Switchgrass Establishment Can Ameliorate Soil Properties of the Abandoned Cropland in Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description and Management
2.2. Soil Sampling and Properties Determination
2.3. Statistical Analysis
3. Results
3.1. Soil Physical Properties of the Bare Land and Switchgrass Land
3.2. Soil Chemical Properties of the Bare Land and Switchgrass Land
3.3. Soil Microbial Indicators and Correlations with Soil Other Properties
4. Discussion
4.1. Effects of 7-Year Switchgrass Establishment on Soil Physical Properties
4.2. Effects of 7-Year Unfertilized Switchgrass on Soil Nutrient Levels
4.3. Effects of 7-Year Unfertilized Switchgrass on Soil Microbial Indicators
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Z.; Li, Y. Effects of grassland degradation on soil and water loss. Arid. Land Res. Manag. 2003, 17, 65–68. [Google Scholar]
- Li, B.; Tang, H.; Wu, L.; Li, Q.; Zhou, C. Relationships between the soil organic carbon density of surface soils and the influencing factors in differing land uses in Inner Mongolia. Environ. Earth Sci. 2012, 65, 195–202. [Google Scholar] [CrossRef]
- Ongley, E.D.; Xiaolan, Z.; Tao, Y. Current status of agricultural and rural non-point source pollution assessment in China. Environ. Pollut. 2010, 158, 1159–1168. [Google Scholar] [CrossRef]
- Bullock, A.; King, B. Evaluating China’s Slope Land Conversion Program as sustainable management in Tianquan and Wuqi Counties. J. Environ. Manag. 2011, 92, 1916–1922. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, K.; Zhang, J.; Li, D.; Zhang, Y.; Xiang, H. Grass cultivation alters soil organic carbon fractions in a subtropical orchard of southern China. Soil Tillage Res. 2018, 181, 110–116. [Google Scholar] [CrossRef]
- Slessarev, E.W.; Nuccio, E.E.; McFarlane, K.J.; Ramon, C.E.; Saha, M.; Firestone, M.K.; Pett-Ridge, J. Quantifying the effects of switchgrass (Panicum virgatum) on deep organic C stocks using natural abundance 14C in three marginal soils. GCB Bioenergy 2020, 12, 834–847. [Google Scholar] [CrossRef]
- Berti, M.T.; Johnson, B.L. Switchgrass establishment as affected by seeding depth and soil type. Ind. Crop. Prod. 2013, 41, 289–293. [Google Scholar] [CrossRef]
- McLaughlin, S.B.; Kszos, L.A. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass-Bioenergy 2005, 28, 515–535. [Google Scholar] [CrossRef]
- Guretzky, J.A.; Biermacher, J.T.; Cook, B.J.; Kering, M.K.; Mosali, J. Switchgrass for forage and bioenergy: Harvest and nitrogen rate effects on biomass yields and nutrient composition. Plant Soil 2011, 339, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Phouthavong-Murphy, J.C.; Merrill, A.K.; Zamule, S.; Giacherio, D.; Brown, B.; Roote, C.; Das, P. Phytoremediation potential of switchgrass (Panicum virgatum), two United States native varieties, to remove bisphenol-A (BPA) from aqueous media. Sci. Rep. 2020, 10, 835. [Google Scholar] [CrossRef]
- Yue, Y.; Hou, X.; Fan, X.; Zhu, Y.; Zhao, C.; Wu, J. Biomass yield components for 12 switchgrass cultivars grown in Northern China. Biomass-Bioenergy 2017, 102, 44–51. [Google Scholar] [CrossRef]
- He, H.; Wu, N.; Liu, J.; Chen, J.; Liu, X.; Chang, W. Effects of planting years of Panicum virgatum on soil physical and chemical properties. Ecol. Environ. Sci. 2020, 29, 285–292. (In Chinese) [Google Scholar]
- He, H.; Wu, N.; Liu, J.; Xu, X. Effects of different fertilization treatments on soil chemical properties and bacterial diversity in switchgrass field. Soil Fertil. Sci. China 2022, 3, 164–172. (In Chinese) [Google Scholar]
- Stewart, C.E.; Follett, R.F.; Pruessner, E.G.; Varvel, G.E.; Vogel, K.P.; Mitchell, R.B. Nitrogen and harvest effects on soil properties under rainfed switchgrass and no-till corn over 9 years: Implications for soil quality. GCB Bioenergy 2015, 7, 288–301. [Google Scholar] [CrossRef]
- Lemus, R.; Lal, R. Bioenergy Crops and Carbon Sequestration. Crit. Rev. Plant Sci. 2005, 24, 1–21. [Google Scholar] [CrossRef]
- Liebig, M.; Johnson, H.; Hanson, J.; Frank, A. Soil carbon under switchgrass stands and cultivated cropland. Biomass-Bioenergy 2005, 28, 347–354. [Google Scholar] [CrossRef]
- Lai, L.; Kumar, S.; Osborne, S.; Owens, V.N. Switchgrass impact on selected soil parameters, including soil organic carbon, within six years of establishment. Catena 2018, 163, 288–296. [Google Scholar] [CrossRef]
- Chatterjee, A.; Long, D.S.; Pierce, F.J. Switchgrass influences on soil biogeochemical processes in the dryland region of the Pacific Northwest. Commun. Soil Sci. Plant Anal. 2013, 44, 2314–2326. [Google Scholar] [CrossRef]
- Martinez-Feria, R.; Basso, B. Predicting soil carbon changes in switchgrass grown on marginal lands under climate change and adaptation strategies. GCB Bioenergy 2020, 12, 742–755. [Google Scholar] [CrossRef]
- Ledo, A.; Smith, P.; Zerihun, A.; Whitaker, J.; Vicente-Vicente, J.L.; Qin, Z.; McNamara, N.P.; Zinn, Y.L.; Llorente, M.; Liebig, M.; et al. Changes in soil organic carbon under perennial crops. Glob. Chang. Biol. 2020, 26, 4158–4168. [Google Scholar] [CrossRef]
- Kasanke, C.P.; Zhao, Q.; Bell, S.; Thompson, A.M.; Hofmockel, K.S. Can switchgrass increase carbon accrual in marginal soils? The importance of site selection. GCB Bioenergy 2021, 13, 320–335. [Google Scholar] [CrossRef]
- Zhao, F.; Yang, W.; Zeng, Z.; Li, H.; Yang, X.; He, Z.; Gu, B.; Rafiq, M.T.; Peng, H. Nutrient removal efficiency and biomass production of different bioenergy plants in hypereutrophic water. Biomass-Bioenergy 2012, 42, 212–218. [Google Scholar] [CrossRef]
- Kering, M.K.; Guretzky, J.A.; Interrante, S.M.; Butler, T.J.; Biermacher, J.T.; Mosali, J. Harvest timing affects switchgrass production, forage nutritive value, and nutrient removal. Crop Sci. 2013, 53, 1809–1817. [Google Scholar] [CrossRef] [Green Version]
- Kimura, E.; Collins, H.P.; Fransen, S. Biomass production and nutrient removal by switchgrass under irrigation. Agron. J. 2015, 107, 204–210. [Google Scholar] [CrossRef]
- Propheter, J.L.; Staggenborg, S. Performance of annual and perennial biofuel crops: Nutrient removal during the first two years. Agron. J. 2010, 102, 798–805. [Google Scholar] [CrossRef]
- Kumar, P.; Lai, L.; Battaglia, M.L.; Kumar, S.; Owens, V.; Fike, J.; Galbraith, J.; Hong, C.O.; Farris, R.; Crawford, R.; et al. Impacts of nitrogen fertilization rate and landscape position on select soil properties in switchgrass field at four sites in the USA. Catena 2019, 180, 183–193. [Google Scholar] [CrossRef]
- Chen, G.; Zhu, H.; Zhang, Y. Soil microbial activities and carbon and nitrogen fixation. Res. Microbiol. 2003, 154, 393–398. [Google Scholar] [CrossRef]
- Liang, C.; Jesus, E.D.C.; Duncan, D.; Jackson, R.D.; Tiedje, J.M.; Balser, T.C. Soil microbial communities under model biofuel cropping systems in southern Wisconsin, USA: Impact of crop species and soil properties. Appl. Soil Ecol. 2012, 54, 24–31. [Google Scholar] [CrossRef]
- Mafa-Attoye, T.G.; Thevathasan, N.V.; Dunfield, K.E. Indications of shifting microbial communities associated with growing biomass crops on marginal lands in Southern Ontario. Agrofor. Syst. 2019, 94, 735–746. [Google Scholar] [CrossRef] [Green Version]
- Sekaran, U.; McCoy, C.; Kumar, S.; Subramanian, S. Soil microbial community structure and enzymatic activity responses to nitrogen management and landscape positions in switchgrass (Panicum virgatum L.). GCB Bioenergy 2019, 11, 836–851. [Google Scholar] [CrossRef] [Green Version]
- Roley, S.S.; Ulbrich, T.C.; Robertson, G.P. Nitrogen fixation and resorption efficiency differences among twelve upland and lowland switchgrass cultivars. Phytobiomes J. 2021, 5, 97–107. [Google Scholar] [CrossRef]
- Wewalwela, J.J.; Tian, Y.; Donaldson, J.R.; Baldwin, B.S.; Varco, J.J.; Rushing, B.; Lu, H.; Williams, M.A. Associative nitrogen fixation linked with three perennial bioenergy grasses in field and greenhouse experiments. GCB Bioenergy 2020, 12, 1104–1117. [Google Scholar] [CrossRef]
- Roley, S.S.; Xue, C.; Hamilton, S.K.; Tiedje, J.M.; Robertson, G.P. Isotopic evidence for episodic nitrogen fixation in switchgrass (Panicum virgatum L.). Soil Biol. Biochem. 2019, 129, 90–98. [Google Scholar] [CrossRef]
- Zhao, C.; Fan, X.; Li, X.; Hou, X.; Zhang, W.; Yue, Y.; Zhu, Y.; Wang, C.; Zuo, Y.; Wu, J. Miscanthus sacchriflorus exhibits sustainable yields and ameliorates soil properties but potassium stocks without any input over a 12-year period in China. GCB Bioenergy 2020, 12, 556–570. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, S.L.; Feng, Z.W.; Wang, H.; Huang, H. Comparative study of selected soil properties following introduction of broad-leaf trees into clear-felled Chinese fir forest. Commun. Soil Sci. Plant Anal. 2005, 36, 1385–1403. [Google Scholar] [CrossRef]
- Dhillon, N.; Dev, G. Changes in available nitrogen, phosphorus and potassium in soils of different fertility status as affected by groundnut-wheat rotation. J. Indian Soc. Soil Sci. 1979, 27, 138–141. [Google Scholar]
- Li, J.; Guo, C.; Jian, S.; Deng, Q.; Yu, C.-L.; Dzantor, K.E.; Hui, D. Nitrogen fertilization elevated spatial heterogeneity of soil microbial biomass carbon and nitrogen in switchgrass and gamagrass croplands. Sci. Rep. 2018, 8, 1734. [Google Scholar] [CrossRef] [Green Version]
- Brookes, P.C.; Powlson, D.S.; Jenkinson, D.S. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem. 1982, 14, 319–329. [Google Scholar] [CrossRef]
- Bertheux, M.H. A modified procedure for the fractionation and determination of soil phosphorus. J. Sci. Food Agric. 1958, 9, 177–181. [Google Scholar] [CrossRef]
- Khreish, E.A.; Boltz, D.F. Indirect spectrophotometric and atomic absorption spectrometric methods for the determination of potassium. Mikrochim. Acta 1970, 58, 1174–1180. [Google Scholar] [CrossRef]
- Martin, J.P. Use of acid, rose-bengal and streptomycin in the plate method for estimating soil fungi. Soil Sci. 1950, 69, 215–232. [Google Scholar] [CrossRef]
- Atlas, R.M.; Park, L.C. Handbook of Microbiological Media; CRC Press, Inc.: Boca Raton, FL, USA, 2000. [Google Scholar]
- Murphy, C.A.; Foster, B.L.; Ramspott, M.E.; Price, K.P. Grassland management effects on soil bulk density. Trans. Kans. Acad. Sci. 2004, 107, 45–54. [Google Scholar] [CrossRef]
- Singh, N.; Dhaliwal, J.K.; Sekaran, U.; Kumar, S. Soil hydrological properties as influenced by long-term nitrogen application and landscape positions under switchgrass seeded to a marginal cropland. GCB Bioenergy 2019, 11, 1026–1040. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H.; Gilley, J.E.; Eisenhauer, D.E.; Jasa, P.J.; Boldt, A. Soil carbon accumulation under switchgrass barriers. Agron. J. 2014, 106, 2185–2192. [Google Scholar] [CrossRef] [Green Version]
- Schmer, M.R.; Liebig, M.A.; Vogel, K.P.; Mitchell, R.B. Field-scale soil property changes under switchgrass managed for bioenergy. GCB Bioenergy 2011, 3, 439–448. [Google Scholar] [CrossRef] [Green Version]
- Burylo, M.; Hudek, C.; Rey, F. Soil reinforcement by the roots of six dominant species on eroded mountainous marly slopes (Southern Alps, France). Catena 2011, 84, 70–78. [Google Scholar] [CrossRef]
- Mudgal, A.; Anderson, S.H.; Baffaut, C.; Kitchen, N.R.; Sadler, E. Effects of long-term soil and crop management on soil hydraulic properties for claypan soils. J. Soil Water Conserv. 2010, 65, 393–403. [Google Scholar] [CrossRef] [Green Version]
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The soil management assessment framework: A quantitative soil quality evaluation method. Soil Sci. Soc. Am. J. 2004, 68, 1945–1962. [Google Scholar] [CrossRef]
- Dou, F.; Hons, F.; Ocumpaugh, W.; Read, J.; Hussey, M.; Muir, J. Soil organic carbon pools under switchgrass grown as a bioenergy crop compared to other conventional crops. Pedosphere 2013, 23, 409–416. [Google Scholar] [CrossRef]
- Bahulikar, R.A.; Chaluvadi, S.R.; Torres-Jerez, I.; Mosali, J.; Bennetzen, J.L.; Udvardi, M. Nitrogen fertilization reduces nitrogen fixation activity of diverse diazotrophs in switchgrass roots. Phytobiomes J. 2021, 5, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Roley, S.S.; Duncan, D.S.; Liang, D.; Garoutte, A.; Jackson, R.D.; Tiedje, J.M.; Robertson, G.P. Associative nitrogen fixation (ANF) in switchgrass (Panicum virgatum) across a nitrogen input gradient. PLoS ONE 2018, 13, e0197320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vadas, P.A.; Barnett, K.H.; Undersander, D.J. Economics and energy of ethanol production from alfalfa, corn, and switchgrass in the Upper Midwest, USA. BioEnergy Res. 2008, 1, 44–55. [Google Scholar] [CrossRef]
- Monti, A.; Barbanti, L.; Zatta, A.; Zegada-Lizarazu, W. The contribution of switchgrass in reducing GHG emissions. GCB Bioenergy 2012, 4, 420–434. [Google Scholar] [CrossRef] [Green Version]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; van der Putten, W.H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef]
- van Delden, L.; Rowlings, D.W.; Scheer, C.; Grace, P.R. Urbanisation-related land use change from forest and pasture into turf grass modifies soil nitrogen cycling and increases N2O emissions. Biogeosciences 2016, 13, 6095–6106. [Google Scholar] [CrossRef] [Green Version]
- Marschner, P.; Kandeler, E.; Marschner, B. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 2003, 35, 453–461. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Hou, X.; Guo, Q.; Yue, Y.; Wu, J.; Cao, Y.; Wang, Q.; Li, C.; Wang, Z.; Fan, X. Switchgrass Establishment Can Ameliorate Soil Properties of the Abandoned Cropland in Northern China. Agriculture 2022, 12, 1138. https://doi.org/10.3390/agriculture12081138
Zhao C, Hou X, Guo Q, Yue Y, Wu J, Cao Y, Wang Q, Li C, Wang Z, Fan X. Switchgrass Establishment Can Ameliorate Soil Properties of the Abandoned Cropland in Northern China. Agriculture. 2022; 12(8):1138. https://doi.org/10.3390/agriculture12081138
Chicago/Turabian StyleZhao, Chunqiao, Xincun Hou, Qiang Guo, Yuesen Yue, Juying Wu, Yawei Cao, Qinghai Wang, Cui Li, Zhengang Wang, and Xifeng Fan. 2022. "Switchgrass Establishment Can Ameliorate Soil Properties of the Abandoned Cropland in Northern China" Agriculture 12, no. 8: 1138. https://doi.org/10.3390/agriculture12081138
APA StyleZhao, C., Hou, X., Guo, Q., Yue, Y., Wu, J., Cao, Y., Wang, Q., Li, C., Wang, Z., & Fan, X. (2022). Switchgrass Establishment Can Ameliorate Soil Properties of the Abandoned Cropland in Northern China. Agriculture, 12(8), 1138. https://doi.org/10.3390/agriculture12081138