Cropland Expansion Mitigates the Supply and Demand Deficit for Carbon Sequestration Service under Different Scenarios in the Future—The Case of Xinjiang
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Processing
2.3. The GMOP-PLUS Model
2.3.1. PLUS
2.3.2. Gray Multi-Objective Optimization (GMOP)
2.3.3. GMOP-PLUS
2.4. Scenario Setting and Land Use Requirements
2.4.1. Scenario Setting
- BAU scenario: This scenario assumes that land use change trends from the past will continue and that land demand for the BAU year of 2025 will be calculated based on the transition probability of shifts in the Markov chain for the 2015–2020 period and the 2030 BAU year based on the transition probability of shifts in the Markov chain for 2020–2025 BAU [9,25].
- RED scenario: This scenario is based on the policy of rapid development of urban construction land in the region of the General Land Use Plan of the Xinjiang Uygur Autonomous Region [25]. The RED scenario prioritizes rapid economic development, leading to more demand for urban space. Based on the BAU scenario, and through a combination of thresholds set by previous studies, expert opinions, etc., we assume that the RED scenario accelerates the rate of conversion of grassland, construction land, and bare land to cropland by 50% and that the rate of conversion of cropland, grassland, and water to built-up land increases by the same 50% [33].
- ELP scenario: This scenario is based on the Grain for Green Project, the Three-North Shelter Forest Program (TNSFP), and the 14th Five-Year Plan for Ecological Protection and represents the strengthening of the local government’s commitment to forestry. This scenario represents the execution of the local government’s policy of strengthening the protection of forests, grasslands, and water sources, strictly controlling the growth of cropland and construction land, and encouraging the return of farmland to forests, grass, and lakes. In this scenario, we modify the development potential of the cropland layer to convert farmland with a slope between 6° and 25° into grassland, and farmland with a slope greater than 25° into woodland. In addition, a buffer zone of 100 m near river waters was established as a woodland–grassland buffer zone [34].
- SD scenario: The first three scenarios are more extreme, but the future development of Xinjiang cannot necessarily be modeled using a single scenario, and a trade-off between the three scenarios is needed to find the most appropriate development model for the region. To this end, this study proposes a sustainable development (SD) scenario, which provides a perspective on the trade-offs between the three scenarios. SDGs 15.3.1 represents the proportion of total land area that is degraded, which is a combination of three sub-indicators: land use change, land productivity, and carbon sequestration above and below ground. Given the data availability in our study, we have simplified the SDG 15.3.1 scenario by using only the land use scenario [35]. Although the SDG 15.3.1 scenario calculated here may not sufficiently reflect future realities, using GMOP-PLUS results to characterize the SDGs may provide a new perspective for planning SDGs under future land use change scenarios. Most importantly, specific implementation data for the SDGs model are not yet available for individual countries [36].
2.4.2. SD Scenario Setting
2.5. Carbon Sequestration Service Supply and Demand
2.5.1. Carbon Sequestration Service Supply
2.5.2. Carbon Sequestration Service Demand
2.6. LULC Accuracy Verification
3. Results and Analysis
3.1. LULC Simulation under Multi-Scenarios
3.2. Spatial and Temporal Changes in the Supply of Carbon Sequestration under Different Scenarios
3.3. Analysis of the Supply and Demand for Carbon Sequestration under Different Future Scenarios
4. Discussion
4.1. Analyses of Future Land Use Change under Different Scenarios
4.2. Analysis of the Impact of LULC on Carbon
4.3. Analysis of the Supply and Demand of the Carbon Sequestration Service in Different Scenarios
4.4. Limitations and Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Wang, X.; Wang, K.; Chevallier, F.; Zhu, D.; Lian, J.; He, Y.; Tian, H.; Li, J.; Zhu, J. The size of the land carbon sink in China. Nature 2022, 603, E7–E9. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liang, Y.; Zhao, Y.; Liu, S.; Huang, C. Simulation and Analysis of the Effects of Land Use and Climate Change on Carbon Dynamics in the Wuhan City Circle Area. Int. J. Environ. Res. Public Health 2021, 18, 11617. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zhao, X.; Bai, Y.; Tang, Z.; Wang, W.; Zhao, Y.; Wan, H.; Xie, Z.; Shi, X.; Wu, B. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggleston, H.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 2006. [Google Scholar]
- Houghton, R. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus B 1999, 51, 298–313. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Peng, J.; Dong, J.; Zhang, Z.; Xu, Z.; Meersmans, J. Linking ecological background and demand to identify ecological security patterns across the Guangdong-Hong Kong-Macao Greater Bay Area in China. Landsc. Ecol. 2021, 36, 2135–2150. [Google Scholar] [CrossRef]
- Schwartz, C.; Shaaban, M.; Bellingrath-Kimura, S.D.; Piorr, A. Participatory Mapping of Demand for Ecosystem Services in Agricultural Landscapes. Agriculture 2021, 11, 1193. [Google Scholar] [CrossRef]
- Li, H.; Wu, Y.; Liu, S.; Xiao, J.; Zhao, W.; Chen, J.; Alexandrov, G.; Cao, Y. Decipher soil organic carbon dynamics and driving forces across China using machine learning. Glob. Chang. Biol. 2022, 28, 3394–3410. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; He, Z.; Du, J.; Chen, L.; Lin, P.; Fang, S. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 2019, 98, 29–38. [Google Scholar] [CrossRef]
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaarchchi, N.; Jenkins, M.; Minasny, B.; McBratney, A.B.; De Courcelles, V.d.R.; Singh, K. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 2013, 164, 80–99. [Google Scholar] [CrossRef]
- Wieder, W.R.; Bonan, G.B.; Allison, S.D. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Chang. 2013, 3, 909–912. [Google Scholar] [CrossRef]
- Nayak, A.K.; Rahman, M.M.; Naidu, R.; Dhal, B.; Swain, C.K.; Nayak, A.D.; Tripathi, R.; Shahid, M.; Islam, M.R.; Pathak, H. Current and emerging methodologies for estimating carbon sequestration in agricultural soils: A review. Sci. Total Environ. 2019, 665, 890–912. [Google Scholar] [CrossRef] [PubMed]
- Fensholt, R.; Sandholt, I.; Rasmussen, M.S.; Stisen, S.; Diouf, A. Evaluation of satellite based primary production modelling in the semi-arid Sahel. Remote Sens. Environ. 2006, 105, 173–188. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W.; Nemani, R.R. Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses. J. Geophys. Res. Biogeosci. 2006, 111, G1. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Sims, D.A.; Cordova, V.D.; El-Masri, B.Z. Potential of MODIS EVI and surface temperature for directly estimating per-pixel ecosystem C fluxes. Geophys. Res. Lett. 2005, 32, 19. [Google Scholar] [CrossRef] [Green Version]
- Scharlemann, J.P.; Tanner, E.V.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, W.; Xu, Z. Systematic comparison of five machine-learning models in classification and interpolation of soil particle size fractions using different transformed data. Hydrol. Earth Syst. Sci. 2020, 24, 2505–2526. [Google Scholar] [CrossRef]
- Euliss, N.H., Jr.; Smith, L.M.; Liu, S.; Feng, M.; Mushet, D.M.; Auch, R.F.; Loveland, T.R. The need for simultaneous evaluation of ecosystem services and land use change. Environ. Sci. Technol. 2010, 44, 7761–7763. [Google Scholar] [CrossRef]
- Maring, L.; Blauw, M. Asset management to support urban land and subsurface management. Sci. Total Environ. 2018, 615, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, J.H.; Caldarone, G.; Duarte, T.K.; Ennaanay, D.; Hannahs, N.; Mendoza, G.; Polasky, S.; Wolny, S.; Daily, G.C. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl. Acad. Sci. USA 2012, 109, 7565–7570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.; Chan, K.M.; Daily, G.C.; Goldstein, J.; Kareiva, P.M. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, Q.; He, C.; Yin, D.; Liu, Z. Planning urban landscape to maintain key ecosystem services in a rapidly urbanizing area: A scenario analysis in the Beijing-Tianjin-Hebei urban agglomeration, China. Ecol. Indic. 2019, 96, 559–571. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, X.; Han, H. Future impacts of land use change on ecosystem services under different scenarios in the ecological conservation area, Beijing, China. Forests 2020, 11, 584. [Google Scholar] [CrossRef]
- Wu, X.; Fu, B.; Wang, S.; Song, S.; Li, Y.; Xu, Z.; Wei, Y.; Liu, J. Decoupling of SDGs followed by re-coupling as sustainable development progresses. Nat. Sustain. 2022, 5, 452–459. [Google Scholar] [CrossRef]
- Shi, M.; Wu, H.; Fan, X.; Jia, H.; Dong, T.; He, P.; Baqa, M.F.; Jiang, P. Trade-offs and synergies of multiple ecosystem services for different land use scenarios in the yili river valley, China. Sustainability 2021, 13, 1577. [Google Scholar] [CrossRef]
- Wang, X.; Dong, X.; Liu, H.; Wei, H.; Fan, W.; Lu, N.; Xu, Z.; Ren, J.; Xing, K. Linking land use change, ecosystem services and human well-being: A case study of the Manas River Basin of Xinjiang, China. Ecosyst. Serv. 2017, 27, 113–123. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, B.; Bai, Y.; Xu, X.; Alatalo, J.M. Quantifying ecosystem services supply and demand shortfalls and mismatches for management optimisation. Sci. Total Environ. 2019, 650, 1426–1439. [Google Scholar] [CrossRef]
- Xu, L.; He, N.; Yu, G. A dataset of carbon density in Chinese terrestrial ecosystems (2010s). China Sci. Data 2019, 4, 49–54. [Google Scholar]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Zhang, Q.; Li, J.; Zhou, X. Projections of future land use changes: Multiple scenarios-based impacts analysis on ecosystem services for Wuhan city, China. Ecol. Indic. 2018, 94, 430–445. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Gao, B.; Zheng, K.; Wu, Y.; Li, C. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China. Ecol. Indic. 2021, 132, 108328. [Google Scholar] [CrossRef]
- Zhang, H.-B.; Zhang, X.-H. Land use structural optimization of Lilin based on GMOP-ESV. Trans. Nonferrous Met. Soc. China 2011, 21, s738–s742. [Google Scholar] [CrossRef]
- Fu, Q.; Hou, Y.; Wang, B.; Bi, X.; Li, B.; Zhang, X. Scenario analysis of ecosystem service changes and interactions in a mountain-oasis-desert system: A case study in Altay Prefecture, China. Sci. Rep. 2018, 8, 12939. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Li, S.; Li, X.; Li, X.; Liu, Q.; Meng, Q.; Lin, A.; Li, J. Trade-off analyses and optimization of water-related ecosystem services (WRESs) based on land use change in a typical agricultural watershed, southern China. J. Clean. Prod. 2021, 279, 123851. [Google Scholar] [CrossRef]
- Peng, K.; Jiang, W.; Ling, Z.; Hou, P.; Deng, Y. Evaluating the potential impacts of land use changes on ecosystem service value under multiple scenarios in support of SDG reporting: A case study of the Wuhan urban agglomeration. J. Clean. Prod. 2021, 307, 127321. [Google Scholar] [CrossRef]
- Giuliani, G.; Mazzetti, P.; Santoro, M.; Nativi, S.; Van Bemmelen, J.; Colangeli, G.; Lehmann, A. Knowledge generation using satellite earth observations to support sustainable development goals (SDG): A use case on Land degradation. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102068. [Google Scholar] [CrossRef]
- Xinjiang Statistical Yearbook. 2020. Available online: http://www.stats.gov.cn/tjsj./ndsj/ (accessed on 1 May 2022).
- Xie, G.; Zhang, C.; Zhang, C.; Xiao, Y.; Lu, C. The value of ecosystem services in China. Resour. Sci. 2015, 37, 1740–1746. [Google Scholar]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhang, S.; Tao, F.; Aboelenein, R.; Amer, A. Improving Winter Wheat Yield Forecasting Based on Multi-Source Data and Machine Learning. Agriculture 2022, 12, 571. [Google Scholar] [CrossRef]
- Xu, L.; Yu, G.; He, N.; Wang, Q.; Gao, Y.; Wen, D.; Li, S.; Niu, S.; Ge, J. Carbon storage in China’s terrestrial ecosystems: A synthesis. Sci. Rep. 2018, 8, 2806. [Google Scholar] [CrossRef]
- Li, Y.; Qian, Y. An analysis of operation cost of Chinese family car. Market Res. 2008, 1, 52–54. [Google Scholar]
- Cai, H. Factors of Northern and Southern China per Capita CO2 Emission in China’s Household; Jinan University: Guangzhou, China, 2016. (In Chinese) [Google Scholar]
- Eustachio, J.H.P.P.; Caldana, A.C.F.; Liboni, L.B.; Martinelli, D.P. Systemic indicator of sustainable development: Proposal and application of a framework. J. Clean. Prod. 2019, 241, 118383. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; Sharp, R.P.; Weil, C.; Bennett, E.M.; Pascual, U.; Arkema, K.K.; Brauman, K.A.; Bryant, B.P.; Guerry, A.D.; Haddad, N.M. Global modeling of nature’s contributions to people. Science 2019, 366, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Yan, A. Spatial Distribution and Storages Estimation of Soil Organic Carbon and Soil Inorganic Carbon in Xinjiang, China; China Agricultural University: Beijing, China, 2015. (In Chinese) [Google Scholar]
- Wang, X.; Yang, D.; Xiong, H. Characteristics of soil organic carbon under different vegetation types in Xinjiang. Arid. Zone Res. 2017, 34, 782–788. [Google Scholar]
- Bai, Y.; Wong, C.P.; Jiang, B.; Hughes, A.C.; Wang, M.; Wang, Q. Developing China’s Ecological Redline Policy using ecosystem services assessments for land use planning. Nat. Commun. 2018, 9, 3034. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.; Zhang, L.; Xu, Z.; Zhao, Y.; Wei, Y.; Skinner, D. Ecosystem services in changing land use. J. Soils Sediments 2015, 15, 833–843. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; He, L.; Men, M. Multi-scenario simulation of land use structure based on dual combined models. Acta Ecol. Sin. 2016, 36, 5391–5400. [Google Scholar]
- Wang, Y.; Huang, M.; Wang, X. Impacts of land use and climate change on agricultural productivity in Shanghai. Acta Sci. Circumstantiae 2010, 30, 641–648. [Google Scholar]
Subject to (Unit: Pixel Number) | Description |
---|---|
The sum of the total area of all land use types generally remained constant before and after the simulation. | |
To guarantee regional food security, the cropland area should not be lower than the 2020 level and less than the maximum number of pixels in the three scenarios (BAU, RED, and ELP). | |
Forest is the ecological barrier of Xinjiang and should not be less than the 2020 level and less than the maximum number of pixels in the three scenarios (BAU, RED, and ELP). | |
Grassland can contribute to livestock development, soil and water conservation, and ecological balance and should not be less than the 2020 level, and less than the maximum number of pixels in the three scenarios (BAU, RED, and ELP). | |
The water area should be at least 90% of the 2020 level and less than the maximum number of pixels in the three scenarios (BAU, RED, and ELP). | |
With the steady development of Xinjiang, which is bound to attract more people, the constructed area should be no less than the 2020 level and less than the maximum number of pixels in the three scenarios (BAU, RED, and ELP). | |
We set the area of bare land to be greater than the 2020 level and below the maximum number of pixels in the three scenarios (BAU, RED, and ELP). |
LULC Type | Areal Coverage (km2) | LULC Dynamic Index K (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
2020 | 2025 BAU | 2025 RED | 2025 ELP | 2025 SD | 2020– 2025 BAU | 2020– 2025 RED | 2020– 2025 ELP | 2020– 2025 SD | |
Cropland | 90,255.7 | 93,594.9 | 94,215 | 86,520.5 | 90,956.1 | 0.007399 | 0.008774 | −0.008277 | 0.001552 |
Forest | 27,454.1 | 27,321.6 | 27,250 | 28,004.6 | 28,008.1 | −0.00097 | −0.001487 | 0.004010 | 0.004036 |
Grassland | 48,4605 | 487,602 | 480,355 | 490,659 | 486,124 | 0.001237 | −0.001754 | 0.002499 | 0.000627 |
Water | 34,784.8 | 35,401.4 | 34,900.2 | 33,694.9 | 33,503.6 | 0.003545 | 0.000664 | −0.006267 | −0.007366 |
Constructed | 9185.8 | 9393.3 | 9597.38 | 9314.3 | 9599.1 | 0.004518 | 0.008961 | 0.002798 | 0.008999 |
Bare land | 992,105 | 985,077 | 992,073 | 989,940 | 989,942 | −0.00142 | −0.000006 | −0.000436 | −0.000436 |
LULC Type | Areal Coverage (km2) | LULC Dynamic Index K (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
2025 BAU | 2030 BAU | 2030 RED | 2030 ELP | 2030 SD | 2025 BAU–2030 BAU | 2025 BAU–2030 RED | 2025 BAU– 2030 ELP | 2025 BAU– 2030 SD | |
Cropland | 93,594.9 | 96,911.3 | 98,051.9 | 83,327.4 | 91,802 | 0.007087 | 0.009524 | −0.021940 | −0.003831 |
Forest | 27,321.6 | 27,189.9 | 26,917.4 | 28,120.4 | 29,410.6 | −0.000964 | −0.002959 | 0.005847 | 0.015292 |
Grassland | 487,602 | 490,577 | 476,350 | 496,092 | 489,906 | 0.001220 | −0.004615 | 0.003482 | 0.000945 |
Water | 35,401.4 | 36,013.8 | 35,011.7 | 34,974.5 | 34,784.3 | 0.003460 | −0.002202 | −0.002412 | −0.003486 |
Constructed | 9393.3 | 9599.2 | 10,074.6 | 9398 | 10,003.1 | 0.004384 | 0.014506 | 0.000100 | 0.012984 |
Bare land | 985,077 | 978,099 | 991,985 | 986,479 | 982,485 | −0.001417 | 0.001403 | 0.000285 | −0.000526 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, M.; Wu, H.; Jiang, P.; Shi, W.; Zhang, M.; Zhang, L.; Zhang, H.; Fan, X.; Liu, Z.; Zheng, K.; et al. Cropland Expansion Mitigates the Supply and Demand Deficit for Carbon Sequestration Service under Different Scenarios in the Future—The Case of Xinjiang. Agriculture 2022, 12, 1182. https://doi.org/10.3390/agriculture12081182
Shi M, Wu H, Jiang P, Shi W, Zhang M, Zhang L, Zhang H, Fan X, Liu Z, Zheng K, et al. Cropland Expansion Mitigates the Supply and Demand Deficit for Carbon Sequestration Service under Different Scenarios in the Future—The Case of Xinjiang. Agriculture. 2022; 12(8):1182. https://doi.org/10.3390/agriculture12081182
Chicago/Turabian StyleShi, Mingjie, Hongqi Wu, Pingan Jiang, Wenjiao Shi, Mo Zhang, Lina Zhang, Haoyu Zhang, Xin Fan, Zhuo Liu, Kai Zheng, and et al. 2022. "Cropland Expansion Mitigates the Supply and Demand Deficit for Carbon Sequestration Service under Different Scenarios in the Future—The Case of Xinjiang" Agriculture 12, no. 8: 1182. https://doi.org/10.3390/agriculture12081182
APA StyleShi, M., Wu, H., Jiang, P., Shi, W., Zhang, M., Zhang, L., Zhang, H., Fan, X., Liu, Z., Zheng, K., Dong, T., & Baqa, M. F. (2022). Cropland Expansion Mitigates the Supply and Demand Deficit for Carbon Sequestration Service under Different Scenarios in the Future—The Case of Xinjiang. Agriculture, 12(8), 1182. https://doi.org/10.3390/agriculture12081182