Three Methods of Site-Specific Yield Mapping as a Data Source for the Delineation of Management Zones in Winter Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Weather Conditions
2.2. Crop Management
2.3. Experimental Design
2.4. Methods of Determining Yield
- Agricultural management (sowing date, fertilization events, harvest date);
- Crop specifications (variety, photoperiod sensitivity, assimilation rate);
- Dynamic environmental driver variables (temperature, precipitation, radiation, wind);
- Static environmental parameters (location, terrain, and soil properties) [36].
2.5. Data Processing
2.6. Descriptive Statistics
2.7. Correlation Analysis
3. Results
3.1. Spatial Variation in the Wheat Yield in 2018 (Field A)
3.2. Spatial Variation in the Wheat Yield in 2020 (Field B)
3.3. Spatial Variation in the Wheat Yield in 2021 (Field C)
3.4. Correlation between Variables
3.4.1. Field A (2018)
3.4.2. Field B (2020)
3.4.3. Field C (2021)
4. Discussion
4.1. Discussion of the Methods
4.1.1. Site Selection
4.1.2. Ground Truth Data
4.2. Discussion of the Results
4.2.1. Sensor Data
4.2.2. Combine Harvester
4.2.3. Satellite Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hunt, M.L.; Blackburn, G.A.; Carrasco, L.; Redhead, J.W.; Rowland, C.S. High resolution wheat yield mapping using Sentinel-2. Remote Sens. Environ. 2019, 233, 111410. [Google Scholar] [CrossRef]
- Barraclough, P.B.; Howarth, J.R.; Jones, J.; Lopez-Bellido, R.; Parmar, S.; Shepherd, C.E.; Hawkesford, M.J. Nitrogen efficiency of wheat: Genotypic and environmental variation and prospects for improvement. Eur. J. Agron. 2010, 33, 1–11. [Google Scholar] [CrossRef]
- Duan, J.; Shao, Y.; He, L.; Li, X.; Hou, G.; Li, S.; Feng, W.; Zhu, Y.; Wang, Y.; Xie, Y. Optimizing nitrogen management to achieve high yield, high nitrogen efficiency and low nitrogen emission in winter wheat. Sci. Total Environ. 2019, 697, 134088. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, F.; Chen, X.; Dou, Z.; Li, J. In-season nitrogen management strategy for winter wheat: Maximizing yields, minimizing environmental impact in an over-fertilization context. Field Crops Res. 2010, 116, 140–146. [Google Scholar] [CrossRef]
- Mittermayer, M.; Gilg, A.; Maidl, F.X.; Nätscher, L.; Hülsbergen, K.J. Site-specific nitrogen balances based on spatially variable soil and plant properties. Precis. Agric. 2021, 22, 1416–1436. [Google Scholar] [CrossRef]
- Fan, R.; Zhang, X.; Liang, A.; Shi, X.; Chen, X.; Bao, K.; Yang, X.; Jia, S. Tillage and rotation effects on crop yield and profitability on a Black soil in northeast China. Can. J. Soil Sci. 2012, 92, 463–470. [Google Scholar] [CrossRef]
- Klima, K.; Kliszcz, A.; Puła, J.; Lepiarczyk, A. Yield and profitability of crop production in mountain less favoured areas. Agronomy 2020, 10, 700. [Google Scholar] [CrossRef]
- Hakojärvi, M.; Hautala, M.; Ristolainen, A.; Alakukku, L. Yield variation of spring cereals in relation to selected soil physical properties on three clay soil fields. Eur. J. Agron. 2013, 49, 1–11. [Google Scholar] [CrossRef]
- Zebarth, B.J.; Fillmore, S.; Watts, S.; Barrett, R.; Comeau, L.P. Soil factors related to within-field yield variation in commercial potato fields in Prince Edward Island Canada. Am. J. Potato Res. 2021, 98, 139–148. [Google Scholar] [CrossRef]
- Hauser, J.; Maidl, F.X.; Wagner, P. Untersuchung der teilflächenspezifischen Ertragserfassung von Großmähdreschern in Winterweizen (Investigation of site-specific yield mapping of combine harvesters in winter wheat). In Proceedings of the 41st GIL-Jahrestagung, Potsdam, Germany, 8–9 March 2021; pp. 133–138. [Google Scholar]
- Robertson, M.J.; Lyle, G.; Bowden, J.W. Within-field variability of wheat yield and economic implications for spatially variable nutrient management. Field Crops Res. 2008, 105, 211–220. [Google Scholar] [CrossRef]
- Bertic, B.; Loncaric, Z.; Vukadinovic, V.; Vukobratovic, Z.; Vukadinovic, V. Winter wheat yield responses to mineral fertilization. Cereal Res. Commun. 2007, 35, 245–248. [Google Scholar] [CrossRef]
- Cabas, J.; Weersink, A.; Olale, E. Crop yield response to economic, site and climatic variables. Clim. Chang. 2009, 101, 599–616. [Google Scholar] [CrossRef]
- Fasoula, V.A.; Fasoula, D.A. Principles underlying genetic improvement for high and stable crop yield potential. Field Crops Res. 2002, 75, 191–209. [Google Scholar] [CrossRef]
- Buttafuoco, G.; Castrignanò, A.; Colecchia, A.S.; Ricca, N. Delineation of management zones using soil properties and a multivariate geostatistical approach. Ital. J. Agron. 2010, 5, 323–332. [Google Scholar] [CrossRef]
- Farid, H.U.; Bakhsh, A.; Ahmad, N.; Ahmad, A.; Mahmood-Khan, Z. Delineating site-specific management zones for precision agriculture. J. Agric. Sci. 2016, 154, 273–286. [Google Scholar] [CrossRef]
- Moral, F.J.; Terrón, J.M.; Rebollo, F.J. Site-specific management zones based on the Rasch model and geostatistical techniques. Comput. Electron. Agric. 2011, 75, 223–230. [Google Scholar] [CrossRef]
- López-Lozano, R.; Casterad, M.A.; Herrero, J. Site-specific management units in a commercial maize plot delineated using very high resolution remote sensing and soil properties mapping. Comput. Electron. Agric. 2010, 73, 219–229. [Google Scholar] [CrossRef]
- Servadio, P.; Bergonzoli, S.; Verotti, M. Delineation of management zones based on soil mechanical-chemical properties to apply variable rates of inputs throughout a field (VRA). Eng. Agric. Environ. 2017, 10, 20–30. [Google Scholar] [CrossRef]
- Dalgaard, T.; Bienkowski, J.F.; Bleeker, A.; Dragosits, U.; Drouet, J.L.; Durand, P.; Frumau, A.; Hutchings, N.J.; Kedziora, A.; Magliulo, V.; et al. Farm nitrogen balances in six European landscapes as an indicator for nitrogen losses and basis for improved management. Biogeosciences 2012, 9, 5303–5321. [Google Scholar] [CrossRef]
- Strebel, O.; Duynisveld, W.H.M.; Böttcher, J. Nitrate pollution of groundwater in western Europe. Agric. Ecosyst. Environ. 1989, 26, 189–214. [Google Scholar] [CrossRef]
- Diacono, M.; Rubino, P.; Montemurro, F. Precision nitrogen management of wheat. A review. Agron. Sustain. Dev. 2013, 33, 219–241. [Google Scholar] [CrossRef]
- Liu, H.; Whiting, M.L.; Ustin, S.L.; Zarco-Tejada, P.J.; Huffman, T.; Zhang, X. Maximizing the relationship of yield to site-specific management zones with object-oriented segmentation of hyperspectral images. Precis. Agric. 2018, 19, 348–364. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Prücklmaier, J. Feldexperimentelle Analysen zur Ertragsbildung und Stickstoffeffizienz bei Organisch-Mineralischer Düngung auf Heterogenen Standorten und Möglichkeiten zur Effizienzsteigerung durch Computer- und Sensorgestützte Düngesysteme (Field Experimental Analyses of Yield Effects and Nitrogen Efficiency of Fertilizer Application Systems). Ph.D. Thesis, Technische Universität München, Munich, Germany, 2020. [Google Scholar]
- Argento, F.; Anken, T.; Abt, F.; Vogelsanger, E.; Walter, A.; Liebisch, F. Site-specific nitrogen management in winter wheat supported by low-altitude remote sensing and soil data. Precis. Agric. 2020, 22, 364–386. [Google Scholar] [CrossRef]
- Vinzent, B.; Fuß, R.; Maidl, F.X.; Hülsbergen, K.J. Efficacy of agronomic strategies for mitigation of after-harvest N2O emissions of winter oilseed rape. Eur. J. Agron. 2017, 89, 88–96. [Google Scholar] [CrossRef]
- Brock, A.; Brouder, S.M.; Blumhoff, G.; Hofmann, B.S. Defining yield-based management zones for corn-soybean rotations. Agron. J. 2005, 97, 1115–1128. [Google Scholar] [CrossRef]
- Yao, R.J.; Yang, J.S.; Zhang, T.J.; Gao, P.; Wang, X.P.; Hong, L.Z.; Wang, M.W. Determination of site-specific management zones using soil physico-chemical properties and crop yields in coastal reclaimed farmland. Geoderma 2014, 232, 381–393. [Google Scholar] [CrossRef]
- Blasch, G.; Li, Z.; Taylor, J.A. Multi-temporal yield pattern analysis method for deriving yield zones in crop production systems. Precis. Agric. 2020, 21, 1263–1290. [Google Scholar] [CrossRef]
- Jin, Z.; Azzari, G.; Lobell, D.B. Improving the accuracy of satellite-based high-resolution yield estimation: A test of multiple scalable approaches. Agric. For. Meteorol. 2017, 247, 207–220. [Google Scholar] [CrossRef]
- Zhao, Y.; Potgieter, A.B.; Zhang, M.; Wu, B.; Hammer, G.L. Predicting wheat yield at the field scale by combining high-resolution Sentinel-2 satellite imagery and crop modelling. Remote Sens. 2020, 12, 1024. [Google Scholar] [CrossRef]
- Maidl, F.X.; Schächtl, J.; Huber, G. Strategies for site-specific nitrogen fertilization on winter wheat. In Proceedings of the 7th International Conference on Precision Agriculture and other Precision Resources Management, Minneapolis, MN, USA, 25–28 July 2004; pp. 1938–1948. [Google Scholar]
- Arslan, S.; Colvin, T.S. Grain yield mapping: Yield sensing, yield reconstruction, and errors. Precis. Agric. 2002, 3, 135–154. [Google Scholar] [CrossRef]
- Birrell, S.J.; Sudduth, K.A.; Borgelt, S.C. Comparison of sensors and techniques for crop yield mapping. Comput. Electron. Agric. 1996, 14, 215–233. [Google Scholar] [CrossRef]
- Hank, T.; Bach, H.; Mauser, W. Using a remote sensing-supported hydro-agroecological model for field-scale simulation of heterogeneous crop growth and yield: Application for wheat in central Europe. Remote Sens. 2015, 7, 3934–3965. [Google Scholar] [CrossRef]
- Beck, A.D.; Searcy, S.W.; Roades, J.P. Yield data filtering techniques for improved map accuracy. Appl. Eng. Agric. 2001, 17, 423. [Google Scholar]
- Bodenschätzung—Bewertung der Natürlichen Ertragsfähigkeit Landwirtschaftlicher Flächen. Available online: https://www.ldbv.bayern.de/produkte/kataster/boden.html#:~:text=Unter%20Bodensch%C3%A4tzung%20versteht%20man%20die,in%20Acker%2D%20und%20Gr%C3%BCnland%20unterteilt (accessed on 27 July 2022).
- Devaux, N.; Crestey, T.; Leroux, C.; Tisseyre, B. Potential of Sentinel-2 satellite images to monitor vine fields grown at a territorial scale. OENO One 2019, 53, 52–59. [Google Scholar] [CrossRef]
- Wintersteiger, Plot Combine. Available online: https://www.wintersteiger.com/us/Plant-Breeding-and-Research/Products/Product-range/Plot-combine (accessed on 30 June 2022).
- Mauser, W.; Bach, H. PROMET—Large scale distributed hydrological modelling to study the impact of climate change on the water flows of mountain watersheds. J. Hydrol. 2009, 376, 362–377. [Google Scholar] [CrossRef]
- Maidl, F.X.; Spicker, A.; Weng, J.; Hülsbergen, K.J. Ableitung des teilflächenspezifischen Kornertrags von Getreide aus Reflexionsdaten (Derivation of the site-specific grain yield from reflection data). In Proceedings of the 39th GIL-Jahrestagung, Wien, Austria, 18–19 February 2019; pp. 131–134. [Google Scholar]
- TEC5, Spektrometer Systeme, Version 2.13. Available online: https://tec5.com/de/ (accessed on 30 June 2022).
- ArcGIS. Map Creation and Analysis: Location Intelligence for Everyone. Available online: https://www.esri.com/de-de/arcgis/products/arcgis-online/overview (accessed on 30 June 2022).
- Stettmer, M.; Maidl, F.X.; Schwarzensteiner, J.; Hülsbergen, K.J.; Bernhardt, H. Analysis of Nitrogen Uptake in Winter Wheat Using Sensor and Satellite Data for Site-Specific Fertilization. Agronomy 2022, 12, 1455. [Google Scholar] [CrossRef]
- Jiang, P.; Thelen, K.D. Effect of soil and topographic properties on crop yield in a North-Central corn–soybean cropping system. Agron. J. 2004, 96, 252–258. [Google Scholar] [CrossRef]
- Patzold, S.; Mertens, F.M.; Bornemann, L.; Koleczek, B.; Franke, J.; Feilhauer, H.; Welp, G. Soil heterogeneity at the field scale: A challenge for precision crop protection. Precis. Agric. 2008, 9, 367–390. [Google Scholar] [CrossRef]
- Roßkopf, N.; Fell, H.; Zeitz, J. Organic soils in Germany, their distribution and carbon stocks. Catena 2015, 133, 157–170. [Google Scholar] [CrossRef]
- Heijting, S.; de Bruin, S.; Bregt, A.K. The arable farmer as the assessor of within-field soil variation. Precis. Agric. 2011, 12, 488–507. [Google Scholar] [CrossRef]
- Heil, K.; Schmidhalter, U. Improved evaluation of field experiments by accounting for inherent soil variability. Eur. J. Agron. 2017, 89, 1–15. [Google Scholar] [CrossRef]
- Gavioli, A.; de Souza, E.G.; Bazzi, C.L.; Guedes, L.P.C.; Schenatto, K. Optimization of management zone delineation by using spatial principal components. Comput. Electron. Agric. 2016, 127, 302–310. [Google Scholar] [CrossRef]
- Song, X.; Wang, J.; Huang, W.; Liu, L.; Yan, G.; Pu, R. The delineation of agricultural management zones with high resolution remotely sensed data. Precis. Agric. 2009, 10, 471–487. [Google Scholar] [CrossRef]
- Vallentin, C.; Dobers, E.S.; Itzerott, S.; Kleinschmit, B.; Spengler, D. Delineation of management zones with spatial data fusion and belief theory. Precis. Agric. 2020, 21, 802–830. [Google Scholar] [CrossRef]
- Kaivosoja, J.; Näsi, R.; Hakala, T.; Viljanen, N.; Honkavaara, E. Different remote sensing data in relative biomass determination and in precision fertilization task generation for cereal crops. In Proceedings of the 8th International Conference on Information and Communication Technologies in Agriculture, Food & Environment, Chania, Greece, 21–24 September 2017; pp. 164–176. [Google Scholar]
- Bachmaier, M. Using a robust variogram to find an adequate butterfly neighborhood size for one-step yield mapping using robust fitting paraboloid cones. Precis. Agric. 2007, 8, 75–93. [Google Scholar] [CrossRef]
- Simbahan, G.C.; Dobermann, A.; Ping, J.L. Screening yield monitor data improves grain yield maps. Agron. J. 2004, 96, 1091–1102. [Google Scholar] [CrossRef]
- Noack, P.O. Entwicklung fahrspurbasierter Algorithmen zur Korrektur von Ertragsdaten im Precision Farming (Development of Lane-Based Algorithms for the Correction of Yield Data in Precision Farming). Ph.D. Thesis, Technische Universität München, Munich, Germany, 2006. [Google Scholar]
- Steinmayr, T. Fehleranalyse und Fehlerkorrektur bei der lokalen Ertragsermittlung im Mähdrescher zur Ableitung Eines Standardisierten Algorithmus für die Ertragskartierung (Error Analysis and Correction of Yield Recording in Combine Harvesters to Derive a Standardized Algorithm for Yield Mapping). Ph.D. Thesis, Technische Universität München, Munich, Germany, 2002. [Google Scholar]
- Toscano, P.; Castrignanò, A.; Di Gennaro, S.F.; Vonella, A.V.; Ventrella, D.; Matese, A. A Precision agriculture approach for durum wheat yield assessment using remote sensing data and yield mapping. Agronomy 2019, 9, 437. [Google Scholar] [CrossRef]
- Hülsbergen, K.J.; Maidl, F.X.; Mittermayer, M.; Weng, J.; Kern, A.; Leßke, F.; Gilg, A. Digital Basiertes Stickstoffmanagement in Landwirtschaftlichen Betrieben–Emissionsminderung durch Optimierte Stickstoffkreisläufe und Sensorgestützte Teilflächenspezifische Düngung (Digitally Based Nitrogen Management in Agricultural Farms–Emission Reduction through Optimized Nitrogen Cycles and Sensor Based Site-Specific Fertilization); Forschungsbericht an Deutsche Bundesstiftung Umwelt, Technische Universität München: Freising, Germany, 2020; Available online: https://www.dbu.de/projekt_30743/01_db_2848.html (accessed on 2 July 2022).
- Cao, Q.; Miao, Y.; Feng, G.; Gao, X.; Li, F.; Liu, B.; Yue, S.; Cheng, S.; Ustin, S.L.; Khosla, R. Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Comput. Electron. Agric. 2015, 112, 54–67. [Google Scholar] [CrossRef]
- Westermeier, M.; Maidl, F.X. Vergleich von Spektralindizes zur Erfassung der Stickstoffaufnahme bei Winterweizen (Triticum aestivum L.). J. Kulturpfl. 2019, 71, 238–248. [Google Scholar]
- John Deere, Active Yield. Available online: https://www.deere.de/assets/docs/region-2/parts-and-service/manuals-and-training/combines/s-series/Active-Yield-DE.pdf (accessed on 2 July 2022).
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
Property | Unit | Field A | Field B | Field C |
---|---|---|---|---|
Soil classification | Cambisol | Cambisol | Cambisol | |
Soil type | Silty loam | Silty loam | Silty loam | |
Soil fertility index * | 55–60 | 75–85 | 70–80 | |
Sand (0–30 cm) | % | 40.5 | 6.0 | 6.9 |
Silt (0–30 cm) | % | 39.5 | 70.1 | 69.4 |
Clay (0–30 cm) | % | 20.0 | 23.9 | 23.7 |
Available water capacity (in 10 cm) | Vol.% | 17.0 | 24.0 | 23.2 |
Soil organic carbon content (0–30 cm) | % DM | 1.4 | 1.2 | 1.4 |
Soil total nitrogen content (0–30 cm) | % DM | 0.13 | 0.14 | 0.12 |
Plant available phosphorus content (0–30 cm) | mg (100 g)−1 | 13.7 | 14.8 | 17.9 |
Plant available potassium content (0–30 cm) | mg (100 g)−1 | 15.2 | 17.7 | 18.4 |
pH (0–30 cm) | 6.2 | 6.5 | 6.9 |
Unit | January to March | April to June | July to September | October to December | Year | |
---|---|---|---|---|---|---|
2000–2020 Dürnast | ||||||
Temperature | °C | 1.1 | 13.2 | 16.8 | 3.8 | 8.7 |
Precipitation ∑ | mm | 151 | 257 | 236 | 145 | 789 |
2018 Dürnast | ||||||
Temperature | °C | 1.3 | 15.7 | 18.0 | 5.7 | 10.2 |
Precipitation∑ | mm | 143 | 218 | 209 | 158 | 728 |
2000–2020 Makofen | ||||||
Temperature | °C | 1.4 | 14.4 | 17.3 | 4.7 | 9.5 |
Precipitation ∑ | mm | 170 | 209 | 230 | 172 | 781 |
2020 Makofen | ||||||
Temperature | °C | 3.7 | 13.9 | 18.3 | 5.1 | 10.3 |
Precipitation ∑ | mm | 149 | 189 | 176 | 141 | 655 |
2021 Makofen | ||||||
Temperature | °C | 1.8 | 13.1 | 17.3 | 4.4 | 9.2 |
Precipitation ∑ | mm | 129 | 268 | 250 | 165 | 812 |
Field | Treatment | Unit | Amount | Product | Date |
---|---|---|---|---|---|
A | Sowing | kg/ha−1 | 158 | Reform | 26 October 2017 |
A | First N fertilization | kg/ha−1 | 58 | Inno Fert Star | 4 April 2018 |
A | Second N fertilization | kg/ha−1 | 59 | CAN | 8 May 2018 |
A | Third N fertilization | kg/ha−1 | 50 | CAN | 29 May 2018 |
A | N fertilization, total | kg/ha−1 | 167 | ||
A | Plant protection | L/ha−1 | 0.8 | CCC 720 | 14 April 2018 |
A | Plant protection | kg/ha−1 | 0.22 | Broadway | 14 April 2018 |
A | Plant protection | L/ha−1 | 2.0/0.075 | Adexar/Karate | 26 May 2018 |
B | Sowing | kg/ha−1 | 156 | Meister | 27 October 2019 |
B | First N fertilization | kg/ha−1 | 60 | ASN | 28 March 2020 |
B | Second N fertilization | kg/ha−1 | 80 | CAN | 30 April 2020 |
B | Third N fertilization | kg/ha−1 | 40 | CAN | 20 May 2020 |
B | N fertilization, total | kg/ha−1 | 180 | ||
B | Plant protection | kg/ha−1 | 0.05/0.07 | Biathlon, Concert | 7 April 2020 |
B | Plant protection | L/ha−1 | 0.5 | CCC 720 | 7 April 2020 |
B | Plant protection | L/ha−1 | 1.25/0.075 | Capalo/Karate | 16 May 2020 |
B | Plant protection | L/ha−1 | 2.0 | Osiris | 13 June 2020 |
C | Sowing | kg/ha−1 | 205 | Meister | 10 November 2020 |
C | First N fertilization | kg/ha−1 | 78 | ASN | 4 March 2021 |
C | Second N fertilization | kg/ha−1 | 54 | CAN | 8 May 2021 |
C | Third N fertilization | kg/ha−1 | 40 | CAN | 4 June 2021 |
C | N fertilization, total | kg/ha−1 | 172 | ||
C | Plant protection | kg/ha−1 | 0.13 | Broadway | 22 April 2021 |
C | Plant protection | L/ha−1 | 0.25/0.5 | Pixxaro/CCC 720 | 22 April 2021 |
C | Plant protection | L/ha−1 | 1.0/0.3 | Revystar/Flexity | 20 May 2021 |
C | Plant protection | L/ha−1 | 1.0/0.075 | Ascra Xpro/Karate | 11 June 2021 |
Variable | n | Year | Field | Unit | Mean | Median | Minimum | Maximum | Standard Deviation | Skewness |
---|---|---|---|---|---|---|---|---|---|---|
Plot harvester | 93 | 2018 | A | t ha−1 | 8.1 | 8.0 | 6.1 | 10.9 | 1.1 | 0.42 |
Sensor data | 93 | 2018 | A | t ha−1 | 8.1 | 8.1 | 6.1 | 10.4 | 1.0 | 0.18 |
Satellite data | 93 | 2018 | A | t ha−1 | 4.2 | 4.3 | 3.1 | 5.6 | 0.7 | 0.08 |
Combine harvester | 93 | 2018 | A | t ha−1 | 8.8 | 8.9 | 6.1 | 10.9 | 1.1 | −0.11 |
Plot harvester | 106 | 2020 | B | t ha−1 | 9.3 | 9.3 | 8.4 | 10.1 | 0.2 | 0.2 |
Sensor data | 106 | 2020 | B | t ha−1 | 9.4 | 9.3 | 6.8 | 10.4 | 0.9 | −0.4 |
Satellite data | 106 | 2020 | B | t ha−1 | 9.3 | 9.3 | 8.3 | 10.1 | 0.3 | −0.74 |
Combine harvester | 106 | 2020 | B | t ha−1 | 9.8 | 9.8 | 8.4 | 10.2 | 0.2 | −2.7 |
Plot harvester | 150 | 2021 | C | t ha−1 | 5.9 | 5.9 | 4.5 | 7.5 | 0.5 | 0.35 |
Sensor data | 150 | 2021 | C | t ha−1 | 5.9 | 6.0 | 4.4 | 7.2 | 0.5 | −0.61 |
Satellite data | 150 | 2021 | C | t ha−1 | 8.5 | 8.6 | 7.2 | 9.6 | 0.5 | −0.34 |
Combine harvester | 150 | 2021 | C | t ha−1 | 5.7 | 5.7 | 3.7 | 7.8 | 0.7 | 0.13 |
R2 | Sensor 2018 | Satellite 2018 | Combine 2018 | Sensor 2020 | Satellite 2020 | Combine 2020 | Sensor 2021 | Satellite 2021 | Combine 2021 |
---|---|---|---|---|---|---|---|---|---|
Plot harvester (linear) 2018 | 0.74 | 0.68 | 0.69 | ||||||
Plot harvester (polynomial) 2018 | 0.75 | 0.68 | 0.69 | ||||||
Plot harvester (linear) 2020 | 0.69 | 0.51 | 0.25 | ||||||
Plot harvester (polynomial) 2020 | 0.71 | 0.53 | 0.30 | ||||||
Plot harvester (linear) 2021 | 0.67 | 0.54 | 0.72 | ||||||
Plot harvester (polynomial) 2021 | 0.71 | 0.56 | 0.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stettmer, M.; Mittermayer, M.; Maidl, F.-X.; Schwarzensteiner, J.; Hülsbergen, K.-J.; Bernhardt, H. Three Methods of Site-Specific Yield Mapping as a Data Source for the Delineation of Management Zones in Winter Wheat. Agriculture 2022, 12, 1128. https://doi.org/10.3390/agriculture12081128
Stettmer M, Mittermayer M, Maidl F-X, Schwarzensteiner J, Hülsbergen K-J, Bernhardt H. Three Methods of Site-Specific Yield Mapping as a Data Source for the Delineation of Management Zones in Winter Wheat. Agriculture. 2022; 12(8):1128. https://doi.org/10.3390/agriculture12081128
Chicago/Turabian StyleStettmer, Matthias, Martin Mittermayer, Franz-Xaver Maidl, Jürgen Schwarzensteiner, Kurt-Jürgen Hülsbergen, and Heinz Bernhardt. 2022. "Three Methods of Site-Specific Yield Mapping as a Data Source for the Delineation of Management Zones in Winter Wheat" Agriculture 12, no. 8: 1128. https://doi.org/10.3390/agriculture12081128
APA StyleStettmer, M., Mittermayer, M., Maidl, F. -X., Schwarzensteiner, J., Hülsbergen, K. -J., & Bernhardt, H. (2022). Three Methods of Site-Specific Yield Mapping as a Data Source for the Delineation of Management Zones in Winter Wheat. Agriculture, 12(8), 1128. https://doi.org/10.3390/agriculture12081128