Estimating Yield-Related Traits Using UAV-Derived Multispectral Images to Improve Rice Grain Yield Prediction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Field Data Collection
2.4. UAV Image Acquisition and Preprocessing
2.5. Data Analysis
3. Results
3.1. Relationship of AGB and LAI with Grain Yield
3.2. AGB and LAI Estimation
3.3. VI-Estimated AGB and LAI Fitted to the Gompertz Growth Curve
3.4. Grain Yield Prediction Using VI-Estimated AGB and LAI
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Vegetation Index | Formula | References |
---|---|---|
Atmospherically Resistant Vegetation Index 2 (ARVI2) | −0.18 + 1.17[(NIR − R)/(NIR + R)] | [54] |
Adjusted Transformed Soil Adjusted VI (ATSAVI) | a[(NIR − a × R − b)/(a × NIR + R − a × b + X(1 + a2))] | [55] |
Blue-Wide Dynamic Range Vegetation Index (BWDRVI) | (0.1NIR − B)/(0.1NIR + B) | [54] |
Chlorophyll Vegetation Index (CVI) | NIR × (R/G2) | [56] |
Difference Vegetation Index (DVI) | NIR − R | [23] |
Enhanced Vegetation Index (EVI) | 2.5[(NIR − R)/((NIR + 6R−7.5B) + 1)] | [57] |
Enhanced Vegetation Index 2 (EVI2) | 2.4[(NIR − R)/(NIR + R + 1)] | [58] |
Enhanced Vegetation Index 2-2 (EVI2-2) | 2.5[(NIR − R)/(NIR + 2.4R + 1)] | [59] |
Green-Blue Normalized Difference Vegetation Index (GBNDVI) | [NIR − (G + B)]/[NIR + (G + B)] | [60] |
Green Difference Vegetation Index (GDVI) | NIR − G | [61] |
Green Normalized Difference Vegetation Index (GNDVI) | (NIR − G)/(NIR + G) | [62] |
Green Optimal Soil Adjusted Vegetation Index (GOSAVI) | (1 + 0.16) × (NIR − G)/(NIR + G + 0.16) | [63] |
Green-Red Normalized Difference Vegetation Index (GRNDVI) | [NIR − (G + R)]/[NIR + (G + R)] | [61] |
Green Soil Adjusted Vegetation Index (GSAVI) | 1.5(NIR − G)/(NIR + G + 0.5)] | [64] |
Normalized Difference Red-Edge (NDRE) | (NIR − RE)/(NIR + RE) | [65] |
Normalized Difference Vegetation Index (NDVI) | (NIR − R)/(NIR + R) | [51] |
Pan Normalized Difference Vegetation Index (PNDVI) | [NIR − (G + R + B)]/[NIR + (G + R + B)] | [66] |
Red-Blue Normalized Difference Vegetation Index (RBNDVI) | [NIR − (R + B)]/[NIR + (R + B)] | [67] |
Red Edge Difference Vegetation Index (REDVI) | NIR − RE | [68] |
Red Edge Soil Adjusted Vegetation Index (RESAVI) | 1.5(NIR − RE)/(NIR + RE + 0.5)] | [69] |
Red Edge Wide Dynamic Range Vegetation Index (REWDRVI) | (a × NIR − RE)/(a × NIR + RE) (a = 0.12) | [70] |
Ratio Vegetation Index (RVI) | NIR/R | [71] |
Soil and Atmospherically Resistant Vegetation Index 2 (SARVI2) | 2.5(NIR − R)/(1 + NIR + 6R − 7.5B)] | [72] |
Wide Dynamic Range Vegetation Index (WDRVI) | (a × NIR − R)/(a × NIR + R) (a = 0.12) | [73] |
Aichinokaori | Asahi | Hatsushimo | Nakate Shinsenbon | Nikomaru | |
---|---|---|---|---|---|
ARVI2 | 0.569 *** | 0.538 *** | 0.531 *** | 0.641 *** | 0.586 *** |
ATSAVI | 0.499 *** | 0.413 *** | 0.319 *** | 0.779 *** | 0.605 *** |
BWDRVI | 0.621 *** | 0.698 *** | 0.631 *** | 0.789 *** | 0.752 *** |
CVI | 0.049 | 0.087 | 0.447 *** | 0.136 | 0.486 *** |
DVI | 0.535 *** | 0.427 *** | 0.345 *** | 0.788 *** | 0.665 *** |
EVI | 0.516 *** | 0.413 *** | 0.308 *** | 0.800 *** | 0.629 *** |
EVI2 | 0.532 *** | 0.419 *** | 0.319 *** | 0.807 *** | 0.650 *** |
EVI2.2 | 0.539 *** | 0.431 *** | 0.330 *** | 0.818 *** | 0.658 *** |
GBNDVI | 0.435 *** | 0.578 *** | 0.625 *** | 0.714 *** | 0.700 *** |
GDVI | 0.527 *** | 0.433 *** | 0.369 *** | 0.787 *** | 0.682 *** |
GNDVI | 0.343 *** | 0.524 *** | 0.619 *** | 0.660 *** | 0.680 *** |
GOSAVI | 0.472 *** | 0.445 *** | 0.404 *** | 0.772 *** | 0.679 *** |
GRNDVI | 0.436 *** | 0.550 *** | 0.592 *** | 0.690 *** | 0.668 *** |
GSAVI | 0.508 *** | 0.428 *** | 0.358 *** | 0.798 *** | 0.680 *** |
NDRE | 0.260 *** | 0.327 *** | 0.306 *** | 0.582 *** | 0.551 *** |
NDVI | 0.569 *** | 0.538 *** | 0.531 *** | 0.641 *** | 0.586 *** |
PNDVI | 0.484 *** | 0.581 *** | 0.603 *** | 0.721 *** | 0.690 *** |
RBNDVI | 0.603 *** | 0.590 *** | 0.565 *** | 0.692 *** | 0.638 *** |
REDVI | 0.508 *** | 0.437 *** | 0.351 *** | 0.806 *** | 0.684 *** |
RESAVI | 0.447 *** | 0.393 *** | 0.292 *** | 0.758 *** | 0.634 *** |
REWDRVI | 0.276 *** | 0.327 *** | 0.295 *** | 0.595 *** | 0.577 *** |
RVI | 0.528 *** | 0.518 *** | 0.446 *** | 0.691 *** | 0.683 *** |
SARVI2 | 0.516 *** | 0.413 *** | 0.308 *** | 0.800 *** | 0.629 *** |
WDRVI | 0.575 *** | 0.569 *** | 0.529 *** | 0.717 *** | 0.676 *** |
Aichinokaori | Asahi | Hatsushimo | Nakate Shinsenbon | Nikomaru | |
---|---|---|---|---|---|
ARVI2 | 0.562 *** | 0.616 *** | 0.607 *** | 0.717 *** | 0.609 *** |
ATSAVI | 0.396 *** | 0.636 *** | 0.581 *** | 0.706 *** | 0.516 *** |
BWDRVI | 0.535 *** | 0.736 *** | 0.760 *** | 0.777 *** | 0.707 *** |
CVI | 0.582 *** | 0.645 *** | 0.499 *** | 0.394 *** | 0.417 *** |
DVI | 0.362 *** | 0.605 *** | 0.572 *** | 0.683 *** | 0.429 *** |
EVI | 0.376 *** | 0.626 *** | 0.567 *** | 0.695 *** | 0.436 *** |
EVI2 | 0.376 *** | 0.623 *** | 0.577 *** | 0.689 *** | 0.455 *** |
EVI2.2 | 0.385 *** | 0.640 *** | 0.589 *** | 0.710 *** | 0.472 *** |
GBNDVI | 0.571 *** | 0.797 *** | 0.727 *** | 0.782 *** | 0.688 *** |
GDVI | 0.393 *** | 0.648 *** | 0.592 *** | 0.717 *** | 0.467 *** |
GNDVI | 0.553 *** | 0.805 *** | 0.724 *** | 0.754 *** | 0.677 *** |
GOSAVI | 0.484 *** | 0.762 *** | 0.665 *** | 0.752 *** | 0.589 *** |
GRNDVI | 0.586 *** | 0.768 *** | 0.706 *** | 0.782 *** | 0.666 *** |
GSAVI | 0.443 *** | 0.715 *** | 0.627 *** | 0.732 *** | 0.527 *** |
NDRE | 0.286 *** | 0.619 *** | 0.658 *** | 0.621 *** | 0.562 *** |
NDVI | 0.562 *** | 0.616 *** | 0.607 *** | 0.717 *** | 0.609 *** |
PNDVI | 0.593 *** | 0.770 *** | 0.720 *** | 0.795 *** | 0.680 *** |
RBNDVI | 0.563 *** | 0.654 *** | 0.649 *** | 0.738 *** | 0.645 *** |
REDVI | 0.379 *** | 0.671 *** | 0.622 *** | 0.691 *** | 0.480 *** |
RESAVI | 0.385 *** | 0.697 *** | 0.639 *** | 0.662 *** | 0.511 *** |
REWDRVI | 0.345 *** | 0.652 *** | 0.718 *** | 0.652 *** | 0.586 *** |
RVI | 0.674 *** | 0.718 *** | 0.810 *** | 0.849 *** | 0.649 *** |
SARVI2 | 0.376 *** | 0.626 *** | 0.567 *** | 0.695 *** | 0.436 *** |
WDRVI | 0.628 *** | 0.681 *** | 0.732 *** | 0.817 *** | 0.675 *** |
Cultivar | Eta | Max_ Depth | Gamma | Colsample_ Bytree | Min_ Child_Weight | Sub Sample | N Rounds |
---|---|---|---|---|---|---|---|
Aichinokaori | 0.1 | 5 | 0.1 | 0.8 | 1 | 1 | 100 |
Asahi | 0.1 | 5 | 0.1 | 0.5 | 1 | 1 | 100 |
Hatsushimo | 0.1 | 3 | 0.1 | 0.9 | 1 | 1 | 100 |
Nakate Shinsenbon | 0.1 | 3 | 0.1 | 0.5 | 1 | 1 | 100 |
Nikomaru | 0.1 | 5 | 0.1 | 0.5 | 1 | 1 | 100 |
Cultivar | Eta | Max_ Depth | Gamma | Colsample_ Bytree | Min_ Child_Weight | Subsample | N Rounds |
---|---|---|---|---|---|---|---|
Aichinokaori | 0.1 | 3 | 0.1 | 0.6 | 1 | 1 | 100 |
Asahi | 0.1 | 10 | 0.1 | 0.8 | 1 | 1 | 100 |
Hatsushimo | 0.1 | 10 | 0.1 | 0.6 | 1 | 1 | 100 |
Nakate Shinsenbon | 0.1 | 10 | 0.1 | 0.8 | 1 | 1 | 100 |
Nikomaru | 0.1 | 5 | 0.1 | 0.5 | 1 | 1 | 100 |
References
- Hu, P.; Chapman, S.C.; Wang, X.; Potgieter, A.; Duan, T.; Jordan, D.; Guo, Y.; Zheng, B. Estimation of Plant Height Using a High Throughput Phenotyping Platform Based on Unmanned Aerial Vehicle and Self-Calibration: Example for Sorghum Breeding. Eur. J. Agron. 2018, 95, 24–32. [Google Scholar] [CrossRef]
- Tao, H.; Feng, H.; Xu, L.; Miao, M.; Yang, G.; Yang, X.; Fan, L. Estimation of the Yield and Plant Height of Winter Wheat Using UAV-Based Hyperspectral Images. Sensors 2020, 20, 1231. [Google Scholar] [CrossRef] [PubMed]
- Madec, S.; Baret, F.; De Solan, B.; Thomas, S.; Dutartre, D.; Jezequel, S.; Comar, A. High-Throughput Phenotyping of Plant Height: Comparing Unmanned Aerial Vehicles and Ground LiDAR Estimates. Front. Plant Sci. 2017, 8, 2002. [Google Scholar] [CrossRef]
- Gong, Y.; Yang, K.; Lin, Z.; Fang, S.; Wu, X.; Zhu, R.; Peng, Y. Remote Estimation of Leaf Area Index (LAI) with Unmanned Aerial Vehicle (UAV) Imaging for Different Rice Cultivars throughout the Entire Growing Season. Plant Methods 2021, 17, 88. [Google Scholar] [CrossRef]
- Hasan, U.; Sawut, M.; Chen, S. Estimating the Leaf Area Index of Winter Wheat Based on Unmanned Aerial Vehicle RGB-Image Parameters. Sustainability 2019, 11, 6829. [Google Scholar] [CrossRef]
- Roosjen, P.P.; Brede, B.; Suomalainen, J.M.; Bartholomeus, H.M.; Kooistra, L.; Clevers, J.G. Improved Estimation of Leaf Area Index and Leaf Chlorophyll Content of a Potato Crop Using Multi-Angle Spectral Data—Potential of Unmanned Aerial Vehicle Imagery. Int. J. Appl. Earth Obs. Geoinform. 2018, 66, 14–26. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Tian, Q.; Feng, H.; Xu, K.; Zhou, C. Estimate of Winter-Wheat above-Ground Biomass Based on UAV Ultrahigh-Ground-Resolution Image Textures and Vegetation Indices. ISPRS J. Photogramm. Remote Sens. 2019, 150, 226–244. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, L.; Zhang, H.; Han, W.; Peng, X. Estimating Above-Ground Biomass of Maize Using Features Derived from UAV-Based RGB Imagery. Remote Sens. 2019, 11, 1261. [Google Scholar] [CrossRef]
- Lu, N.; Zhou, J.; Han, Z.; Li, D.; Cao, Q.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cheng, T. Improved Estimation of Aboveground Biomass in Wheat from RGB Imagery and Point Cloud Data Acquired with a Low-Cost Unmanned Aerial Vehicle System. Plant Methods 2019, 15, 17. [Google Scholar] [CrossRef]
- Yang, H.; Li, F.; Wang, W.; Yu, K. Estimating Above-Ground Biomass of Potato Using Random Forest and Optimized Hyperspectral Indices. Remote Sens. 2021, 13, 2339. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, T.; Guo, W.; Xu, X.; Qiao, H.; Xie, Y.; Ma, X. Leaf Area Index Estimation Model for UAV Image Hyperspectral Data Based on Wavelength Variable Selection and Machine Learning Methods. Plant Methods 2021, 17, 49. [Google Scholar] [CrossRef] [PubMed]
- Osco, L.P.; Junior, J.M.; Ramos, A.P.M.; Furuya, D.E.G.; Santana, D.C.; Teodoro, L.P.R.; Gonçalves, W.N.; Baio, F.H.R.; Pistori, H.; da Silva Junior, C.A.; et al. Leaf Nitrogen Concentration and Plant Height Prediction for Maize Using UAV-Based Multispectral Imagery and Machine Learning Techniques. Remote Sens. 2020, 12, 3237. [Google Scholar] [CrossRef]
- Prasad, N.R.; Patel, N.R.; Danodia, A.; Manjunath, K.R. Comparative Performance of Semi-Empirical Based Remote Sensing and Crop Simulation Model for Cotton Yield Prediction. Model. Earth Syst. Environ. 2022, 8, 1733–1747. [Google Scholar] [CrossRef]
- Rehmani, M.I.A.; Ding, C.; Li, G.; Ata-Ul-Karim, S.T.; Hadifa, A.; Bashir, M.A.; Ding, Y. Vulnerability of Rice Production to Temperature Extremes during Rice Reproductive Stage in Yangtze River Valley, China. J. King Saud Univ.-Sci. 2021, 33, 101599. [Google Scholar] [CrossRef]
- Rehmani, M.I.A.; Wei, G.; Hussain, N.; Ding, C.; Li, G.; Liu, Z.; Ding, Y. Yield and Quality Responses of Two Indica Rice Hybrids to Post-Anthesis Asymmetric Day and Night Open-Field Warming in Lower Reaches of Yangtze River Delta. Field Crops Res. 2014, 156, 231–241. [Google Scholar] [CrossRef]
- Onwuchekwa-Henry, C.B.; Ogtrop, F.V.; Roche, R.; Tan, D.K.Y. Model for Predicting Rice Yield from eflectance Index and Weather Variables in Lowland Rice Fields. Agriculture 2022, 12, 130. [Google Scholar] [CrossRef]
- Ge, H.; Ma, F.; Li, Z.; Du, C. Grain Yield Estimation in Rice Breeding Using Phenological Data and Vegetation Indices Derived from UAV Images. Agronomy 2021, 11, 2439. [Google Scholar] [CrossRef]
- Freeman, K.W.; Girma, K.; Arnall, D.B.; Mullen, R.W.; Martin, K.L.; Teal, R.K.; Raun, W.R. By-Plant Prediction of Corn Forage Biomass and Nitrogen Uptake at Various Growth Stages Using Remote Sensing and Plant Height. Agron. J. 2007, 99, 530–536. [Google Scholar] [CrossRef]
- Rahman, M.M.; Crain, J.; Haghighattalab, A.; Singh, R.P.; Poland, J. Improving Wheat Yield Prediction Using Secondary Traits and High-Density Phenotyping Under Heat-Stressed Environments. Front. Plant Sci. 2021, 12, 1977. [Google Scholar] [CrossRef]
- Barzin, R.; Pathak, R.; Lotfi, H.; Varco, J.; Bora, G.C. Use of UAS Multispectral Imagery at Different Physiological Stages for Yield Prediction and Input Resource Optimization in Corn. Remote Sens. 2020, 12, 2392. [Google Scholar] [CrossRef]
- Johansen, K.; Morton, M.J.L.; Malbeteau, Y.; Aragon, B.; Al-Mashharawi, S.; Ziliani, M.G.; Angel, Y.; Fiene, G.; Negrão, S.; Mousa, M.A.A.; et al. Predicting Biomass and Yield in a Tomato Phenotyping Experiment Using UAV Imagery and Random Forest. Front. Artif. Intell. 2020, 3, 28. [Google Scholar] [CrossRef]
- Wan, L.; Cen, H.; Zhu, J.; Zhang, J.; Zhu, Y.; Sun, D.; Du, X.; Zhai, L.; Weng, H.; Li, Y.; et al. Grain Yield Prediction of Rice Using Multi-Temporal UAV-Based RGB and Multispectral Images and Model Transfer—A Case Study of Small Farmlands in the South of China. Agric. For. Meteorol. 2020, 291, 108096. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting Grain Yield in Rice Using Multi-Temporal Vegetation Indices from UAV-Based Multispectral and Digital Imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Wang, F.; Yi, Q.; Hu, J.; Xie, L.; Yao, X.; Xu, T.; Zheng, J. Combining Spectral and Textural Information in UAV Hyperspectral Images to Estimate Rice Grain Yield. Int. J. Appl. Earth Obs. Geoinform. 2021, 102, 102397. [Google Scholar] [CrossRef]
- Zhou, J.; Lu, X.; Yang, R.; Chen, H.; Wang, Y.; Zhang, Y.; Huang, J.; Liu, F. Developing Novel Rice Yield Index Using UAV Remote Sensing Imagery Fusion Technology. Drones 2022, 6, 151. [Google Scholar] [CrossRef]
- Harrell, D.L.; Tubaña, B.S.; Walker, T.W.; Phillips, S.B. Estimating Rice Grain Yield Potential Using Normalized Difference Vegetation Index. Agron. J. 2011, 103, 1717–1723. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Hartig, F.; Latifi, H.; Berger, C.; Hernández, J.; Corvalán, P.; Koch, B. Importance of Sample Size, Data Type and Prediction Method for Remote Sensing-Based Estimations of Aboveground Forest Biomass. Remote Sens. Environ. 2014, 154, 102–114. [Google Scholar] [CrossRef]
- Kanke, Y.; Tubana, B.; Dalen, M.; Harrell, D. Evaluation of Red and Red-Edge Reflectance-Based Vegetation Indices for Rice Biomass and Grain Yield Prediction Models in Paddy Fields. Precis. Agric. 2016, 17, 507–530. [Google Scholar] [CrossRef]
- Perros, N.; Kalivas, D.; Giovos, R. Spatial Analysis of Agronomic Data and UAV Imagery for Rice Yield Estimation. Agriculture 2021, 11, 809. [Google Scholar] [CrossRef]
- Bouras, E.H.; Jarlan, L.; Er-Raki, S.; Balaghi, R.; Amazirh, A.; Richard, B.; Khabba, S. Cereal Yield Forecasting with Satellite Drought-Based Indices, Weather Data and Regional Climate Indices Using Machine Learning in Morocco. Remote Sens. 2021, 13, 3101. [Google Scholar] [CrossRef]
- Kang, Y.; Ozdogan, M.; Zhu, X.; Ye, Z.; Hain, C.; Anderson, M. Comparative Assessment of Environmental Variables and Machine Learning Algorithms for Maize Yield Prediction in the US Midwest. Environ. Res. Lett. 2020, 15, 064005. [Google Scholar] [CrossRef]
- Shah, A.; Agarwal, R.; Baranidharan, B. Crop Yield Prediction Using Remote Sensing and Meteorological Data. In Proceedings of the 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), Coimbatore, India, 25–27 March 2021; pp. 952–960. [Google Scholar]
- Archontoulis, S.V.; Miguez, F.E. Nonlinear Regression Models and Applications in Agricultural Research. Agron. J. 2015, 107, 786–798. [Google Scholar] [CrossRef]
- Ismail, Z.; Khamis, A.; Jaafar, M. Fitting Nonlinear Gompertz Curve to Tobacco Growth Data. J. Agron. 2003, 2, 223–236. [Google Scholar] [CrossRef]
- Kataoka, T.; Kaneko, T.; Okamoto, H.; Hata, S. Crop Growth Estimation System Using Machine Vision. In Proceedings of the Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), Kobe, Japan, 20–24 July 2003; Volume 2, pp. b1079–b1083. [Google Scholar]
- Japan Meteorological Agency. Tables of Climatological Normals (1991–2020). Available online: https://www.data.jma.go.jp/stats/data/en/normal/normal.html (accessed on 27 May 2022).
- Counce, P.; Keisling, T.; Mitchell, A. A Uniform, Objective, and Adaptive System for Expressing Rice Development. Crop Sci. 2000, 40, 436–443. [Google Scholar] [CrossRef]
- Hijmas, R.J. Raster: Geographic Data Analysis and Modeling. R Package Version. 3.5-15. 2022. Available online: https://CRAN.R-project.org/package=raster (accessed on 27 December 2021).
- Kuhn, M. Building Predictive Models in R Using the Caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Taiyun Wei and Viliam Simko. R package ‘corrplot’: Visualization of a Correlation Matrix (Version 0.92). 2021. Available online: https://github.com/taiyun/corrplot (accessed on 27 December 2021).
- Chen, T.; He, H.T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K.; Mitchell, R.; Cano, I.; Zhou, T.; et al. Xgboost: Extreme Gradient Boosting. R Package Version 1.6.0.1. 2022. Available online: https://CRAN.R-project.org/package=xgboost (accessed on 3 May 2022).
- Yang, L.; Just, A. SHAPforxgboost: SHAP Plots for ‘XGBoost’. R Package Version 0.1.1. 2021. Available online: https://CRAN.R-project.org/package=SHAPforxgboost (accessed on 3 May 2022).
- Srinivas, P.; Katarya, R. HyOPTXg: OPTUNA Hyper-Parameter Optimization Framework for Predicting Cardiovascular Disease Using XGBoost. Biomed. Signal Process. Control 2022, 73, 103456. [Google Scholar] [CrossRef]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-Response Analysis Using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef] [PubMed]
- Mazerolle, M.J. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). R Package Version 2.3-1. 2020. Available online: https://cran.r-project.org/package=AICcmodavg (accessed on 3 May 2022).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; Available online: https://ggplot2.tidyverse.org (accessed on 27 December 2021).
- Pan, Y.; Gao, S.; Xie, K.; Lu, Z.; Meng, X.; Wang, S.; Lu, J.; Guo, S. Higher Radiation Use Efficiency Produces Greater Biomass before Heading and Grain Yield in Super Hybrid Rice. Agronomy 2020, 10, 209. [Google Scholar] [CrossRef]
- Pieters, A.J.; El Souki, S.; Nazar, C. Growth, Yield and Nitrogen Allocation in Two Rice Cultivars under Field Conditions in Venezuela. Interciencia 2006, 31, 671–676. [Google Scholar]
- Zhou, J.; Yungbluth, D.; Vong, C.N.; Scaboo, A.; Zhou, J. Estimation of the Maturity Date of Soybean Breeding Lines Using UAV-Based Multispectral Imagery. Remote Sens. 2019, 11, 2075. [Google Scholar] [CrossRef]
- Cen, H.; Wan, L.; Zhu, J.; Li, Y.; Li, X.; Zhu, Y.; Weng, H.; Wu, W.; Yin, W.; Xu, C.; et al. Dynamic Monitoring of Biomass of Rice under Different Nitrogen Treatments Using a Lightweight UAV with Dual Image-Frame Snapshot Cameras. Plant Methods 2019, 15, 32. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Huang, J.; Tang, Y.-L.; Wang, X. New Vegetation Index and Its Application in Estimating Leaf Area Index of Rice. Rice Sci. 2007, 14, 195–203. [Google Scholar] [CrossRef]
- Ghosh, S.M.; Behera, M.D. Aboveground Biomass Estimation Using Multi-Sensor Data Synergy and Machine Learning Algorithms in a Dense Tropical Forest. Appl. Geogr. 2018, 96, 29–40. [Google Scholar] [CrossRef]
- Casanova, D.; Epema, G.F.; Goudriaan, J. Monitoring Rice Reflectance at Field Level for Estimating Biomass and LAI. Field Crops Res. 1998, 55, 83–92. [Google Scholar] [CrossRef]
- Sonobe, R.; Yamaya, Y.; Tani, H.; Wang, X.; Kobayashi, N.; Mochizuki, K. Crop Classification from Sentinel-2-Derived Vegetation Indices Using Ensemble Learning. J. Appl. Remote Sens. 2018, 12, 026019. [Google Scholar] [CrossRef]
- Zhang, J.; He, Y.; Yuan, L.; Liu, P.; Zhou, X.; Huang, Y. Machine Learning-Based Spectral Library for Crop Classification and Status Monitoring. Agronomy 2019, 9, 496. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Kooistra, L.; Van den Brande, M.M.M. Using Sentinel-2 Data for Retrieving LAI and Leaf and Canopy Chlorophyll Content of a Potato Crop. Remote Sens. 2017, 9, 405. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B. Mapping Paddy Rice Agriculture in Southern China Using Multi-Temporal MODIS Images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Qiu, B.; Li, W.; Tang, Z.; Chen, C.; Qi, W. Mapping Paddy Rice Areas Based on Vegetation Phenology and Surface Moisture Conditions. Ecol. Indic. 2015, 56, 79–86. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.; Didan, K.; Miura, T. Development of a Two-Band Enhanced Vegetation Index without a Blue Band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Qiu, C.; Liao, G.; Tang, H.; Liu, F.; Liao, X.; Zhang, R.; Zhao, Z. Derivative Parameters of Hyperspectral NDVI and Its Application in the Inversion of Rapeseed Leaf Area Index. Appl. Sci. 2018, 8, 1300. [Google Scholar] [CrossRef]
- Kang, Y.; Nam, J.; Kim, Y.; Lee, S.; Seong, D.; Jang, S.; Ryu, C. Assessment of Regression Models for Predicting Rice Yield and Protein Content Using Unmanned Aerial Vehicle-Based Multispectral Imagery. Remote Sens. 2021, 13, 1508. [Google Scholar] [CrossRef]
- Teal, R.K.; Tubana, B.; Girma, K.; Freeman, K.W.; Arnall, D.B.; Walsh, O.; Raun, W.R. In-Season Prediction of Corn Grain Yield Potential Using Normalized Difference Vegetation Index. Agron. J. 2006, 98, 1488–1494. [Google Scholar] [CrossRef]
- Marin, D.B.; Ferraz, G.A.e.S.; Guimarães, P.H.S.; Schwerz, F.; Santana, L.S.; Barbosa, B.D.S.; Barata, R.A.P.; Faria, R.d.O.; Dias, J.E.L.; Conti, L.; et al. Remotely Piloted Aircraft and Random Forest in the Evaluation of the Spatial Variability of Foliar Nitrogen in Coffee Crop. Remote Sens. 2021, 13, 1471. [Google Scholar] [CrossRef]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef]
- Tian, Y.C.; Yao, X.; Yang, J.; Cao, W.X.; Hannaway, D.B.; Zhu, Y. Assessing Newly Developed and Published Vegetation Indices for Estimating Rice Leaf Nitrogen Concentration with Ground- and Space-Based Hyperspectral Reflectance. Field Crops Res. 2011, 120, 299–310. [Google Scholar] [CrossRef]
- Xu, R.; Zhao, S.; Ke, Y. A Simple Phenology-Based Vegetation Index for Mapping Invasive Spartina Alterniflora Using Google Earth Engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 190–201. [Google Scholar] [CrossRef]
- Tanaka, S.; Goto, S.; Maki, M.; Akiyama, T.; Muramoto, Y.; Yoshida, K. Estimation of leaf chlorophyll concentration in winter wheat [Triticum aestivum] before maturing stage by a newly developed vegetation index-rbNDVI. J. Jpn. Agric. Syst. Soc. Jpn. 2007, 4, 297–303. [Google Scholar]
- Zha, H.; Miao, Y.; Wang, T.; Li, Y.; Zhang, J.; Sun, W.; Feng, Z.; Kusnierek, K. Improving Unmanned Aerial Vehicle Remote Sensing-Based Rice Nitrogen Nutrition Index Prediction with Machine Learning. Remote Sens. 2020, 12, 215. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Wang, H.; Huang, S.; Cheng, S.; Khosla, R.; Jiang, R. Non-Destructive Estimation of Rice Plant Nitrogen Status with Crop Circle Multispectral Active Canopy Sensor. Field Crops Res. 2013, 154, 133–144. [Google Scholar] [CrossRef]
- Lu, J.; Miao, Y.; Shi, W.; Li, J.; Hu, X.; Chen, Z.; Wang, X.; Kusnierek, K. Developing a Proximal Active Canopy Sensor-Based Precision Nitrogen Management Strategy for High-Yielding Rice. Remote Sens. 2020, 12, 1440. [Google Scholar] [CrossRef]
- Zhu, Y.; Yao, X.; Tian, Y.; Liu, X.-J.; Cao, W. Analysis of Common Canopy Vegetation Indices for Indicating Leaf Nitrogen Accumulations in Wheat and Rice. Int. J. Appl. Earth Obs. Geoinform. 2008, 10, 1–10. [Google Scholar] [CrossRef]
- Basso, B.; Cammarano, D. Remotely Sensed Vegetation Indices: Theory and Applications for Crop Management. Riv. Ital. Agrometeorol. 2004, 1, 36–53. [Google Scholar]
- Cao, Y.; Li, G.L.; Luo, Y.K.; Pan, Q.; Zhang, S.Y. Monitoring of Sugar Beet Growth Indicators Using Wide-Dynamic-Range Vegetation Index (WDRVI) Derived from UAV Multispectral Images. Comput. Electron. Agric. 2020, 171, 105331. [Google Scholar] [CrossRef]
Growth Stage | 2020 UAV Flight Date (DAT) | 2021 UAV Flight Date (DAT) |
---|---|---|
Aichinokaori | ||
Tillering | 21-July (49) | 31-July (52) |
Stem Elongation | 11-August (70) | 18-August (70) |
Booting | 17-August (76) | 25-August (77) |
Heading | 25-August (84) | 31-August (83) |
Asahi | ||
Tillering | 29-July (57) | 5-August (57) |
Stem Elongation | 11-August (70) | 18-August (70) |
Booting | 23-August (82) | 31-August (83) |
Heading | 11-September (101) | 9-September (92) |
Hatushimo | ||
Tillering | 21-July (49) | 28-July (49) |
Stem Elongation | 5-August (64) | 11-August (63) |
Booting | 23-August (82) | 31-August (83) |
Heading | 11-September (101) | 9-September (92) |
Nakate Shinsenbon | ||
Tillering | 15-July (43) | 22-July (43) |
Stem Elongation | 29-July (57) | 5-August (57) |
Booting | 17-August (76) | 20-August (72) |
Heading | 25-August (84) | 31-August (83) |
Nikomaru | ||
Tillering | 21-July (49) | 28-July (49) |
Stem Elongation | 5-August (64) | 11-August (63) |
Booting | 17-August (76) | 25-August (77) |
Heading | 25-August (84) | 9-September (92) |
Aboveground Biomass (Ton/ha) | Leaf Area Index (m2/m2) | |||||||
---|---|---|---|---|---|---|---|---|
Cultivar | Training Result | Test Result | Training Result | Test Result | ||||
R2 | RMSE | R2 | Normalized RMSE | R2 | RMSE | R2 | Normalized RMSE | |
Aichinokaori | 0.66 ± 0.07 | 1.43 | 0.78 | 0.26 | 0.46 ± 0.05 | 0.65 | 0.71 | 0.20 |
Asahi | 0.67 ± 0.07 | 1.50 | 0.66 | 0.29 | 0.85 ± 0.09 | 0.48 | 0.57 | 0.29 |
Hatsushimo | 0.72 ± 0.07 | 1.54 | 0.56 | 0.36 | 0.84 ± 0.08 | 0.61 | 0.65 | 0.27 |
Nakate Shinsenbon | 0.85 ± 0.09 | 1.24 | 0.83 | 0.29 | 0.82 ± 0.08 | 0.56 | 0.63 | 0.39 |
Nikomaru | 0.75 ± 0.07 | 1.21 | 0.80 | 0.25 | 0.55 ± 0.05 | 0.65 | 0.73 | 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bascon, M.V.; Nakata, T.; Shibata, S.; Takata, I.; Kobayashi, N.; Kato, Y.; Inoue, S.; Doi, K.; Murase, J.; Nishiuchi, S. Estimating Yield-Related Traits Using UAV-Derived Multispectral Images to Improve Rice Grain Yield Prediction. Agriculture 2022, 12, 1141. https://doi.org/10.3390/agriculture12081141
Bascon MV, Nakata T, Shibata S, Takata I, Kobayashi N, Kato Y, Inoue S, Doi K, Murase J, Nishiuchi S. Estimating Yield-Related Traits Using UAV-Derived Multispectral Images to Improve Rice Grain Yield Prediction. Agriculture. 2022; 12(8):1141. https://doi.org/10.3390/agriculture12081141
Chicago/Turabian StyleBascon, Maria Victoria, Tomohiro Nakata, Satoshi Shibata, Itsuki Takata, Nanami Kobayashi, Yusuke Kato, Shun Inoue, Kazuyuki Doi, Jun Murase, and Shunsaku Nishiuchi. 2022. "Estimating Yield-Related Traits Using UAV-Derived Multispectral Images to Improve Rice Grain Yield Prediction" Agriculture 12, no. 8: 1141. https://doi.org/10.3390/agriculture12081141
APA StyleBascon, M. V., Nakata, T., Shibata, S., Takata, I., Kobayashi, N., Kato, Y., Inoue, S., Doi, K., Murase, J., & Nishiuchi, S. (2022). Estimating Yield-Related Traits Using UAV-Derived Multispectral Images to Improve Rice Grain Yield Prediction. Agriculture, 12(8), 1141. https://doi.org/10.3390/agriculture12081141