- De Caterina, R. N–3 Fatty Acids in Cardiovascular Disease. N. Engl. J. Med. 2011, 364, 2439–2450. [Google Scholar] [CrossRef] [PubMed]
- Bird, J.K.; Calder, P.C.; Eggersdorfer, M. The Role of N−3 Long Chain Polyunsaturated Fatty Acids in Cardiovascular Disease Prevention, and Interactions with Statins. Nutrients 2018, 10, 775. [Google Scholar] [CrossRef] [Green Version]
- Attia, Y.A.; Al-Harthi, M.A.; Korish, M.A.; Shiboob, M.M. Fatty Acid and Cholesterol Profiles, Hypocholesterolemic, Atherogenic, and Thrombogenic Indices of Broiler Meat in the Retail Market. Lipids Health Dis. 2017, 16, 40. [Google Scholar] [CrossRef] [Green Version]
- Attia, Y.A.; Al-Harthi, M.A.; Abo El-Maaty, H.M. The Effects of Different Oil Sources on Performance, Digestive Enzymes, Carcass Traits, Biochemical, Immunological, Antioxidant, and Morphometric Responses of Broiler Chicks. Front. Vet. Sci. 2020, 7, 181. [Google Scholar] [CrossRef]
- Le Bihan-Duval, E.; Debut, M.; Berri, C.M.; Sellier, N.; Santé-Lhoutellier, V.; Jégo, Y.; Beaumont, C. Chicken Meat Quality: Genetic Variability and Relationship with Growth and Muscle Characteristics. BMC Genet. 2008, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Gong, Y.Z.; Wu, C.X.; Jiang, J.; Wang, Y.; Li, K. Variation of Meat Quality Traits Among Five Genotypes of Chicken. Poult. Sci. 2009, 88, 2212–2218. [Google Scholar] [CrossRef]
- Baéza, E.; Guillier, L.; Petracci, M. Review: Production Factors Affecting Poultry Carcass and Meat Quality Attributes. Animal 2022, 16, 100331. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of Fatty Acids on Meat Quality: A Review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Andersen, H.J.; Oksbjerg, N.; Young, J.F.; Therkildsen, M. Feeding and Meat Quality—A Future Approach. Meat Sci. 2005, 70, 543–554. [Google Scholar] [CrossRef]
- Ian Givens, D.; Gibbs, R.A. Current Intakes of EPA and DHA in European Populations and the Potential of Animal-Derived Foods to Increase Them. Proc. Nutr. Soc. 2008, 67, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Anjum, F.M.; Haider, M.F.; Khan, M.I.; Sohaib, M.; Arshad, M.S. Impact of Extruded Flaxseed Meal Supplemented Diet on Growth Performance, Oxidative Stability and Quality of Broiler Meat and Meat Products. Lipids Health Dis. 2013, 12, 13. [Google Scholar] [CrossRef] [Green Version]
- Kostadinović, L.; Popović, S.; Čolović, D.; Vukmirović, Đ.; Tasić, T.; Puvača, N.; Lević, J. Effect of Extruded Flaxseed in Broiler Diets on Blood Oxidative Stability and Meat Fatty Acid Composition. Europ. Poult. Sci. 2016, 80, 1–14. [Google Scholar] [CrossRef]
- Konieczka, P.; Czauderna, M.; Smulikowska, S. The Enrichment of Chicken Meat with Omega-3 Fatty Acids by Dietary Fish Oil or its Mixture with Rapeseed or Flaxseed-Effect of Feeding Duration: Dietary Fish Oil, Flaxseed, and Rapeseed and N-3 Enriched Broiler Meat. Anim. Feed. Sci. Technol. 2017, 223, 42–52. [Google Scholar] [CrossRef]
- Apperson, K.D.; Cherian, G. Effect of Whole Flax Seed and Carbohydrase Enzymes on Gastrointestinal Morphology, Muscle Fatty Acids, and Production Performance in Broiler Chickens. Poult. Sci. 2017, 96, 1228–1234. [Google Scholar] [CrossRef]
- Gheorghe, A.; Hăbeanu, M.; Lefter, N.A.; Ropotă, M. Performance parameters, plasma lipid status, and lymphoid tissue fatty acid profile of broiler chicks fed camelina cake. Braz. J. Poult. Sci. 2019, 21, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gheorghe, A.; Lefter, N.A.; Idriceanu, L.; Ropotă, M.; Hăbeanu, M. Effects of Dietary Extruded Linseed and Lactobacillus Acidophilus on Growth Performance, Carcass Traits, Plasma Lipoprotein Response, and Cecal Bacterial Populations in Broiler Chicks. Ital. J. Anim. Sci. 2020, 19, 822–832. [Google Scholar] [CrossRef]
- Skrivan, M.; Englmaierová, M.; Taubner, T.; Skrivanová, E. Effects of Dietary Hemp Seed and Flaxseed on Growth Performance, Meat Fatty Acid Compositions, Liver Tocopherol Concentration and Bone Strength of Cockerels. Animals 2020, 10, 458. [Google Scholar] [CrossRef] [Green Version]
- Zając, M.; Kiczorowska, B.; Samolińska, W.; Klebaniuk, R. Inclusion of Camelina, Flax, and Sunflower Seeds in the Diets for Broiler Chickens: Apparent Digestibility of Nutrients, Growth Performance, Health Status, and Carcass and Meat Quality Traits. Animals 2020, 10, 321. [Google Scholar] [CrossRef] [Green Version]
- Diaz, D.; Morlacchini, M.; Masoero, F.; Moschini, M.; Fusconi, G.; Piva, G. Pea Seeds (Pisum sativum), Faba Beans (Vicia faba Var. Minor) and Lupin Seeds (Lupinus albus Var. Multitalia) as Protein Sources in Broiler Diets: Effect of Extrusion on Growth Performance. Ital. J. Anim. Sci. 2006, 5, 43–53. [Google Scholar] [CrossRef]
- Laudadio, V.; Tufarelli, V. Growth Performance and Carcass and Meat Quality of Broiler Chickens Fed Diets Containing Micronized-Dehulled Peas (Pisum Sativum Cv. Spirale) as a Substitute of Soybean Meal. Poult. Sci. 2010, 89, 1537–1543. [Google Scholar] [CrossRef]
- Laudadio, V.; Tufarelli, V. Pea (Pisum sativum L.) Seeds as an Alternative Dietary Protein Source for Broilers: Influence on Fatty Acid Composition, Lipid and Protein Oxidation of Dark and White Meats. J. Am. Oil Chem. Soc. 2011, 88, 967–973. [Google Scholar] [CrossRef]
- Bingol, N.T.; Dede, S.; Karsli, M.A.; Deger, Y.; Kılınç, D.K.; Kiliçalp, S. Effects of the Replacement of Soybean Meal with Pea as Dietary Protein Source on the Serum Protein Fractions of Broilers. Braz. J. Poult. Sci. 2016, 18, 639–644. [Google Scholar] [CrossRef] [Green Version]
- Gheorghe, A.; Hăbeanu, M.; Tabuc, C.; Marin, M. Effects of Dietary Pea Seeds (Pisum Sativum L. cv. Tudor) on Performance, Carcass Traits, Plasma Biochemistry and Intestinal Microflora in Broiler Chicks. AgroLife Sci. J. 2019, 8, 99–106. [Google Scholar]
- Al-Sagan, A.A.; Al-Yemni, A.H.; Al-Abdullatif, A.A.; Attia, Y.A.; Hussein, E.O.S. Effects of Different Dietary Levels of Blue Lupine (Lupinus Angustifolius) Seed Meal with or without Probiotics on the Performance, Carcass Criteria, Immune Organs, and Gut Morphology of Broiler Chickens. Front. Vet. Sci. 2020, 7, 124. [Google Scholar] [CrossRef] [Green Version]
- Biesek, J.; Kuzniacka, J.; Banaszak, M.; Kaczmarek, S.; Adamski, M.; Rutkowski, A.; Zmudzinska, A.; Perz, K.; Hejdysz, M. Growth performance and carcass quality in broiler chickens fed on legume seeds and rapeseed meal. Animals 2020, 10, 846. [Google Scholar] [CrossRef]
- Ciurescu, G.; Dumitru, M.; Gheorghe, A.; Untea, A.; Drăghici, R. Effect of Bacillus subtilis on growth performance, bone mineralization, and bacterial population of broilers fed with different protein sources. Poult. Sci. 2020, 99, 5960–5971. [Google Scholar] [CrossRef] [PubMed]
- Ciurescu, G.; Vasilachi, A.; Ropota, M. Effect of dietary cowpea (Vigna unguiculata L. walp) and chickpea (Cicer arietinum L.) seeds on growth performance, blood parameters and breast meat fatty acids in broiler chickens. Ital. J. Anim. Sci. 2022, 21, 97–105. [Google Scholar] [CrossRef]
- Jia, W.B.; Slominski, B.A.; Guenter, W.; Humphreys, A.; Jones, O. The Effect of Enzyme Supplementation on Egg Production Parameters and Omega-3 Fatty Acid Deposition in Laying Hens Fed Flaxseed and Canola Seed. Poult. Sci. 2014, 87, 2005–2014. [Google Scholar] [CrossRef] [PubMed]
- Beheshti Moghadam, M.H.; Cherian, G. Use of Flaxseed in Poultry Feeds to Meet the Human Need for N-3 Fatty Acids. World’s Poult. Sci. J. 2017, 73, 803–812. [Google Scholar] [CrossRef]
- Alzueta, C.; Rodriguez, M.L.; Cutuli, M.T.; Rebole, A.; Ortiz, L.T.; Centeno, C.; Trevin, J. Effect of Whole and Demucilaged Linseed in Broiler Chicken Diets on Digesta Viscosity, Nutrient Utilisation and Intestinal Microflora. Br. Poult. Sci. 2003, 44, 67–74. [Google Scholar] [CrossRef]
- Azcona, J.O.; Schang, M.J.; Garcia, P.T.; Gallinger, C.; Ayerza, R., Jr.; Coates, W. Omega-3 Enriched Broiler Meat: The Influence of Dietary α-Linolenic-Ω-3 Fatty Acid Sources on Growth, Performance and Meat Fatty Acid Composition. Can. J. Anim. Sci. 2008, 88, 257–269. [Google Scholar] [CrossRef]
- Wu, M.; Li, D.; Wang, L.J.; Zhou, Y.G.; Brooks, M.S.L.; Chen, X.D.; Mao, Z.H. Extrusion Detoxification Technique on Flaxseed by Uniform Design Optimization. Sep. Purif. Technol. 2008, 61, 51–59. [Google Scholar] [CrossRef]
- Pirmohammadi, A.; Khalaji, S.; Yari, M. Effects of Linseed Expansion on its Dietary Molecular Structures, and on Broiler Chicks Digestive Enzymes Activity, Serum Metabolites, and Ileal Morphology. J. Appl. Poult. Res. 2019, 28, 997–1012. [Google Scholar] [CrossRef]
- Yang, W.; Fu, J.; Yu, M.; Huang, Q.; Wang, D.; Xu, J.; Deng, Q.; Yao, P.; Huang, F.; Liu, L. Effects of Flaxseed Oil on Anti-Oxidative System and Membrane Deformation of Human Peripheral Blood Erythrocytes in High Glucose Level. Lipids Health Dis. 2012, 11, 88. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Slominski, B.A. Nutritive Values of Corn, Soybean Meal, Canola Meal, and Peas for Broiler Chickens as Affected by a Multicarbohydrase Preparation of Cell Wall Degrading Enzymes. Poult. Sci. 2005, 84, 1242–1251. [Google Scholar] [CrossRef]
- Dotas, V.; Bampidis, V.A.; Sinapis, E.; Hatzipanagiotou, A.; Papanikolaou, K. Effect of Dietary Field Pea (Pisum sativum L.) Supplementation on Growth Performance, and Carcass and Meat Quality of Broiler Chickens. Livest. Sci. 2014, 164, 135–143. [Google Scholar] [CrossRef]
- Samant, S.S.; Seo, H.S. Quality Perception and Acceptability of Chicken Breast Meat Labeled with Sustainability Claims Vary as a Function of Consumers’ Label-Understanding Level. Food Qual. Prefer. 2016, 49, 151–160. [Google Scholar] [CrossRef]
- Gadde, U.; Kim, W.H.; Oh, S.T.; Lillehoj, H.S. Alternatives to Antibiotics for Maximizing Growth Performance and Feed Efficiency in Poultry: A Review. Anim. Health Res. Rev. 2017, 18, 26–45. [Google Scholar] [CrossRef] [Green Version]
- De Cesare, A.; Sala, C.; Castellani, G.; Astolfi, A.; Indio, V.; Giardini, A.; Manfreda, G. Effect of Lactobacillus Acidophilus D2/CSL (CECT 4529) Supplementation in Drinking Water on Chicken Crop and Caeca Microbiome. PLoS ONE 2020, 15, e0228338. [Google Scholar] [CrossRef]
- Bhogoju, S.; Khwatenge, C.N.; Taylor-Bowden, T.; Akerele, G.; Kimathi, B.M.; Donkor, J.; Nahashon, S.N. Effects of Lactobacillus reuteri and Streptomyces coelicolor on Growth Performance of Broiler Chickens. Microorganisms 2021, 9, 1341. [Google Scholar] [CrossRef]
- Dev, K.; Mir, N.A.; Biswas, A.; Kannoujia, J.; Begum, J.; Kant, R.; Mandal, A. Dietary Synbiotic Supplementation Improves the Growth Performance, Body Antioxidant Pool, Serum Biochemistry, Meat Quality, and Lipid Oxidative Stability in Broiler Chickens. Anim. Nutr. 2020, 6, 325–332. [Google Scholar] [CrossRef]
- Theilmann, M.C.; Goh, Y.J.; Nielsen, K.F.; Klaenhammer, T.R.; Barrangou, R.; Abou Hachem, M. Lactobacillus acidophilus Metabolizes Dietary Plant Glucosides and Externalizes Their Bioactive Phytochemicals. mBio 2017, 8, e01421–17. [Google Scholar] [CrossRef] [Green Version]
- Gheorghe, A.; Hăbeanu, M.; Lefter, N.A.; Turcu, R.P.; Tudorache, M.; Custură, I. Evaluation of Muscle Chemical and Amino Acids Composition in Broiler Chicks Fed Sorghum or Sorghum-Peas Diets. Braz. J. Poult. Sci. 2021, 23, 001–008. [Google Scholar] [CrossRef]
- Kiczorowska, B.; Samolińska, W.; Andrejko, D. Effect of Micronized Pea Seeds (Pisum Sativum L.) as a Substitute of Soybean Meal on Blood Lipid Parameters, Tissue Fatty Acids Composition and Meat Quality of Broiler Chickens. Anim. Sci. J. 2016, 87, 1396–1406. [Google Scholar] [CrossRef]
- OJEU (Official Journal of the European Union). Directive 2010/63/EU of the European Parliament and of the Council on the Protection of Animals Used for Scientific Purposes. OJEU 20.10.2010, Series L 276; OJEU: Brussels, Belgium, 2010; pp. 33–79. [Google Scholar]
- Aviagen. Ross Broiler Management Handbook. Available online: https://en.aviagen.com/assets/Tech_Center/Ross_Broiler/Ross-BroilerHandbook2018-EN.pdf (accessed on 10 September 2019).
- NRC. Nutrient Requirements of Poultry; National Research Council, Ed.; The National Academies Press: Washington, DC, USA, 1994; ISBN 978-0-309-04892-7. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- OJEU (Official Journal of the European Union). Commission Regulation (EC) No. 152/2009 Laying Down the Methods of Sampling and Analysis for the Official Control of Feed; OJEU: Brussels, Belgium, 2009. [Google Scholar]
- Vărzaru, I.; Untea, A.E.; Martura, T.; Olteanu, M.; Panaite, T.D.; Schitea, M.; Van, I. Development and Validation of an RP-HPLC Method for Methionine, Cystine and Lysine Separation and Determination in Corn Samples. Rev. Chim. 2013, 64, 673–679. Available online: http://www.revistadechimie.ro (accessed on 1 April 2020).
- Hăbeanu, M.; Lefter, N.A.; Gheorghe, A.; Untea, A.; Ropotă, M.; Grigore, D.-M.; Varzaru, I.; Toma, S.M. Evaluation of Performance, Nitrogen Metabolism and Tissue Composition in Barrows Fed an n-3 PUFA-Rich Diet. Animals 2019, 9, 234. [Google Scholar] [CrossRef] [Green Version]
- HMSO. Nutritional Aspects of Cardiovascular Disease. Report of the Cardiovascular Review Group Committee on Medical Aspects of Food Policy. Rep. Health Soc. Subj. 1994, 46, 1–186. [Google Scholar]
- Janiszewski, P.; Grzeskowiak, E.; Lisiak, D.; Borys, B.; Borzuta, K.; Pospiech, E.; Polawska, E. The Influence of Thermal Processing on the Fatty Acid Profile of Pork and Lamb Meat Fed Diet with Increased Levels of Unsaturated Fatty Acids. Meat Sci. 2016, 111, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of Genotype, Feeding System and Slaughter Weight on the Quality of Light Lambs. II. Fatty Acid Composition of Meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Chen, Y.; Qiao, Y.; Xiao, Y.; Chen, H.; Zhao, L.; Huang, M.; Zhou, G. Differences in Physicochemical and Nutritional Properties of Breast and Thigh Meat from Crossbred Chickens, Commercial Broilers, and Spent Hens. Australas. J. Anim. Sci. 2016, 29, 855–864. [Google Scholar] [CrossRef]
- SPSS, statistics version 20.0; IBM SPSS: Chicago, IL, USA, 2011.
- Czerwicski, J.; Hřjberg, O.; Smulikowska, S.; Engberg, R.M.; Mieczkowska, A. Influence of Dietary Peas and Organic Acids and Probiotic Supplementation on Performance and Caecal Microbial Ecology of Broiler Chickens. Br. Poult. Sci. 2010, 51, 258–269. [Google Scholar] [CrossRef]
- Mridula, D.; Kaur, D.; Nagra, S.S.; Barnwal, P.; Gurumayum, S.; Singh, K.K. Growth Performance and Quality Characteristics of flaxseed-Fed Broiler Chicks. J. Appl. Anim. Res. 2015, 43, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Attia, Y.A. Nutritional Values of Soaked Linseed Cake and Its Inclusion in Finishing Diets for Male Broiler Chicks A Source of Protein and N-3 Fatty Acids. Egypt Poult. Sci. J. 2003, 23, 739–759. [Google Scholar]
- Tao, Y.; Wang, T.; Huang, C.; Lai, C.; Ling, Z.; Zhou, Y.; Yong, Q. Production Performance, Egg Quality, Plasma Biochemical Constituents and Lipid Metabolites of Aged Laying Hens Supplemented with Incomplete Degradation Products of Galactomannan. Poult. Sci. 2021, 100, 101296. [Google Scholar] [CrossRef]
- Jin, L.Z.; Ho, Y.W.; Abdullah, N.; Jalaludin, S. Growth Performance, Intestinal Microbial Populations, and Serum Cholesterol of Broilers Fed Diets Containing Lactobacillus Cultures. Poult. Sci. 1998, 77, 1259–1265. [Google Scholar] [CrossRef]
- Kalavathy, R.; Abdullah, N.; Jalaludin, S.; Ho, Y.W. Effects of Lactobacillus Cultures on Growth Performance, Abdominal Fat Deposition, Serum Lipids and Weight of Organs of Broiler Chickens. Br. Poult. Sci. 2003, 44, 139–144. [Google Scholar] [CrossRef]
- Mansoub, N.H. Effect of Probiotic Bacteria Utilization on Serum Cholesterol and Triglycerides Contents and Performance of Broiler Chickens. Glob. Vet. 2010, 5, 184–186. [Google Scholar]
- Ashayerizadeh, A.; Dabiri, N.; Mirzadeh, K.H.; Ghorbani, M.R. Effect of Dietary Supplementation of Probiotic and Prebiotic on Growth Indices and Serum Biochemical Parameters of Broiler Chickens. J. Cell Anim. Biol. 2011, 5, 152–156. [Google Scholar]
- Naseem, S.; Rahman, S.U.; Shafee, M.; Sheikh, A.A.; Khan, A. Immunomodulatory and Growth-Promoting Effect of a Probiotic Supplemented in the Feed of Broiler Chicks Vaccinated Against Infectious Bursal Disease. Braz. J. Poult. Sci. 2012, 14, 109–113. [Google Scholar] [CrossRef]
- Corcoran, B.M.; Stanton, C.; Fitzgerald, G.F.; Ross, R.P. Survival of Probiotic Lactobacilli in Acidic Environments is Enhanced in the Presence of Metabolizable Sugars. Appl. Environ. Microbiol. 2005, 71, 3060–3067. [Google Scholar] [CrossRef] [Green Version]
- Gilliland, S.E.; Nelson, C.R.; Maxwell, C. Assimilation of Cholesterol by Lactobacillus acidophilus. Appl. Environ. Microbiol. 1985, 49, 377–385. [Google Scholar] [CrossRef] [Green Version]
- Lye, H.S.; Rahmat-Ali, G.R.; Liong, M.T. Mechanisms of Cholesterol Removal by Lactobacilli under Conditions that Mimic the Human Gastrointestinal Tract. Int. Dairy J. 2010, 20, 169–175. [Google Scholar] [CrossRef]
- Verbeke, W.A.J.; Viaene, J. Ethical Challenges for Livestock Production: Meeting Consumer Concerns about Meat Safety and Animal Welfare. J. Agric. Environ. Ethics 2000, 12, 141–151. [Google Scholar] [CrossRef]
- Hernandez, F.I.L. Performance and Fatty Acid Composition of Adipose Tissue, Breast and Thigh in Broilers Fed Flaxseed: A Review. Curr. Res. Nutr. Food Sci. J. 2013, 1, 103–114. [Google Scholar] [CrossRef]
- Kumar, F.; Tyagi, P.K.; Mir, N.A.; Dev, K.; Begum, J.; Biswas, A.; Sheikh, S.A.; Tyagi, P.K.; Sharma, D.; Sahu, B.; et al. Dietary Flaxseed and Turmeric is a Novel Strategy to Enrich Chicken Meat with Long Chain Ω-3 Polyunsaturated Fatty Acids with Better Oxidative Stability and Functional Properties. Food Chem. 2020, 305, 125458. [Google Scholar] [CrossRef]
- Dev, K.; Begum, J.; Biswas, A.; Kannoujia, J.; Mir, N.A.; Sonowal, J.; Kant, R.; Narender, T. Dietary Lactobacillus acidophilus and Mannan-Oligosaccharides Alter the Lipid Metabolism and Health Indices in Broiler Chickens. Probiotics Antimicrob. Proteins 2021, 13, 633–646. [Google Scholar] [CrossRef]
- Zong, G.; Li, Y.; Wanders, A.J.; Alssema, M.; Zock, P.L.; Willett, W.C. Intake of Individual Saturated Fatty Acids and Risk of Coronary Heart Disease in US Men and Women: Two Prospective Longitudinal Cohort Studies. BMJ 2016, 355, i5796. [Google Scholar] [CrossRef] [Green Version]
- Kumar, F.; Tyagi, P.K.; Mir, N.A.; Tyagi, P.K.; Dev, K.; Bera, I.; Biswas, A.K.; Sharma, D.; Mandal, A.B.; Deo, C. Role of Flaxseed Meal Feeding for Different Durations in The Lipid Deposition and Meat Quality in Broiler Chickens. J. Am. Oil Chem. Soc. 2019, 96, 261–271. [Google Scholar] [CrossRef]
- Mirshekar, R.; Boldaji, F.; Dastar, B.; Yamchi, A.; Pashaei, S. Longer consumption of flaxseed oil enhances n-3 fatty acid content of chicken meat and expression of FADS2 gene. Eur. J. Lipid Sci. Technol. 2015, 117, 810–819. [Google Scholar] [CrossRef]
- Laudadio, V.; Nahashon, S.N.; Tufarelli, V. Growth Performance and Carcass Characteristics of Guinea Fowl Broilers Fed Micronized-Dehulled Pea (Pisum Sativum L.) as A Substitute for Soybean Meal. Poult. Sci. 2012, 91, 2988–2996. [Google Scholar] [CrossRef]
- Starcevic, K.; Mašek, T.; Brozic, D.; Filipovic, N.; Stojevic, Z. Growth Performance, Serum Lipids and Fatty Acid Profile of Different Tissues in Chicken Broilers Fed a Diet Supplemented with Linseed Oil During a Prolonged Fattening Period. Vet. Arh. 2014, 84, 75–84. [Google Scholar]
- Burdge, G.C.; Wootton, S.A. Conversion of Alpha-Linolenic Acid to Eicosapentaenoic, Docosapentaenoic and Docosahexaenoic Acids in Young Women. Br. J. Nutr. 2002, 88, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Baker, E.J.; Miles, E.A.; Burdge, G.C.; Yaqoob, P.; Calder, P.C. Metabolism and Functional Effects of Plant-Derived Omega-3 Fatty Acids in Humans. Prog. Lipid Res. 2016, 64, 30–56. [Google Scholar] [CrossRef]
- Vermunt, S.H.; Mensink, R.P.; Simonis, M.M.; Hornstra, G. Effects of Dietary α-Linolenic Acid on the Conversion and Oxidation of 13C-α-Linolenic Acid. Lipids 2000, 35, 137–142. [Google Scholar] [CrossRef]
- Thanabalan, A.; Moats, J.; Kiarie, E.G. Effects of Feeding Broiler Breeder Hens a Coextruded Full-Fat Flaxseed and Pulses Mixture Without or With Multienzyme Supplement. Poult. Sci. 2020, 99, 2616–2623. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Fernandes, C.E.; da Silva Vasconcelos, M.A.; de Almeida Ribeiro, M.; Sarubbo, L.A.; Andrade, S.A.C.; de Molo Filho, A.B. Nutritional and Lipid Profiles in Marine Fish Species from Brasil. Food Chem. 2014, 160, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.E.; Kim, G.M.; Lee, S.K.; Yang, C.J. Growth Performance, Meat Yield, Oxidative Stability, and Fatty Acid Composition of Meat from Broilers Fed Diets Supplemented with a Medicinal Plant and Probiotics. Asian-Australas. J. Anim. Sci. 2012, 25, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Hussein, E.; Selim, S. Efficacy of Yeast and Multi-Strain Probiotic Alone or in Combination on Growth Performance, Carcass Traits, Blood Biochemical Constituents, and Meat Quality of Broiler Chickens. Livest. Sci. 2018, 216, 153–159. [Google Scholar] [CrossRef]
- Shin, D.; Choi, S.H.; Go, G.; Park, J.G.; Narciso-Gayatan, C.; Morgan, C.A.; Smith, S.B.; Sanchez-Plata, M.X.; Ruiz-Feria, C.A. Effects of Dietary Combination of N-3 and N-6 Fatty Acids on the Deposition of Linoleic and Arachidonic Acid in Broiler Chicken Meats. Poult. Sci. 2012, 91, 1009–1017. [Google Scholar] [CrossRef]
- FAO/WHO (Food and Agricultural Organization of the United Nations and World Health Organization). Fats and Fatty Acids in Human Nutrition. Report of an Extract Consultation. FAO Food Nutr. Pap. 2010, 91, 1–166. [Google Scholar]
- Kankaanpää, P. Interactions between Polyunsaturated Fatty Acids and Probiotics. Ph.D. Thesis, Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland, November 2010. ISBN 978-951-29-4440-8. [Google Scholar]
Ingredients (% As-Fed) | Starter (1 to 10 d) | Grower (11 to 24 d) | Finisher (25 to 42 d) | |||
---|---|---|---|---|---|---|
ELP0 | ELP30 | ELP0 | ELP30 | ELP0 | ELP30 | |
Corn | 58.07 | 38.82 | 60.33 | 40.71 | 64.34 | 44.74 |
Soybean meal | 30.00 | 20.00 | 28.00 | 18.00 | 24.00 | 14.00 |
ELP mix | 0 | 30.00 | 0 | 30.00 | 0 | 30.00 |
Corn gluten meal | 5.50 | 5.50 | 5.00 | 5.00 | 4.00 | 4.00 |
Vegetable oil | 1.50 | 1.00 | 2.30 | 2.10 | 3.50 | 3.30 |
Monocalcium phosphate | 1.30 | 1.30 | 1.00 | 1.10 | 1.00 | 1.00 |
Calcium carbonate | 1.48 | 1.33 | 1.38 | 1.20 | 1.20 | 1.10 |
Salt | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
L-Lysine | 0.49 | 0.38 | 0.39 | 0.27 | 0.36 | 0.25 |
DL-Methionine | 0.29 | 0.30 | 0.23 | 0.25 | 0.23 | 0.24 |
Premix choline | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 |
Phytase | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Vitamin-mineral premix 1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
L. acidophilus 2 | (−)/(+) | (−)/(+) | (−)/(+) | (−)/(+) | (−)/(+) | (−)/(+) |
Calculated composition | ||||||
Metabolizable energy 3 (MJ/kg) | 12.82 | 12.69 | 13.00 | 12.98 | 13.46 | 13.44 |
Av. phosphorus (%) | 0.48 | 0.48 | 0.44 | 0.44 | 0.40 | 0.40 |
Dig. Lysine (%) | 1.28 | 1.28 | 1.15 | 1.15 | 1.03 | 1.03 |
Dig. Methionine + Cysteine (%) | 0.95 | 0.95 | 0.87 | 0.87 | 0.80 | 0.80 |
Analyzed composition (%) | ||||||
Dry matter | 89.92 | 89.48 | 89.26 | 89.29 | 89.36 | 89.21 |
Crude protein | 22.59 | 22.42 | 21.30 | 21.20 | 19.45 | 19.40 |
Lysine | 1.44 | 1.44 | 1.29 | 1.29 | 1.16 | 1.16 |
Methionine + Cysteine | 1.08 | 1.08 | 0.94 | 0.94 | 0.88 | 0.88 |
Calcium | 0.96 | 0.96 | 0.87 | 0.87 | 0.79 | 0.79 |
Crude fat | 3.69 | 3.81 | 4.63 | 5.12 | 5.27 | 5.78 |
Crude fibre | 3.51 | 4.26 | 4.40 | 4.96 | 3.94 | 5.14 |
Crude ash | 5.50 | 5.69 | 5.24 | 5.37 | 5.10 | 5.21 |
Fatty acids composition (g/100 g FAME) | ||||||
C16:0 | 14.97 | 10.68 | 12.06 | 10.75 | 13.84 | 12.41 |
C18:0 | 3.56 | 3.60 | 3.30 | 3.29 | 3.58 | 3.68 |
C18:1n-9 | 24.34 | 22.58 | 25.51 | 23.38 | 23.26 | 22.37 |
C18:2n-6 | 51.70 | 40.11 | 52.8 | 42.45 | 52.65 | 43.45 |
C18:3n-3 | 3.80 | 21.29 | 4.37 | 18.50 | 5.12 | 16.36 |
C20:2n-6 | 0.17 | 0.17 | 0.20 | 0.19 | 0.15 | 0.16 |
C20:4n-6 | 0.32 | 0.31 | 0.29 | 0.21 | 0.45 | 0.36 |
C22:2n-6 | 0.14 | 0.18 | 0.25 | 0.22 | 0.19 | 0.17 |
Σ SFA | 18.53 | 14.28 | 15.36 | 14.04 | 17.42 | 16.09 |
Σ MUFA | 24.34 | 22.58 | 25.51 | 23.38 | 23.26 | 22.37 |
Σ PUFA | 56.13 | 62.06 | 57.91 | 61.57 | 58.56 | 60.5 |
Σ n-6 PUFA | 52.33 | 40.77 | 53.54 | 43.07 | 53.44 | 44.14 |
Σ n-3 PUFA | 3.80 | 21.29 | 4.37 | 18.50 | 5.12 | 16.36 |
n-6: n-3 ratio | 13.77 | 1.91 | 12.25 | 2.33 | 10.44 | 2.70 |
Fatty acids composition (g/100 g feed) | ||||||
Σ SFA | 0.55 | 0.44 | 0.57 | 0.58 | 0.73 | 0.74 |
Σ MUFA | 0.72 | 0.69 | 0.94 | 0.96 | 0.98 | 1.03 |
Σ PUFA | 1.66 | 1.89 | 2.14 | 2.52 | 2.47 | 2.80 |
Σ n-6 PUFA | 1.54 | 1.24 | 1.98 | 1.76 | 2.25 | 2.04 |
Σ n-3 PUFA | 0.11 | 0.65 | 0.16 | 0.76 | 0.22 | 0.76 |
Item (%) | ELP mix |
---|---|
Dry matter | 88.2 |
Crude protein | 19.8 |
Crude fat | 4.50 |
Crude fibre | 9.60 |
Crude ash | 3.48 |
Nitrogen-free extract | 50.8 |
Calcium | 0.29 |
Phosphorus | 0.47 |
Metabolizable energy (MJ/kg) | 12.3 |
Amino acids (g/100 g) | |
Lysine | 1.60 |
Methionine + Cystine | 0.99 |
Threonine | 0.98 |
Valine | 1.45 |
Leucine | 0.85 |
Isoleucine | 1.58 |
Arginine | 0.93 |
Phenylalanine | 0.59 |
Essential AA | 9.46 |
Tyrosine | 0.60 |
Serine | 1.10 |
Glycine | 0.97 |
Alanine | 0.96 |
Aspartic acid | 2.11 |
Glutamic acid | 2.31 |
Non-essential AA | 8.05 |
Fatty acids (g/100 g FAME) | |
C12:0 | 0.56 |
C14:0 | 0.61 |
C16:0 | 12.8 |
C16:1 | 0.51 |
C18:0 | 4.69 |
C18:1n-9 | 19.5 |
C18:2n-6 | 37.3 |
C18:3n-3 | 22.1 |
C20:2n-6 | 0.30 |
C20:3n-6 | 0.15 |
C20:3n-3 | 0.54 |
Other FA | 0.90 |
Σ SFA | 18.7 |
Σ MUFA | 20.1 |
Σ PUFA | 60.4 |
Σ n-6 PUFA | 37.8 |
Σ n-3 PUFA | 22.6 |
n-6: n-3 ratio | 1.67 |
Fatty acids (g/100 g ELP) | |
Σ SFA | 0.67 |
Σ MUFA | 0.72 |
Σ PUFA | 2.17 |
Σ n-6 PUFA | 1.36 |
Σ n-3 PUFA | 0.81 |
Dietary Groups | SEM 4 | Main Effects 3 | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ELP0 | ELP30 | ELP | P 5 | |||||||||
Probiotic (P) | (−) | (+) | (−) | (+) | 0 | 30 | (−) | (+) | ELP | P | Interaction | |
Overall performance (1–42 days) | ||||||||||||
BWG (g) | 2577 | 2636 | 2450 | 2532 | 39.6 | 2606 | 2500 | 2513 | 2584 | 0.073 | 0.200 | 0.800 |
FI (g) | 4569 | 4650 | 4462 | 4562 | 49.3 | 4609 | 4512 | 4515 | 4606 | 0.382 | 0.416 | 0.930 |
FCR (g: g) | 1.77 | 1.75 | 1.82 | 1.80 | 0.013 | 1.77 | 1.81 | 1.80 | 1.78 | 0.077 | 0.125 | 0.636 |
PEF | 349 | 368 | 332 | 359 | 6.71 | 359 | 346 | 341 | 364 | 0.332 | 0.101 | 0.721 |
Carcass traits | ||||||||||||
Carcass yield 6 | 71.57 | 71.98 | 71.10 | 71.36 | 0.49 | 71.77 | 71.23 | 71.34 | 71.67 | 0.475 | 0.605 | 0.811 |
Breast 7 | 38.61 | 39.35 | 38.44 | 38.88 | 0.29 | 38.98 | 38.66 | 38.52 | 39.11 | 0.597 | 0.801 | 0.337 |
Legs 7 | 27.46 | 27.70 | 27.23 | 28.15 | 0.21 | 27.58 | 27.69 | 27.34 | 27.93 | 0.801 | 0.190 | 0.436 |
Abdominal fat 7 | 1.18 | 1.07 | 1.31 | 1.11 | 0.048 | 1.13 | 1.21 | 1.24 | 1.10 | 0.356 | 0.122 | 0.608 |
Dietary Groups | SEM 3 | Main Effects 2 | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ELP0 | ELP30 | ELP | P 4 | |||||||||
Probiotic (P) | (−) | (+) | (−) | (+) | 0 | 30 | (−) | (+) | ELP | P | Interaction | |
TC (mg/dL) | 134 | 125 | 131 | 128 | 1.38 | 130 | 129 | 133 a | 126 b | 0.876 | 0.028 | 0.222 |
HDL-C (mg/dL) | 66.0 | 67.0 | 68.0 | 68.0 | 1.04 | 66.5 | 68.4 | 67.0 | 67.9 | 0.392 | 0.683 | 0.964 |
LDL-C (mg/dL) | 56.2 | 46.6 | 52.4 | 47.8 | 1.32 | 51.4 | 50.1 | 54.3 a | 47.2 b | 0.569 | 0.005 | 0.297 |
TG (mg/dL) | 61.0 | 57.8 | 51.8 | 57.2 | 2.01 | 59.4 | 54.5 | 56.4 | 57.5 | 0.240 | 0.789 | 0.301 |
TC/HDL-C ratio | 2.05 | 1.87 | 1.93 | 1.86 | 0.027 | 1.96 | 1.90 | 1.99 a | 1.87 b | 0.232 | 0.024 | 0.331 |
LDL-C/HDL-C ratio | 0.86 | 0.70 | 0.78 | 0.69 | 0.026 | 0.78 | 0.74 | 0.82 a | 0.70 b | 0.401 | 0.020 | 0.470 |
TG/HDL-C ratio | 0.93 | 0.87 | 0.76 | 0.84 | 0.032 | 0.90 | 0.80 | 0.84 | 0.85 | 0.133 | 0.938 | 0.283 |
Glu (mg/dL) | 275 | 271 | 263 | 258 | 3.54 | 273 | 261 | 269 | 264 | 0.097 | 0.484 | 0.933 |
TP (g/dL) | 2.84 | 2.64 | 3.08 | 3.14 | 0.068 | 2.74 b | 3.11 a | 2.96 | 2.89 | 0.005 | 0.559 | 0.283 |
Alb (g/dL) | 1.18 | 1.16 | 1.20 | 1.18 | 0.029 | 1.18 | 1.19 | 1.19 | 1.17 | 1.000 | 0.757 | 0.757 |
Cre (mg/dL) | 0.200 | 0.220 | 0.240 | 0.260 | 0.008 | 0.210 b | 0.250 a | 0.220 | 0.240 | 0.015 | 0.197 | 1.00 |
PUN (mg/dL) | 2.20 | 2.40 | 2.60 | 2.80 | 0.097 | 2.30 b | 2.70 a | 2.40 | 2.60 | 0.040 | 0.286 | 1.00 |
PUN/Cre ratio | 11.0 | 10.8 | 11.0 | 10.8 | 0.26 | 10.9 | 10.9 | 11.0 | 10.8 | 0.997 | 0.720 | 0.965 |
UA (mg/dL) | 7.84 | 7.70 | 7.76 | 7.32 | 0.26 | 7.80 | 7.54 | 7.77 | 7.51 | 0.057 | 0.644 | 0.751 |
Dietary Groups | SEM 3 | Main Effects 2 | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ELP0 | ELP30 | ELP | P 4 | |||||||||
Probiotic (P) | (−) | (+) | (−) | (+) | 0 | 30 | (−) | (+) | ELP | P | Interaction | |
Fat (% DM) | 2.10 | 1.47 | 1.89 | 1.36 | 0.085 | 1.78 a | 1.62 b | 1.99 a | 1.41 b | 0.050 | <0.0001 | 0.555 |
C12:0 | 0.08 | 0.06 | 0.10 | 0.05 | 0.012 | 0.07 | 0.08 | 0.09 | 0.06 | 0.877 | 0.291 | 0.741 |
C14:0 | 0.60 | 0.65 | 0.53 | 0.46 | 0.022 | 0.62 a | 0.50 b | 0.56 | 0.55 | 0.001 | 0.754 | 0.064 |
C16:0 | 21.44 ab | 22.38 a | 20.24 bc | 19.70 c | 0.30 | 21.91 | 19.97 | 20.84 | 21.04 | <0.0001 | 0.546 | 0.040 |
C18:0 | 6.10 | 7.13 | 6.34 | 7.36 | 0.15 | 6.62 | 6.85 | 6.22 b | 7.25 a | 0.072 | <0.0001 | 0.763 |
C20:0 | 0.26 | 0.17 | 0.16 | 0.09 | 0.019 | 0.22 a | 0.12 b | 0.21 a | 0.13 b | 0.002 | 0.006 | 0.721 |
Σ SFA | 28.48 b | 30.39 a | 27.37 b | 27.67 b | 0.33 | 29.44 | 27.52 | 27.92 | 29.03 | <0.0001 | 0.089 | 0.030 |
C14:1 | 0.12 | 0.12 | 0.13 | 0.10 | 0.003 | 0.12 | 0.11 | 0.12 | 0.11 | 0.605 | 0.108 | 0.630 |
C16:1 | 3.74 b | 3.82 b | 4.14 a | 3.54 c | 0.061 | 3.78 | 3.84 | 3.94 | 3.67 | 0.277 | <0.0001 | <0.0001 |
C18:1n-9 | 31.65 | 29.33 | 30.50 | 28.86 | 0.29 | 30.49 | 29.68 | 31.07 a | 29.09 b | 0.061 | <0.0001 | 0.079 |
Σ MUFA | 35.51 | 33.26 | 34.77 | 32.49 | 0.32 | 34.39 | 33.63 | 35.14 a | 32.88 b | 0.082 | <0.0001 | 0.924 |
C18:2 CLA | 0.09 | 0.11 | 0.18 | 0.18 | 0.011 | 0.10 b | 0.18 a | 0.13 | 0.14 | <0.0001 | 0.552 | 0.180 |
C18:2n-6 LA | 28.74 a | 26.33 b | 23.14 c | 25.73 b | 0.52 | 27.53 | 24.44 | 25.94 | 26.03 | <0.0001 | 0.546 | <0.0001 |
C20:2n-6 | 0.13 | 0.21 | 0.17 | 0.23 | 0.016 | 0.17 | 0.20 | 0.15 | 0.22 | 0.279 | 0.088 | 0.654 |
C20:3n-6 | 0.27 c | 0.42 a | 0.28 c | 0.35 b | 0.017 | 0.34 | 0.32 | 0.28 | 0.39 | 0.079 | <0.0001 | 0.003 |
C20:4n-6 ARA | 1.25 | 1.99 | 1.13 | 1.87 | 0.049 | 1.62 | 1.50 | 1.19 b | 1.93 a | 0.178 | <0.0001 | 0.995 |
C22:2n-6 | 0.11 | 0.08 | 0.50 | 0.41 | 0.049 | 0.09 b | 0.46 a | 0.30 | 0.25 | <0.0001 | 0.079 | 0.373 |
C22:3n-6 | 0.05 | 0.08 | 0.09 | 0.04 | 0.009 | 0.07 | 0.06 | 0.07 | 0.06 | 0.823 | 0.725 | 0.083 |
Σ n-6 PUFA | 30.54 a | 29.12 b | 25.32 c | 28.64 b | 0.50 | 29.83 | 26.98 | 27.93 | 28.88 | <0.0001 | <0.0001 | <0.0001 |
C18:3n-3 ALA | 3.09 d | 3.72 c | 8.90 a | 6.78 b | 0.61 | 3.40 | 7.84 | 5.99 | 5.25 | <0.0001 | 0.077 | <0.001 |
C20:3n-3 | 0.32 | 0.51 | 0.38 | 0.48 | 0.023 | 0.42 | 0.43 | 0.35 b | 0.50 a | 0.682 | 0.001 | 0.140 |
C20:5n-3 EPA | 0.08 | 0.09 | 0.18 | 0.18 | 0.014 | 0.09 b | 0.18 a | 0.13 | 0.14 | <0.0001 | 0.611 | 0.470 |
C22:5n-3 DPA | 0.18 | 0.52 | 0.66 | 0.94 | 0.073 | 0.35 b | 0.80 a | 0.42 b | 0.73 a | <0.0001 | <0.0001 | 0.457 |
C22:6n-3 DHA | 0.17 | 0.28 | 0.28 | 0.37 | 0.021 | 0.22 b | 0.32 a | 0.22 b | 0.32 a | <0.0001 | <0.0001 | 0.585 |
Σ n-3 PUFA | 3.84 d | 5.12 c | 10.41 a | 8.75 b | 0.69 | 4.48 | 9.58 | 7.12 | 6.94 | <0.0001 | 0.100 | <0.0001 |
Σ PUFA | 34.47 c | 34.35 c | 35.92 b | 37.57 a | 0.36 | 34.41 | 36.74 | 35.19 | 35.96 | <0.0001 | 0.015 | 0.007 |
n-6/n-3 ratio | 7.97 a | 5.69 b | 2.43 d | 3.27 c | 0.56 | 6.83 | 2.85 | 5.20 | 4.48 | <0.0001 | <0.0001 | <0.0001 |
Σ UFA | 69.99 a | 67.61 b | 70.69 a | 70.06 a | 0.32 | 68.8 | 70.37 | 70.33 | 68.84 | <0.0001 | <0.0001 | 0.005 |
PUFA/SFA | 1.21 b | 1.13 b | 1.31 a | 1.36 a | 0.024 | 1.17 | 1.34 | 1.26 | 1.24 | <0.0001 | 0.429 | 0.015 |
UFA/SFA | 2.46 a | 2.23 b | 2.58 a | 2.53 a | 0.038 | 2.34 | 2.56 | 2.52 | 2.38 | <0.0001 | 0.001 | 0.022 |
Other FA | 1.53 | 1.99 | 1.94 | 2.27 | 0.097 | 1.76 | 2.11 | 1.75 | 2.13 | 0.086 | 0.069 | 0.813 |
Dietary Groups | SEM 3 | Main Effects 2 | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ELP0 | ELP30 | ELP | P 4 | |||||||||
Probiotic (P) | (−) | (+) | (−) | (+) | 0 | 30 | (−) | (+) | ELP | P | Interaction | |
P/S ratio | 1.44 ba | 1.30 c | 1.54 a | 1.61 a | 0.032 | 1.37 | 1.57 | 1.49 | 1.46 | <0.0001 | 0.253 | 0.002 |
DFA (%) | 76.0 b | 74.7 c | 77.0 a | 77.4 a | 0.29 | 75.4 | 77.2 | 76.5 | 76.1 | <0.0001 | 0.084 | 0.004 |
AI (%) | 0.34 a | 0.37 a | 0.32 b | 0.31 b | 0.007 | 0.36 | 0.30 | 0.33 | 0.34 | <0.0001 | 0.200 | 0.020 |
TI (%) | 0.63 | 0.65 | 0.44 | 0.48 | 0.024 | 0.64 a | 0.46 b | 0.53 | 0.56 | <0.0001 | 0.097 | 0.250 |
HSFA (%) | 22.0 a | 23.0 a | 20.8 b | 20.2 cb | 0.32 | 22.5 | 20.5 | 21.4 | 21.6 | <0.0001 | 0.589 | 0.038 |
h/H ratio | 2.99 b | 2.77 cb | 3.18 a | 3.28 a | 0.057 | 2.88 | 3.23 | 3.09 | 3.02 | <0.0001 | 0.285 | 0.012 |
NVI (%) | 1.76 a | 1.64 b | 1.82 a | 1.84 a | 0.024 | 1.70 | 1.83 | 1.79 | 1.74 | <0.0001 | 0.074 | 0.023 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gheorghe, A.; Habeanu, M.; Ciurescu, G.; Lefter, N.A.; Ropota, M.; Custura, I.; Tudorache, M. Effects of Dietary Mixture Enriched in Polyunsaturated Fatty Acids and Probiotic on Performance, Biochemical Response, Breast Meat Fatty Acids, and Lipid Indices in Broiler Chickens. Agriculture 2022, 12, 1120. https://doi.org/10.3390/agriculture12081120
Gheorghe A, Habeanu M, Ciurescu G, Lefter NA, Ropota M, Custura I, Tudorache M. Effects of Dietary Mixture Enriched in Polyunsaturated Fatty Acids and Probiotic on Performance, Biochemical Response, Breast Meat Fatty Acids, and Lipid Indices in Broiler Chickens. Agriculture. 2022; 12(8):1120. https://doi.org/10.3390/agriculture12081120
Chicago/Turabian StyleGheorghe, Anca, Mihaela Habeanu, Georgeta Ciurescu, Nicoleta Aurelia Lefter, Mariana Ropota, Ioan Custura, and Minodora Tudorache. 2022. "Effects of Dietary Mixture Enriched in Polyunsaturated Fatty Acids and Probiotic on Performance, Biochemical Response, Breast Meat Fatty Acids, and Lipid Indices in Broiler Chickens" Agriculture 12, no. 8: 1120. https://doi.org/10.3390/agriculture12081120
APA StyleGheorghe, A., Habeanu, M., Ciurescu, G., Lefter, N. A., Ropota, M., Custura, I., & Tudorache, M. (2022). Effects of Dietary Mixture Enriched in Polyunsaturated Fatty Acids and Probiotic on Performance, Biochemical Response, Breast Meat Fatty Acids, and Lipid Indices in Broiler Chickens. Agriculture, 12(8), 1120. https://doi.org/10.3390/agriculture12081120