Study on Safe Usage of Agricultural Land in Typical Karst Areas Based on Cd in Soil and Maize: A Case Study of Northwestern Guizhou, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Investigation Areas
2.2. Sampling and Sample Analysis
2.3. Evaluation Procedure of the Chinese Soil Environmental Quality Standards (EQSs)
2.4. Quality Control and Statistics
2.5. Species Sensitivity Distribution (SSD) Method
3. Results
3.1. pH Values and Cd Concentrations in Soil
3.2. Cd Concentrations in Maize Kernels
3.3. Comparative Analysis of the Study Area and Nonkarst Area Data in China
3.4. Suitability Analysis of the RSV and RIV for the Classification of Soil Environmental Quality
3.5. Derivation of Soil Environmental Quality Benchmarks for Maize-Planted Soil
3.6. Suitability Analysis of the Derived Soil Environmental Quality Benchmarks
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, Y.B.; Ye, Y.M.; Hu, Y.M.; Shi, H.K. The variation in microbial community structure under different heavy metal contamination levels in paddy soils. Ecotoxicol. Environ. Saf. 2019, 180, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Yang, Y.; Li, M. Responses of soil and earthworm gut bacterial communities to heavy metal contamination. Environ. Pollut. 2020, 265, 114921. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Pu, J.; Wen, B.; Xia, M. Potential Ecological Risks of Heavy Metals in Agricultural Soil Alongside Highways and Their Relationship with Landscape. Agriculture 2021, 11, 880. [Google Scholar] [CrossRef]
- Yang, W.T.; Zhou, H.; Gu, J.F.; Liao, B.H.; Zhang, J.; Wu, P. Application of rapeseed residue increases soil organic matter, microbial biomass, and enzyme activity and mitigates cadmium pollution risk in paddy fields. Environ. Pollut. 2020, 264, 9. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Yadav, K.K.; Kumar, V.; Kumar, S.; Chadd, R.P.; Kumar, A. Trace elements in soil-vegetables interface: Translocation, bioaccumulation, toxicity and amelioration—A review. Sci. Total Environ. 2019, 651, 2927–2942. [Google Scholar] [CrossRef]
- Yang, W.; Wang, S.; Zhou, H.; Zeng, M.; Zhang, J.; Huang, F.; Shan, S.; Guo, Z.; Yi, H.; Sun, Z.; et al. Combined amendment reduces soil Cd availability and rice Cd accumulation in three consecutive rice planting seasons. J. Environ. Sci. 2022, 111, 141–152. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E. Bioaccumulation of non-essential hazardous heavy metals and metalloids in freshwater fish. Risk to human health. Environ. Chem. Lett. 2018, 16, 903–917. [Google Scholar] [CrossRef]
- Ma, L.; Huang, L.; Liu, Q.; Xu, S.; Wen, Z.; Qin, S.; Li, T.; Feng, Y. Positive effects of applying endophytic bacteria in eggplant-Sedum intercropping system on Cd phytoremediation and vegetable production in cadmium polluted greenhouse. J. Environ. Sci. 2022, 115, 383–391. [Google Scholar] [CrossRef]
- Yang, W.T.; Gu, J.F.; Zou, J.L.; Zhou, H.; Zeng, Q.R.; Liao, B.H. Impacts of rapeseed dregs on Cd availability in contaminated acid soil and Cd translocation and accumulation in rice plants. Environ. Sci. Pollut. Res. 2016, 23, 20853–20861. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Shen, X.; Liu, F. The combinations of sulfur and molybdenum fertilizations improved antioxidant capacity of grazing Guizhou semi-fine wool sheep under copper and cadmium stress. Ecotoxicol. Environ. Saf. 2021, 222, 112520. [Google Scholar] [CrossRef]
- Jovanovic, Z. The electrophysiological effects of cadmium on Retzius nerve cells of the leech Haemopis sanguisuga. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 2021, 247, 109062. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.-Y.; Wang, P.; Sun, Y.-J.; Yang, L.; Wu, Y.-J. Joint toxicity of chlorpyrifos and cadmium on the oxidative stress and mitochondrial damage in neuronal cells. Food Chem. Toxicol. 2017, 103, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Wen, E.; Yang, X.; Chen, H.; Shaheen, S.M.; Sarkar, B.; Xu, S.; Song, H.; Liang, Y.; Rinklebe, J.; Hou, D.; et al. Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil. J. Hazard. Mater. 2021, 407, 124344. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Yang, Y.; Zeng, H.; Chen, Y.; Zeng, Q. Variations in iron plaque, root morphology and metal bioavailability response to seedling establishment methods and their impacts on Cd and Pb accumulation and translocation in rice (Oryza sativa L.). J. Hazard. Mater. 2020, 384, 121343. [Google Scholar] [CrossRef]
- Huang, L.; Li, W.C.; Tam, N.F.Y.; Ye, Z. Effects of root morphology and anatomy on cadmium uptake and translocation in rice (Oryza sativa L.). J. Environ. Sci. 2019, 75, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Wang, J.; Zhang, L.; Wang, X.; Yuan, W.; Anderson, C.W.N.; Chen, C.; Peng, T.; Feng, X. Significant mercury efflux from a Karst region in Southwest China—Results from mass balance studies in two catchments. Sci. Total Environ. 2021, 769, 144892. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Zang, W.; Luo, W. Spatial-temporal shifts of ecological vulnerability of Karst Mountain ecosystem-impacts of global change and anthropogenic interference. Sci. Total Environ. 2020, 741, 140256. [Google Scholar] [CrossRef]
- Chen, F.; Wang, Q.; Meng, F.; Chen, M.; Wang, B. Effects of long-term zinc smelting activities on the distribution and health risk of heavy metals in agricultural soils of Guizhou province, China. Environ. Geochem. Health 2020, 1–16. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Yun, Z.; Shi, J.; Jiang, G. Research progress of heavy metal pollution in China: Sources, analytical methods, status, and toxicity. Chin. Sci. Bull. 2013, 58, 134–140. [Google Scholar] [CrossRef] [Green Version]
- CNEMC. Chinese Soil Element Background Value; China Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- Luo, K.; Liu, H.; Liu, Q.; Tu, Y.; Yu, E.; Xing, D. Cadmium accumulation and migration of 3 peppers varieties in yellow and limestone soils under geochemical anomaly. Environ. Technol. 2020, 43, 10–20. [Google Scholar] [CrossRef]
- Zhang, S.; Song, J.; Cheng, Y.; McBride, M.B. Derivation of regional risk screening values and intervention values for cadmium-contaminated agricultural land in the Guizhou Plateau. Land Degrad. Dev. 2018, 29, 2366–2377. [Google Scholar] [CrossRef]
- Ning, Z.; Liu, E.; Yao, D.; Xiao, T.; Ma, L.; Liu, Y.; Li, H.; Liu, C. Contamination, oral bioaccessibility and human health risk assessment of thallium and other metal(loid)s in farmland soils around a historic Tl-Hg mining area. Sci. Total Environ. 2021, 758, 143577. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.Y.; Liu, T.; Yu, Z.H.; Chen, Z.; Lei, D.; Wang, Z.W.; Zhang, H.; Li, Q.H.; Zhang, S.S. Heavy Metal Bioaccumulation in Rice from a High Geological Background Area in Guizhou Province, China. Int. J. Env. Res. Public Health 2018, 15, 2281. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Liu, Q.; Ma, J.; Liu, L.; Qu, Y.; Gong, Y.; Yang, S.; Luo, T. Heavy Metal(loids) in typical Chinese tobacco-growing soils: Concentrations, influence factors and potential health risks. Chemosphere 2020, 245, 125591. [Google Scholar] [CrossRef]
- Rinklebe, J.; Shaheen, S.M. Miscellaneous additives can enhance plant uptake and affect geochemical fractions of copper in a heavily polluted riparian grassland soil. Ecotoxicol. Environ. Saf. 2015, 119, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.F.; Zhou, H.; Tang, H.L.; Yang, W.T.; Zeng, M.; Liu, Z.M.; Peng, P.Q.; Liao, B.H. Cadmium and arsenic accumulation during the rice growth period under in situ remediation. Ecotoxicol. Environ. Saf. 2019, 171, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.B.; Liu, L.X.; Lv, Y.F.; Cheng, Z.; Xu, X.X.; Xian, J.R.; Zhu, X.M.; Yang, Y.X. Metal availability, soil nutrient, and enzyme activity in response to application of organic amendments in Cd-contaminated soil. Environ. Sci. Pollut. Res. 2018, 25, 2425–2435. [Google Scholar] [CrossRef]
- Yang, W.-T.; Zhou, H.; Gu, J.-F.; Liao, B.-H.; Peng, P.-Q.; Zeng, Q.-R. Effects of a Combined Amendment on Pb, Cd, and As Availability and Accumulation in Rice Planted in Contaminated Paddy Soil. Soil Sediment Contam. 2017, 26, 70–83. [Google Scholar] [CrossRef]
- Duan, Z.; Luo, Y.; Wu, Y.; Wang, J.; Cai, X.; Wen, J.; Xu, J. Heavy metals accumulation and risk assessment in a soil-maize (Zea mays L.) system around a zinc-smelting area in southwest China. Environ. Geochem. Health 2021, 43, 4875–4889. [Google Scholar] [CrossRef]
- Wang, L.; Ma, L.; Yang, Z. Spatial variation and risk assessment of heavy metals in paddy rice from Hunan Province, Southern China. Int. J. Environ. Sci. Technol. 2018, 15, 1561–1572. [Google Scholar] [CrossRef]
- Liu, M.; Wang, T.; Skidmore, A.K.; Liu, X. Heavy metal-induced stress in rice crops detected using multi-temporal Sentinel-2 satellite images. Sci. Total Environ. 2018, 637, 18–29. [Google Scholar] [CrossRef]
- Ye, X.; Xiao, W.; Zhang, Y.; Zhao, S.; Wang, G.; Zhang, Q.; Wang, Q. Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang province, China. Environ. Monit. Assess. 2015, 187, 378. [Google Scholar] [CrossRef]
- Cheng, Y.; Nathanail, C.P.; Ja’afaru, S.W. Generic assessment criteria for human health risk management of agricultural land scenario in Jiangsu Province, China. Sci. Total Environ. 2019, 697, 134071. [Google Scholar] [CrossRef]
- He, H.; Shi, L.; Yang, G.; You, M.; Vasseur, L. Ecological Risk Assessment of Soil Heavy Metals and Pesticide Residues in Tea Plantations. Agriculture 2020, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Li, H.; Guo, G.; Semple, K.T.; Jones, K.C. Soil contamination in China: Current priorities, defining background levels and standards for heavy metals. J. Environ. Manag. 2019, 251, 109512. [Google Scholar] [CrossRef]
- Liu, Y.; Du, Q.; Wang, Q.; Yu, H.; Liu, J.; Tian, Y.; Chang, C.; Lei, J. Causal inference between bioavailability of heavy metals and environmental factors in a large-scale region. Environ. Pollut. 2017, 226, 370–378. [Google Scholar] [CrossRef]
- Yang, W.; Chen, Y.; Yang, L.; Xu, M.; Jing, H.; Wu, P.; Wang, P. Spatial distribution, food chain translocation, human health risks, and environmental thresholds of heavy metals in a maize cultivation field in the heart of China’s karst region. J. Soils Sed. 2022, 1–17. [Google Scholar] [CrossRef]
- Yang, L.; Yang, W.; Gu, S.; Zhang, J.; Wu, P. Effects of Organic Fertilizers on Cd Activity in Soil and Cd Accumulation in Rice in Three Paddy Soils from Guizhou Province. Bull. Environ. Contam. Toxicol. 2021, 107, 1161–1166. [Google Scholar] [CrossRef]
- Feng, L.; Yan, H.; Dai, C.; Xu, W.; Gu, F.; Zhang, F.; Li, T.; Xian, J.; He, X.; Yu, Y.; et al. The systematic exploration of cadmium-accumulation characteristics of maize kernel in acidic soil with different pollution levels in China. Sci. Total Environ. 2020, 729, 138972. [Google Scholar] [CrossRef]
- Szymczycha-Madeja, A.; Mulak, W. Comparison of various digestion procedures in chemical analysis of spent hydrodesulfurization catalyst. J. Hazard. Mater. 2009, 164, 776–780. [Google Scholar] [CrossRef]
- GB 15618—2018; Soil Environmental Quality, Risk Control Standard for Soil Contamination of Agricultural Land. Ministry of Ecology and Environment: Beijing, China, 2018.
- Xu, F.L.; Li, Y.L.; Wang, Y.; He, W.; Kong, X.Z.; Qin, N.; Liu, W.X.; Wu, W.J.; Jorgensen, S.E. Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment. Ecol. Indic. 2015, 54, 227–237. [Google Scholar] [CrossRef]
- Xu, M.; Yang, W.; Yang, L.; Chen, Y.; Jing, H.; Wu, P. Health risk assessment and environmental benchmark of heavy metals in cultivated land in mountainous area of northwest Guizhou province. Huan Jing Ke Xue Huanjing Kexue 2022, 43, 3799–3810. [Google Scholar] [CrossRef]
- Luo, K.; Liu, H.; Yu, E.; Tu, Y.; Gu, X.; Xu, M. Distribution and release mechanism of heavy metals in sediments of Yelang Lake by DGT. Stoch. Environ. Res. Risk Assess. 2020, 34, 793–805. [Google Scholar] [CrossRef]
- Romkens, P.F.A.M.; Guo, H.Y.; Chu, C.L.; Liu, T.S.; Chiang, C.F.; Koopmans, G.F. Prediction of Cadmium uptake by brown rice and derivation of soil-plant transfer models to improve soil protection guidelines. Environ. Pollut. 2009, 157, 2435–2444. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Xu, G.Y.; Luo, Y.M.; Gao, H.; Tang, W. Some thoughts on the classification of soil environmental quality for agricultural land: Taking risk control of Cd in potato producing area of Guizhou as an example. Earth Sci. Front. 2019, 26, 192–198. (In Chinese) [Google Scholar]
- Ding, C.; Ma, Y.; Li, X.; Zhang, T.; Wang, X. Derivation of soil thresholds for lead applying species sensitivity distribution: A case study for root vegetables. J. Hazard. Mater. 2016, 303, 21–27. [Google Scholar] [CrossRef]
- Gao, J.; Ye, X.; Wang, X.; Jiang, Y.; Li, D.; Ma, Y.; Sun, B. Derivation and validation of thresholds of cadmium, chromium, lead, mercury and arsenic for safe rice production in paddy soil. Ecotoxicol. Environ. Saf. 2021, 220, 112404. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, P.; He, Y.; Zhong, X.; Luo, H.; Qin, X.; Xu, G. Derivation of the Thresholds of Available Concentrations of Heavy Metals in Soil Based on Agricultural Product Safety. Huan Jing Ke Xue Huanjing Kexue 2019, 40, 4262–4269. [Google Scholar] [CrossRef]
- Mu, D.-M.; Sun, Y.-B. Safety Production Threshold and Land Quality Classification of Vegetable Pb in High Geological Background Area of Southwest China. Huan Jing Ke Xue Huanjing Kexue 2022, 43, 965–974. [Google Scholar] [CrossRef]
- Wang, R.; Deng, H.; Jia, Z.-M.; Yan, M.-S.; Zhou, J.; Dong, J.-X.; Wang, J.-B.; Yu, F. Characteristics of Cadmium Enrichment and Pollution Evaluation of a Soil-Crop System in a Typical Karst Area. Huan Jing Ke Xue Huanjing Kexue 2021, 42, 941–951. [Google Scholar] [CrossRef]
- Tian, S.Q.; Wang, S.J.; Bai, X.Y.; Zhou, D.Q.; Luo, G.J.; Yang, Y.J.; Hu, Z.Y.; Li, C.J.; Deng, Y.H.; Lu, Q. Ecological security and health risk assessment of soil heavy metals on a village-level scale, based on different land use types. Environ. Geochem. Health 2020, 42, 3393–3413. [Google Scholar] [CrossRef]
- Peng, Y.S.; Chen, J.; Wei, H.R.; Li, S.B.; Jin, T.; Yang, R.D. Distribution and transfer of potentially toxic metal(loid)s in Juncus effusus from the indigenous zinc smelting area, northwest region of Guizhou Province, China. Ecotoxicol. Environ. Saf. 2018, 152, 24–32. [Google Scholar] [CrossRef]
- Zhang, Q.; Hah, G.-L. Speciation Characteristics and Risk Assessment of Soil Heavy Metals from Puding Karst Critical Zone, Guizhou Province. Huan Jing Ke Xue Huanjing Kexue 2022, 43, 3269–3277. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, Z.; Zhang, Q.; Liu, X.; Zhuo, X.; Wu, T.; Wang, L.; Wei, X.; Ji, J. Ecological risk assessment of Cd and other heavy metals in soil-rice system in the karst areas with high geochemical background of Guangxi, China. Sci. China-Earth Sci. 2021, 64, 1126–1139. [Google Scholar] [CrossRef]
- Khaliq, M.A.; Tarin, M.W.K.; Guo, J.X.; Chen, Y.H.; Guo, W. Soil liming effects on CH4, N2O emission and Cd, Pb accumulation in upland and paddy rice. Environ. Pollut. 2019, 248, 408–420. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, W.T.; Zhou, X.; Liu, L.; Gu, J.F.; Wang, W.L.; Zou, J.L.; Tian, T.; Peng, P.Q.; Liao, B.H. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment. Int. J. Environ. Res. Public Health 2016, 13, 289. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-W.; Liu, H.-Y.; Gu, X.-F.; Tu, Y.; Yu, E.-J.; Wu, P. Distribution Characteristics of Heavy Metals in Soils Affected by Different Land Use Types in a Superimposed Pollution Area with High Geological Background. Huan Jing Ke Xue Huanjing Kexue 2022, 43, 2094–2103. [Google Scholar] [CrossRef]
- Quezada-Hinojosa, R.P.; Follmi, K.B.; Verrecchia, E.; Adatte, T.; Matera, V. Speciation and multivariable analyses of geogenic cadmium in soils at Le Gurnigel, Swiss Jura Mountains. Catena 2015, 125, 10–32. [Google Scholar] [CrossRef]
- Wen, Y.; Li, W.; Yang, Z.; Zhang, Q.; Ji, J. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China. Chemosphere 2020, 245, 125620. [Google Scholar] [CrossRef]
- Yu, E.; Liu, H.; Tu, Y.; Gu, X.; Ran, X.; Yu, Z.; Wu, P. Superposition Effects of Zinc Smelting Atmospheric Deposition on Soil Heavy Metal Pollution Under Geochemical Anomaly. Front. Environ. Sci. 2022, 10, 62. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, C.; Cheng, X.; Ma, H.; He, L. Ecological Assessment, Spatial Analysis, and Potential Sources of Heavy Metals (HMs) in Soils with High Background Values in the Lead-Zinc Mine, Hezhang County, Southwestern China. Water 2022, 14, 783. [Google Scholar] [CrossRef]
- Meng, W.; Li, X.-X.; Wu, P. New Insights into Selenium Enrichment in the Soil of Northwestern Guizhou, Southwest China. Bull. Environ. Contam. Toxicol. 2021, 107, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Savignan, L.; Lee, A.; Coynel, A.; Jalabert, S.; Faucher, S.; Lespes, G.; Chery, P. Spatial distribution of trace elements in the soils of south-western France and identification of natural and anthropogenic sources. Catena 2021, 205, 105000. [Google Scholar] [CrossRef]
- Samecka-Cymerman, A.; Kolon, K.; Stankiewicz, A.; Kaszewska, J.; Mroz, L.; Kempers, A.J. Rhizomes and fronds of Athyrium filix-femina as possible bioindicators of chemical elements from soils over different parent materials in southwest Poland. Ecol. Indic. 2011, 11, 1105–1111. [Google Scholar] [CrossRef]
- Wen, Y.; Li, W.; Yang, Z.; Zhuo, X.; Guan, D.-X.; Song, Y.; Guo, C.; Ji, J. Evaluation of various approaches to predict cadmium bioavailability to rice grown in soils with high geochemical background in the karst region, Southwestern China. Environ. Pollut. 2020, 258, 113645. [Google Scholar] [CrossRef]
- Yang, H.; Lu, M.; Cao, J. Trace elements of the soil-plant systems in subtropical karst and clasolite areas in Guilin, Guangxi, China. Environ. Earth Sci. 2015, 73, 6259–6269. [Google Scholar] [CrossRef]
- Zhao, K.L.; Zhang, L.Y.; Dong, J.Q.; Wu, J.S.; Ye, Z.Q.; Zhao, W.M.; Ding, L.Z.; Fu, W.J. Risk assessment, spatial patterns and source apportionment of soil heavy metals in a typical Chinese hickory plantation region of southeastern China. Geoderma 2020, 360, 114011. [Google Scholar] [CrossRef]
- Zhao, F.J.; Ma, Y.B.; Zhu, Y.G.; Tang, Z.; McGrath, S.P. Soil Contamination in China: Current Status and Mitigation Strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef]
- Zhao, X.-L.; Masaihiko, S. Fractionation and solubility of cadmium in paddy soils amended with porous hydrated calcium silicate. J. Environ. Sci. 2007, 19, 343–347. [Google Scholar] [CrossRef]
- Senila, M.; Cadar, O.; Senila, L.; Angyus, B.S. Simulated Bioavailability of Heavy Metals (Cd, Cr, Cu, Pb, Zn) in Contaminated Soil Amended with Natural Zeolite Using Diffusive Gradients in Thin-Films (DGT) Technique. Agriculture 2022, 12, 321. [Google Scholar] [CrossRef]
- Suda, A.; Makino, T. Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: A review. Geoderma 2016, 270, 68–75. [Google Scholar] [CrossRef]
- Mahar, A.; Wang, P.; Ali, A.; Guo, Z.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Shen, F.; Li, R.; Zhang, Z. Impact of CaO, fly ash, sulfur and Na2S on the (im)mobilization and phytoavailability of Cd, Cu and Pb in contaminated soil. Ecotoxicol. Environ. Saf. 2016, 134, 116–123. [Google Scholar] [CrossRef]
- Zou, J.; Liu, X.; Dai, W.; Luan, Y. Pollution assessment of heavy metal accumulation in the farmland soils of Beijing’s suburbs. Environ. Sci. Pollut. Res. 2018, 25, 27483–27492. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Li, X.; Li, J. Heavy Metal Contamination of Agricultural Soils in Taiyuan, China. Pedosphere 2015, 25, 901–909. [Google Scholar] [CrossRef]
- Briki, M.; Ji, H.; Li, C.; Ding, H.; Gao, Y. Characterization, distribution, and risk assessment of heavy metals in agricultural soil and products around mining and smelting areas of Hezhang, China. Environ. Monit. Assess. 2015, 187, 767. [Google Scholar] [CrossRef]
- Bu, Q.; Li, Q.; Zhang, H.; Cao, H.; Gong, W.; Zhang, X.; Ling, K.; Cao, Y. Concentrations, Spatial Distributions, and Sources of Heavy Metals in Surface Soils of the Coal Mining City Wuhai, China. J. Chem. 2020, 2020, 4705954. [Google Scholar] [CrossRef]
- Xiao, N.; Wang, F.; Tang, L.; Zhu, L.; Song, B.; Chen, T. Recommended risk screening values for Cd in high geological background area of Guangxi, China. Environ. Monit. Assess. 2022, 194, 202. [Google Scholar] [CrossRef]
Soil Type | Risk Screening Values (RSVs) of Cd (mg kg−1, Dry Weight) | |||
---|---|---|---|---|
pH ≤ 5.5 | 5.5 < pH ≤ 6.5 | 6.5 < pH ≤ 7.5 | pH > 7.5 | |
Paddy fields | 0.3 | 0.4 | 0.6 | 0.8 |
Others | 0.3 | 0.3 | 0.3 | 0.6 |
Soil type | Risk Intervention Values (RIVs) of Cd (mg kg−1, dry weight) | |||
pH ≤ 5.5 | 5.5 < pH ≤ 6.5 | 6.5 < pH ≤ 7.5 | pH > 7.5 | |
Paddy fields | 1.5 | 2.0 | 3.0 | 4.0 |
Others | 1.5 | 2.0 | 3.0 | 4.0 |
Parameter | Soil Cd Concentration ≤ RSV | RSV < Soil Cd Concentration ≤ RIV | Soil Cd Concentration > RIV | Subtotal | |||||
---|---|---|---|---|---|---|---|---|---|
NES | ES | NES | ES | NES | ES | ||||
Soil pH | RSV (mg kg−1) | RIV (mg kg−1) | Appropriate Standards | False Negatives | False Positives | Appropriate Standards | |||
pH ≤ 5.5 | 0.3 | 1.5 | 3 | 1 | 105 | 0 | 92 | 2 | 203 |
5.5 < pH ≤ 6.5 | 0.3 | 2 | 9 | 0 | 149 | 0 | 67 | 0 | 225 |
6.5 < pH ≤ 7.5 | 0.3 | 3 | 1 | 0 | 44 | 0 | 12 | 1 | 58 |
pH > 7.5 | 0.6 | 4 | 1 | 0 | 5 | 0 | 0 | 0 | 6 |
Sample numbers | 14 | 1 | 303 | 0 | 171 | 3 | 492 | ||
Sample numbers in soil concentration range | 15 | 303 | 174 | ||||||
Proportion of total samples | 3.05% | 61.59% | 35.37% | ||||||
Proportion of standard adaptability types | 93% | 7% | 100% | 0.00% | 98.28% | 1.72% |
Items | HC5 Value (mg kg−1) | HC95 Value (mg kg−1) | Sample Numbers | Models | R2 |
---|---|---|---|---|---|
soil pH ≤ 5.5 | 2.2 | 85.1 | 203 | 0.998 | |
5.5 < soil pH ≤ 6.5 | 2.5 | 108.5 | 225 | 0.999 | |
6.5 < soil pH ≤ 7.5 | 3.0 | 161.8 | 58 | 0.996 | |
RSV | RIV | ||||
soil pH ≤ 5.5 | 0.3 | 1.5 | |||
5.5 < soil pH ≤ 6.5 | 0.3 | 2.0 | |||
6.5 < soil pH ≤ 7.5 | 0.3 | 3.0 |
Parameter | Soil Cd Concentration ≤ HC5 | HC5 < Soil Cd Concentration ≤ HC95 | Soil Cd Concentration > HC95 | Subtotal | |||||
---|---|---|---|---|---|---|---|---|---|
NES | ES | NES | ES | NES | ES | ||||
Soil pH | HC5 (mg kg−1) | HC95 (mg kg−1) | Appropriate Standards | False Negatives | False Positives | Appropriate Standards | |||
pH ≤ 5.5 | 2.2 | 85.1 | 175 | 2 | 25 | 1 | 0 | 0 | 203 |
5.5 < pH ≤ 6.5 | 2.5 | 108.5 | 180 | 0 | 45 | 0 | 0 | 0 | 225 |
6.5 < pH ≤ 7.5 | 3.0 | 161.8 | 45 | 0 | 12 | 1 | 0 | 0 | 58 |
pH > 7.5 | The dataset was too small to be analyzed statistically | 6 | |||||||
Sample numbers | 400 | 2 | 82 | 2 | 0 | 0 | 492 | ||
Sample numbers in soil concentration range | 402 | 84 | 0 | ||||||
Proportion of total samples | 82% | 17% | 0% | ||||||
Proportion of standard adaptability types | 99.5% | 0.5% | 97.62% | 2.38% | 0.00% | 0.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Wu, P.; Yang, W. Study on Safe Usage of Agricultural Land in Typical Karst Areas Based on Cd in Soil and Maize: A Case Study of Northwestern Guizhou, China. Agriculture 2022, 12, 1156. https://doi.org/10.3390/agriculture12081156
Yang L, Wu P, Yang W. Study on Safe Usage of Agricultural Land in Typical Karst Areas Based on Cd in Soil and Maize: A Case Study of Northwestern Guizhou, China. Agriculture. 2022; 12(8):1156. https://doi.org/10.3390/agriculture12081156
Chicago/Turabian StyleYang, Liyu, Pan Wu, and Wentao Yang. 2022. "Study on Safe Usage of Agricultural Land in Typical Karst Areas Based on Cd in Soil and Maize: A Case Study of Northwestern Guizhou, China" Agriculture 12, no. 8: 1156. https://doi.org/10.3390/agriculture12081156
APA StyleYang, L., Wu, P., & Yang, W. (2022). Study on Safe Usage of Agricultural Land in Typical Karst Areas Based on Cd in Soil and Maize: A Case Study of Northwestern Guizhou, China. Agriculture, 12(8), 1156. https://doi.org/10.3390/agriculture12081156