Biochar Enhances Plant Growth, Fruit Yield, and Antioxidant Content of Cherry Tomato (Solanum lycopersicum L.) in a Soilless Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Biochar and Substrate Analysis
2.3. Plant Analysis
2.4. Fruit Analysis
2.5. Statistical Analysis
3. Results
3.1. Substrate Physicochemical Characteristics
3.2. Cherry Tomato Plant Characteristics
3.2.1. Morphological Traits
3.2.2. Root and Leaf Carbon and Nitrogen Content
3.2.3. Fruit Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Semida, W.M.; Beheiry, H.R.; Sétamou, M.; Simpson, C.R.; Abd El-Mageed, T.A.; Rady, M.M.; Nelson, S.D. Biochar implications for sustainable agriculture and environment: A review. S. Afr. J. Bot. 2019, 127, 333–347. [Google Scholar] [CrossRef]
- Adeyemi, T.O.A.; Idowu, O.D. Biochar: Promoting crop yield, improving soil fertility, mitigating climate change and restoring polluted soils. World News Nat. Sci. 2017, 8, 27–36. [Google Scholar]
- Panahi, H.K.S.; Dehhaghi, M.; Ok, Y.S.; Nizami, A.S.; Khoshnevisan, B.; Mussatto, S.I.; Aghbashlo, M.; Tabatabaei, M.; Lam, S.S. A comprehensive review of engineered biochar: Production, characteristics, and environmental applications. J. Clean. Prod. 2020, 270, 122462. [Google Scholar] [CrossRef]
- Amendola, C.; Montagnoli, A.; Terzaghi, M.; Trupiano, D.; Oliva, F.; Baronti, S.; Miglietta, F.; Chiatante, D.; Scippa, G.S. Short-term effects of biochar on grapevine fine root dynamics and arbuscular mycorrhizae production. Agric. Ecosyst. Environ. 2017, 239, 236–245. [Google Scholar] [CrossRef]
- Polzella, A.; De Zio, E.; Arena, S.; Scippa, G.S.; Scaloni, A.; Montagnoli, A.; Chiatante, D.; Trupiano, D. Toward an understanding of mechanisms regulating plant response to biochar application. Plant Biosyst. 2019, 153, 163–172. [Google Scholar] [CrossRef]
- Craswell, E.T.; Chalk, P.M.; Kaudal, B.B. Role of 15N in tracing biologically driven nitrogen dynamics in soils amended with biochar: A review. Soil Biol. Biochem. 2021, 162, 108416. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Varjani, S.; Saravanan, A. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol. Rep. 2020, 28, e00570. [Google Scholar] [CrossRef]
- Pokharel, P.; Ma, Z.; Chang, S.X. Biochar increases soil microbial biomass with changes in extra-and intracellular enzyme activities: A global meta-analysis. Biochar 2020, 2, 65–79. [Google Scholar] [CrossRef]
- Huang, L.; Gu, M. Effects of biochar on container substrate properties and growth of plants—A review. Horticulturae 2019, 5, 14. [Google Scholar] [CrossRef]
- Banitalebi, G.; Mosaddeghi, M.R.; Shariatmadari, H. Evaluation of physico-chemical properties of biochar-based mixtures for soilless growth media. J. Mater. Cycles Waste Manag. 2021, 23, 950–964. [Google Scholar] [CrossRef]
- Massa, D.; Bonetti, A.; Cacini, S.; Faraloni, C.; Prisa, D.; Tuccio, L.; Petruccelli, R. Soilless tomato grown under nutritional stress increases green biomass but not yield or quality in presence of biochar as growing medium. Hortic. Environ. Biotechnol. 2019, 60, 871–881. [Google Scholar] [CrossRef]
- Sabatino, L.; Iapichino, G.; Mauro, R.P.; Consentino, B.B.; De Pasquale, C. Poplar biochar as an alternative substrate for curly endive cultivated in a soilless system. Appl. Sci. 2020, 10, 1258. [Google Scholar] [CrossRef]
- Amery, F.; Debode, J.; Ommeslag, S.; Visser, R.; De Tender, C.; Vandecasteele, B. Biochar for circular horticulture: Feedstock related effects in soilless cultivation. Agronomy 2021, 11, 629. [Google Scholar] [CrossRef]
- Altland, J.E.; Locke, J.C. High rates of gasified rice hull biochar affect geranium and tomato growth in a soilless substrate. J. Plant Nutr. 2017, 2015, 1816–1828. [Google Scholar] [CrossRef]
- Polzella, A.; Terzaghi, M.; Trupiano, D.; Baronti, S.; Scippa, G.S.; Chiatante, D.; Montagnoli, A. Morpho-physiological response of Pisum sativum L. to different light-emitting diode (LED) light spectra in combination with biochar amendment. Agronomy 2020, 10, 398. [Google Scholar] [CrossRef]
- Ye, L.; Camps-Arbestain, M.; Shen, Q.; Lehmann, J.; Singh, B.; Sabir, M. Biochar effects on crop yields with and without fertilizer: A meta-analysis of field studies using separate controls. Soil Use Manag. 2020, 36, 2–18. [Google Scholar] [CrossRef]
- Kavitha, B.; Reddy, P.V.L.; Kim, B.; Lee, S.S.; Pandey, S.K.; Kim, K.H. Benefits and limitations of biochar amendment in agricultural soils: A review. J. Environ. Manage. 2018, 227, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Kalus, K.; Koziel, J.A.; Opaliński, S. A review of biochar properties and their utilization in crop agriculture and livestock production. Appl. Sci. 2019, 9, 3494. [Google Scholar] [CrossRef]
- Massantini, R.; Radicetti, E.; Frangipane, M.T.; Campiglia, E. Quality of tomato (Solanum lycopersicum L.) changes under different cover crops, soil tillage and nitrogen fertilization management. Agriculture 2021, 11, 106. [Google Scholar] [CrossRef]
- Rijal, R.; Kumar, A.; Maity, P.; Bisoyi, S.K.; Chattarjee, S.; Nelli, R. Effect of bio-manures on growth and development of tomato (Solanum lycopersicum L.): A review. Plant Cell. Biotechnol. Mol. Biol. 2021, 22, 119–135. [Google Scholar]
- Kumar, M.; Tomar, M.; Bhuyan, D.J.; Punia, S.; Grasso, S.; Sa, A.G.A.; Carciofi, B.A.M.; Arrutia, F.; Changan, S.; Singh, S.; et al. Tomato (Solanum lycopersicum L.) seed: A review on bioactives and biomedical activities. Biomed. Pharmacother. 2021, 142, 112018. [Google Scholar] [CrossRef] [PubMed]
- Kiralan, M.; Ketenoglu, O. Utilization of tomato (Solanum lycopersicum) by-products: An overview. In Mediterranean Fruits Bio-Wastes; Springer: Cham, Switzerland, 2022; pp. 799–818. [Google Scholar]
- Vaccari, F.P.; Maienza, A.; Miglietta, F.; Baronti, S.; Di Lonardo, S.; Giagnoni, L.; Lagomarsino, A.; Pozzi, A.; Pusceddu, E.; Ranieri, R.; et al. Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil. Agric. Ecosyst. Environ. 2015, 207, 163–170. [Google Scholar] [CrossRef]
- She, D.; Sun, X.; Gamareldawla, A.H.; Nazar, E.A.; Hu, W.; Edith, K.; Yu, S.E. Benefits of soil biochar amendments to tomato growth under saline water irrigation. Sci. Rep. 2018, 8, 14743. [Google Scholar] [CrossRef] [PubMed]
- Tartaglia, M.; Arena, S.; Scaloni, A.; Marra, M.; Rocco, M. Biochar administration to san marzano tomato plants cultivated under low-input farming increases growth, fruit yield, and affects gene expression. Front. Plant Sci. 2020, 11, 1281. [Google Scholar] [CrossRef] [PubMed]
- Almaroai, Y.A.; Eissa, M.A. Effect of biochar on yield and quality of tomato grown on a metal-contaminated soil. Sci. Hortic. 2020, 265, 109210. [Google Scholar] [CrossRef]
- Guo, L.; Yu, H.; Kharbach, M.; Zhang, W.; Wang, J.; Niu, W. Biochar improves soil-tomato plant, tomato production, and economic benefits under reduced nitrogen application in northwestern China. Plants 2021, 10, 759. [Google Scholar] [CrossRef] [PubMed]
- Alam, I.; Alam, M.; Khan, A.; Haq, S.U.; Ayaz, A.; Jalal, A.; Bhat, J.A. Biochar supplementation regulates growth and heavy metal accumulation in tomato grown in contaminated soils. Physiol. Plant. 2021, 173, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Conyers, M.K.; Davey, B.G. Observations on some routine methods for soil pH determination. Soil Sci. 1988, 145, 29–36. [Google Scholar] [CrossRef]
- Rhoades, J.D. Salinity: Electrical conductivity and total dissolved solids. In Methods of Soil Analysis: Part 3 Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996. [Google Scholar]
- Mehlich, A. Use of triethanolamine acetate-barium hydroxide buffer for the determination of some base exchange properties and lime requirement of soil. Soil Sci. Soc. Am. Proc. 1938, 29, 374–378. [Google Scholar] [CrossRef]
- Dumas, J.B.A. Procedes de l’analyse organic. Ann. Chim. Phys. 1831, 247, 198–213. [Google Scholar]
- Liao, P.B.; Lin Kramer, S.S. Ion exchange systems for water recirculation. J. World Maric. Soc. 1981, 12, 32–39. [Google Scholar] [CrossRef]
- Bowman, R.A. A rapid method to determine total phosphorus in soils. Soil Sci. Soc. Am. J. 1988, 52, 1301–1304. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; U.S. Department of Agriculture Circular No. 939; Banderis, A.D., Barter, D.H., Anderson, K., Eds.; U.S. Department of Agriculture: Asheville, NC, USA, 1954.
- USDA. Visual Aid TM-L-1; The John Henry Co.: Lansing, MI, USA, 1975.
- Petruccelli, R.; Bonetti, A.; Traversi, M.L.; Faraloni, C.; Valagussa, M.; Pozzi, A. Influence of biochar application on nutritional quality of tomato (Lycopersicon esculentum). Crop Pasture Sci. 2015, 66, 747–755. [Google Scholar] [CrossRef]
- George, B.; Kaur, C.; Khurdiya, D.S.; Kapoor, H.C. Antioxidans in tomato (Lycopersicum esculentum) as a function of genotype. Food Chem. 2004, 84, 45–51. [Google Scholar] [CrossRef]
- Olmo, M.; Villar, R.; Salazar, P.; Alburquerque, J.A. Changes in soil nutrient availability explain biochar’s impact on wheat root development. Plant Soil 2016, 399, 333–343. [Google Scholar] [CrossRef]
- Yuan, H.; Lu, T.; Wang, Y.; Chen, Y.; Lei, T. Sewage sludge biochar: Nutrient composition and its effect on the leaching of soil nutrients. Geoderma 2016, 267, 17–23. [Google Scholar] [CrossRef]
- Teurscherova, N.; Vazquez, E.; Masaguer, A.; Navas, M.; Scow, K.M.; Schmidt, R.; Benito, M. Comparison of lime- and biochar- mediated pH changes in nitrification and ammonia oxidizers in degraded acid soil. Biol. Fertil. Soils 2017, 53, 811–821. [Google Scholar] [CrossRef]
- Suliman, W.; Harsh, J.B.; Abu-Lail, N.I.; Fortuna, A.M.; Dallmeyer, I.; Garcia-Pérez, M. The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. Sci. Total Environ. 2017, 574, 139–147. [Google Scholar] [CrossRef]
- Hailegnaw, N.S.; Mercl, F.; Pračke, K.; Száková, J.; Tlustoš, P. Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. J. Soil Sediments 2019, 19, 2405–2416. [Google Scholar] [CrossRef]
- Gondek, K.; Mierzwa-Hersztek, M.; Kopeć, M.; Sikora, J.; Głąb, T.; Szczurowska, K. Influence of biochar application on reduced acidification of sandy soil, increased cation exchange capacity, and the content of available forms of K, Mg, and P. Pol. J. Environ. Stud. 2019, 28, 1–9. [Google Scholar] [CrossRef]
- Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Wong, J.W.; Ogbonnaya, U.O. Biochar porosity: A nature-based dependent parameter to deliver microorganisms to soils for land restoration. Environ. Sci. Pollut. Res. 2021, 28, 46894–46909. [Google Scholar] [CrossRef]
- Álvarez, J.M.; Pasian, C.; Lal, R.; López, R.; Díaz, M.J.; Fernández, M. Morpho-physiological plant quality when biochar and vermicompost are used as growing media replacement in urban horticulture. Urban For. Urban Green. 2018, 34, 175–180. [Google Scholar] [CrossRef]
- Graber, E.R.; Harel, Y.M.; Kolton, M.; Cytryn, E.; Silber, A.; David, D.R.; Tsechansky, L.; Borenshtein, M.; Elad, Y. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 2010, 337, 481–496. [Google Scholar] [CrossRef]
- Dunlop, S.J.; Arbestain, M.C.; Bishop, P.A.; Wargent, J.J. Closing the loop: Use of biochar produced from tomato crop green waste as a substrate for soilless, hydroponic tomato production. HortScience 2015, 50, 1572–1581. [Google Scholar] [CrossRef]
- Suthar, R.G.; Wang, C.; Nunes, M.C.N.; Chen, J.; Sargent, S.A.; Bucklin, R.A.; Gao, B. Bamboo biochar pyrolyzed at low temperature improves tomato plant growth and fruit quality. Agriculture 2018, 8, 153. [Google Scholar] [CrossRef]
- Rodríguez-Ortega, W.M.; Martínez, V.; Nieves, M.; Simón, I.; Lidón, V.; Fernandez-Zapata, J.C.; Martinez-Nicolas, J.J.; Camara-Zapata, J.M.; García-Sánchez, F. Agricultural and physiological responses of tomato plants grown in different soilless culture systems with saline water under greenhouse conditions. Sci. Rep. 2019, 9, 6733. [Google Scholar] [CrossRef]
- Gage, E.; Kaye, D.; Mulholland, B. Biochar and chitin amendments for tomato substrates in commercial production: Evaluation of the potential to enhance growing media sustainability. In Proceedings of the II International Symposium on Growing Media, Soilless Cultivation, and Compost Utilization in Horticulture, Ghent, Belgium, 22–27 August 2021; Volume 1317, pp. 9–16. [Google Scholar]
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’Neill, B.; Skjemstad, O.; Thies, J.; Luizão, F.J.; Petersen, J.; et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ. 2016, 453, 295–306. [Google Scholar] [CrossRef]
- Obia, A.; Martinsen, V.; Cornelissen, G.; Børresen, T.; Smebye, A.B.; Munera-Echeverri, J.L.; Mulder, J. Biochar application to soil for increased resilience of agroecosystems to climate change in Eastern and Southern Africa. Agriculture and Ecosystem Resilience in Sub Saharan Africa. Clim. Change Manag. 2019, 2019, 129–144. [Google Scholar]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Parvage, M.M.; Ulen, B.; Eriksson, J.; Strock, J.; Kirchmann, H. Phosphorus availability in soils amended with wheat residue char. Biol. Fertil. Soils 2013, 49, 245–250. [Google Scholar] [CrossRef]
- Chintala, R.; Schumacher, T.E.; McDonald, L.M.; Clay, D.E.; Malo, D.D.; Papiernik, S.K.; Clay, S.A.; Julson, J.L. Phosphorus sorption and availability from biochars and soil/biochar mixtures. Clean Soil Air Water 2014, 42, 626–634. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, C.; Gray, E.M.; Boyd, S.E.; Yang, H.; Zhang, D. Roles of biochar in improving phosphorus availability in soils: A phosphate adsorbent and a source of available phosphorus. Geoderma 2016, 276, 1–6. [Google Scholar] [CrossRef]
- Altland, J.E.; Locke, J.C. Effect of biochar type on macronutrient retention and release from soilless substrate. HortScience 2013, 48, 1397–1402. [Google Scholar] [CrossRef]
- Solaiman, Z.M.; Murphy, D.V.; Abbott, L.K. Biochars influence seed germination and early growth of seedlings. Plant Soil 2012, 353, 273–287. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Free, H.; McGill, C.; Rowarth, J.; Hedley, M. The effect of biochars on maize (Zea mays) germination. N. Z. J. Agric. Res. 2010, 53, 1–4. [Google Scholar] [CrossRef]
- Choi, H.S.; Zhao, Y.; Dou, H.; Cai, X.; Gu, M.; Yu, F. Effects of biochar mixtures with pine-bark based substrates on growth and development of horticultural crops. Hortic. Environ. Biotechnol. 2018, 59, 345–354. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, X.; Wang, S.; Pu, X. Benefits of organic manure combined with biochar amendments to cotton root growth and yield under continuous cropping systems in Xinjiang, China. Sci. Rep. 2020, 10, 4718. [Google Scholar] [CrossRef]
- Simiele, M.; De Zio, E.; Montagnoli, A.; Terzaghi, M.; Chiatante, D.; Scippa, G.S.; Trupiano, D. Biochar and/or compost to enhance nursery-produced seedling performance: A potential tool for forest restoration programs. Forests 2022, 13, 550. [Google Scholar] [CrossRef]
- Montagnoli, A.; Baronti, S.; Alberto, D.; Chiatante, D.; Scippa, G.S.; Terzaghi, M. Pioneer and fibrous root seasonal dynamics of Vitis vinifera L. are affected by biochar application to a low fertility soil: A rhizobox approach. Sci. Total Environ. 2021, 751, 141455. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Lic, G.; Andersend, M.N.; Liu, F. Biochar enhances yield and quality of tomato under reduced irrigation. Agric. Water Manag. 2014, 138, 37–44. [Google Scholar] [CrossRef]
- Li, C.; Xiong, Y.; Qu, Z.; Xu, X.; Huang, Q.; Huang, G. Impact of biochar addition on soil properties and water-fertilizer productivity of tomato in semi-arid region of Inner Mongolia, China. Geoderma 2018, 331, 100–108. [Google Scholar] [CrossRef]
- Subedi, R.; Bertora, C.; Zavattaro, L.; Grignani, C. Crop response to soils amended with biochar: Expected benefits and unintended risks. Ital. J. Agron. 2017, 12, 161–173. [Google Scholar] [CrossRef]
- Nzanza, B.; Marais, D.; Soundy, P. Effect of arbuscular mycorrhizal fungal inoculation and biochar amendment on growth and yield of tomato. Int. J. Agric. Biol. 2012, 14, 965–969. [Google Scholar]
- Abiven, S.; Hund, A.; Martinsen, V.; Cornelissen, G. Biochar amendment increases maize root surface areas and branching: A shovelomics study in Zambia. Plant Soil 2015, 395, 45–55. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bird, M.; Nelson, P.; Bass, A. The ameliorating effects of biochar and compost on soil quality and plant growth on a Ferralsol. Soil Res. 2015, 53, 1–12. [Google Scholar] [CrossRef]
- Guo, L.; Yu, H.; Kharbach, M.; Wang, J. The response of nutrient uptake, photosynthesis and yield of tomato to biochar addition under reduced nitrogen application. Agronomy 2021, 11, 1598. [Google Scholar] [CrossRef]
- Poulton, J.L.; Bryla, D.; Koide, R.T.; Stephenson, A.G. Mycorrhyzal infection and high soil phosphorus improve vegetative growth and the female and male functions in tomato. New Phytol. 2002, 154, 255–264. [Google Scholar] [CrossRef]
- Hameeda; Shamim, G.; Gul, B.; Misbah, M.; Tasawar, A.C.; Adnan, A.A. Biochar and manure influences tomato fruit yield, heavy metal accumulation and concentration of soil nutrients under wastewater irrigation in arid climatic conditions. Cogent Food Agric. 2019, 5, 1576406. [Google Scholar] [CrossRef]
- Kammann, C.I.; Sebastian, L.; Johannes, W.G.; Hans-Werner, K. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil-plant relations. Plant Soil 2011, 345, 195–210. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, F.; Wang, G.; Zhang, G.; Wang, Y.; Chen, X.; Mao, Z. Effects of biochar on photosynthesis and antioxidative system of Malus hupehensis Rehd. seedlings under replant conditions. Sci. Hortic. 2014, 175, 9–15. [Google Scholar] [CrossRef]
Parameter | Unit | Biochar |
---|---|---|
pH | − | 9.7 ± 0.1 |
EC | dS·m−1 | 7.5 ± 0.4 |
CEC | cmol(+)·kg−1 | 21.3 ± 0.3 |
Ntot | g·kg−1 | 9.1 ± 0.2 |
Nav | mg·kg−1 | 30 ± 0.4 |
Ptot | mg·kg−1 | 1221.9 ± 21.3 |
Pav | mg·kg−1 | 217 ± 3.0 |
Ctot | g·kg−1 | 778.1 ± 0.1 |
Corg | g·kg−1 | 705.6 ± 0.1 |
H | g·kg−1 | 45.3 ± 0.2 |
H/Corg | − | 0.76 |
Parameter | |||||||||
---|---|---|---|---|---|---|---|---|---|
pH | EC (dS·m−1) | CEC (cmol(+)·kg−1) | Ntot (g·kg−1) | Nav (mg·kg−1) | Ptot (mg·kg−1) | Pav (mg·kg−1) | Ctot (g·kg−1) | ||
T0 | C | 6.6 ± 0.1 a | 0.9 ± 0.3 a | 18 ± 0.9 a | 13 ± 1.2 a | 120 ± 5 b | 457 ± 17 a | 40.4 ± 2.2 a | 23.0 ± 0.6 b |
B | 6.7 ± 0.1 a | 0.9 ± 0.3 a | 19 ± 0.9 a | 15 ± 1.4 a | 140 ± 5 a | 484 ± 18 a | 42.4 ± 2.3 a | 26.0 ± 0.6 a | |
Es | C | 7.4 ± 0.1 ax | 0.8 ± 0.3 ax | 18 ± 0.9 ax | 16 ± 1.5 ax | 150 ± 17 ax | 545 ± 20 ax | 42.6 ± 1.5 ax | 25.6 ± 0.6 ax |
B | 7.4 ± 0.1 ax | 1.1 ± 0.4 ax | 19 ± 0.9 ax | 14 ± 1.3 ax | 140 ± 6 ax | 534 ± 20 ax | 37.9 ± 1.3 bx | 25.6 ± 0.6 ax | |
Vs | C | 7.4 ± 0.1 ax | 0.9 ± 0.3 ax | 17 ± 0.8 axy | 11 ± 1.1 ay | 110 ± 5 ay | 440 ± 17 ay | 38.7 ± 1.4 ay | 20.1 ± 0.5 by |
B | 7.5 ± 0.1 ax | 1.2 ± 0.4 ax | 18 ± 0.9 ax | 12 ± 1.2 axy | 110 ± 4 ay | 432 ± 16 ay | 38.7 ± 1.3 ax | 23.0 ± 0.6 ay | |
Fs | C | 7.5 ± 0.1 ax | 1.0 ± 0.4 ax | 16 ± 0.8 by | 12 ± 1.2 ay | 120 ± 5 ay | 347 ± 13 bz | 23.9 ± 0.8 az | 19.8 ± 0.5 ay |
B | 7.5 ± 0.1 ax | 1.3 ± 0.4 ax | 18 ± 0.8 ax | 10 ± 0.9 ay | 100 ± 4 bz | 412 ± 15 ay | 27.6 ± 0.9 ay | 20.1 ± 0.5 az |
Characteristic | |||||
---|---|---|---|---|---|
Root Ntot (%) | Root Ctot (%) | Leaf Ntot (%) | Leaf Ctot (%) | ||
Es | C | 3.39 ± 0.07 ax | 37.85 ± 0.70 az | 6.10 ± 0.03 ax | 36.04 ± 1.45 ax |
B | 3.68 ± 0.10 ax | 37.77 ± 0.25 ay | 6.93 ± 0.01 ax | 32.49 ± 1.90 bx | |
Vs | C | 2.22 ± 0.10 ay | 40.53 ± 0.15 ay | 3.64 ± 0.45 ay | 35.37 ± 3.55 ax |
B | 2.08 ± 0.22 ay | 40.21 ± 0.70 ay | 4.50 ± 0.40 ay | 36.19 ± 2.85 ax | |
Fs | C | 1.28 ± 0.005 az | 42.87 ± 0.30 ax | 1.45 ± 0.27 az | 34.97 ± 1.50 ax |
B | 1.68 ± 0.16 bz | 41.32 ± 0.75 ax | 1.88 ± 0.30 az | 35.93 ± 1.90 ax |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simiele, M.; Argentino, O.; Baronti, S.; Scippa, G.S.; Chiatante, D.; Terzaghi, M.; Montagnoli, A. Biochar Enhances Plant Growth, Fruit Yield, and Antioxidant Content of Cherry Tomato (Solanum lycopersicum L.) in a Soilless Substrate. Agriculture 2022, 12, 1135. https://doi.org/10.3390/agriculture12081135
Simiele M, Argentino O, Baronti S, Scippa GS, Chiatante D, Terzaghi M, Montagnoli A. Biochar Enhances Plant Growth, Fruit Yield, and Antioxidant Content of Cherry Tomato (Solanum lycopersicum L.) in a Soilless Substrate. Agriculture. 2022; 12(8):1135. https://doi.org/10.3390/agriculture12081135
Chicago/Turabian StyleSimiele, Melissa, Oriana Argentino, Silvia Baronti, Gabriella Stefania Scippa, Donato Chiatante, Mattia Terzaghi, and Antonio Montagnoli. 2022. "Biochar Enhances Plant Growth, Fruit Yield, and Antioxidant Content of Cherry Tomato (Solanum lycopersicum L.) in a Soilless Substrate" Agriculture 12, no. 8: 1135. https://doi.org/10.3390/agriculture12081135
APA StyleSimiele, M., Argentino, O., Baronti, S., Scippa, G. S., Chiatante, D., Terzaghi, M., & Montagnoli, A. (2022). Biochar Enhances Plant Growth, Fruit Yield, and Antioxidant Content of Cherry Tomato (Solanum lycopersicum L.) in a Soilless Substrate. Agriculture, 12(8), 1135. https://doi.org/10.3390/agriculture12081135