Application of Mathematical Models and Thermodynamic Properties in the Drying of Jambu Leaves
Abstract
:1. Introduction
2. Material and Methods
2.1. Obtaining of Raw Material and Drying
Physicochemical Characterization
2.2. Mathematical Modeling
2.3. Thermodynamic Properties
3. Results and Discussion
3.1. Physicochemical Characterization
3.2. Mathematical Modeling
3.3. Thermodynamic Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Neves, D.A.; Schmiele, M.; Pallone, J.; Orlando, E.A.; Risso, E.M.; Cunha, E.C.E.; Godoy, H.T. Chemical and nutritional characterization of raw and hydrothermal processed jambu (Acmella oleracea (L.) R.K. Jansen). Food Res. Int. 2019, 116, 1144–1152. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, A.M.; de Souza, L.M.; Baggio, C.H.; Werner, M.F.D.P.; Maria-Ferreira, D.; da Silva, L.M.; Sassaki, G.L.; Gorin, P.A.; Iacomini, M.; Cipriani, T.R. Gastroprotective effect and structure of a rhamnogalacturonan from Acmella oleracea. Phytochemistry 2013, 85, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, L.E.S.; Arriola, N.D.A.; da Silva, L.A.L.; Faqueti, L.G.; Sandjo, L.P.; de Araújo, C.E.S.; Biavatti, M.W.; Barcelos-Oliveira, J.L.; Amboni, R.D.D.M.C. Phytochemical profile of different anatomical parts of jambu (Acmella oleracea (L.) R.K. Jansen): A comparison between hydroponic and conventional cultivation using PCA and cluster analysis. Food Chem. 2020, 332, 127393. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Fossari, F.; Vecchio, V.; Braschi, V.; Riva, A.; Allegrini, P.; Petrangolini, G.; Iannello, G.; Faliva, M.A.; Peroni, G.; et al. Fitoterapia Acmella oleracea for pain management. Fitoterapia 2020, 140, 104419. [Google Scholar] [CrossRef]
- Araújo, I.F.; Loureiro, H.A.; Marinho, V.H.; Neves, F.B.; Sarquis, R.S.; Faustino, S.M.; Yoshioka, S.A.; Ferreira, R.M.; Souto, R.N.; Ferreira, I.M. Biocatalysis and Agricultural Biotechnology Larvicidal activity of the methanolic, hydroethanolic and hexanic extracts from Acmella oleracea, solubilized with silk fibroin, against Aedes aegypti. Biocatal. Agric. Biotechnol. 2020, 24, 101550. [Google Scholar] [CrossRef]
- Nipate, S.S.; Tiwari, A.H. Journal of Ayurveda and Integrative Medicine Antioxidant and immunomodulatory properties of Spilanthes oleracea with potential effect in chronic fatigue syndrome in fi rmity. J. Ayurveda Integr. Med. 2020, 11, 124–130. [Google Scholar] [CrossRef]
- Martinazzo, A.P.; Melo, E.C.; Corrêa, P.C.; Santos, R.H.S. Modelagem matemática e parâmetros qualitativos da secagem de folhas de capim-limão [Cymbopogon citratus (DC.) Stapf]. Rev. Bras. Plantas Med. 2010, 12, 488–498. [Google Scholar] [CrossRef]
- Oliveira, M.T.R.; Berbert, P.A.; Martinazzo, A.P. Avaliação de modelos matemáticos na descrição das curvas de secagem por convecção de Pectis brevipedunculata (Gardner) Sch. Bip. Rev. Bras. Plantas Med. 2013, 15, 1–12. [Google Scholar] [CrossRef]
- Zarein, M.; Samadi, S.H.; Ghobadian, B. Investigation of microwave dryer effect on energy efficiency during drying of apple slices. J. Saudi Soc. Agric. Sci. 2015, 14, 41–47. [Google Scholar] [CrossRef]
- Influência da Secagem Nas Propriedades Funcionais de Biopolímeros Alimentares_ Das Técnicas Tradicionais Às Novas técnicas de Desidratação Pdf. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/77765/1/doc-276.pdf (accessed on 20 May 2022).
- Abbasi, E.; Azizpour, M. Evaluation of physicochemical properties of foam mat dried sour cherry powder. LWT—Food Sci. Technol. 2016, 68, 105–110. [Google Scholar] [CrossRef]
- Franco, T.S.; Perussello, C.A.; Ellendersen, L.D.S.N.; Masson, M.L. Foam mat drying of yacon juice: Experimental analysis and computer simulation. J. Food Eng. 2015, 158, 48–57. [Google Scholar] [CrossRef]
- Santos, N.C.; Almeida, R.L.J.; Pereira, T.D.S.; De Queiroga, A.P.R.; Silva, V.M.D.A.; Amaral, D.S.D.; Almeida, R.D.; Ribeiro, V.H.D.A.; Barros, E.R.; Da Silva, L.R.I. Modelagem matemática aplicada a cinética de secagem das cascas de pitomba (Talisia esculenta). Res. Soc. Dev. 2020, 9, e46921986. [Google Scholar] [CrossRef]
- Pinar, H.; Çetin, N.; Ciftci, B.; Karaman, K.; Kaplan, M. Biochemical composition, drying kinetics and chromatic parameters of red pepper as affected by cultivars and drying methods. J. Food Compos. Anal. 2021, 102, 103976. [Google Scholar] [CrossRef]
- Balieiro, O.C.; Pinheiro, M.S.D.S.; Silva, S.Y.; Oliveira, M.N.; Silva, S.C.; Gomes, A.A.; Pinto, L. Analytical and preparative chromatographic approaches for extraction of spilanthol from Acmella oleracea flowers. Microchem. J. 2020, 157, 105035. [Google Scholar] [CrossRef]
- Gomes, F.P.; Resende, O.; Sousa, E.P.; Damasceno, L.F. Comparison of powdered and fresh jambu (Acmella oleracea). Heliyon 2020, 6, e05349. [Google Scholar] [CrossRef]
- Instituto Adolfo Lutz. Métodos Físico-Químicos Para Análise de Alimentos, 4th ed.; 1° edição digital: São Paulo, Brazil, 2008. [Google Scholar]
- Brooker, C.W.; Bakker-Arkema, D.B.; Hall, F.W. Drying and Storage of Grains and Oilseeds; The Avi Publishing Company: Westport, CT, USA, 1992. [Google Scholar]
- Afonso, P.C. Paulo Cesar e Corrêa, Comparação de modelos matemáticos para descrição da cinética de secagem em camada fina de sementes de feijão. Rev. Bras. Eng. Agrícola e Ambient. 1999, 3, 349–353. [Google Scholar] [CrossRef]
- Babu, A.K.; Kumaresan, G.; Raj, V.A.A.; Velraj, R. Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renew. Sustain. Energy Rev. 2018, 90, 536–556. [Google Scholar] [CrossRef]
- Mohapatra, D.; Rao, P.S. A thin layer drying model of parboiled wheat. J. Food Eng. 2005, 66, 513–518. [Google Scholar] [CrossRef]
- Gomes, F.P.; Resende, O.; Sousa, E.P.; de Oliveira, D.E.C.; Neto, F.R.d. Drying kinetics of crushed mass of ‘jambu’: Effective diffusivity and activation energy. Rev. Bras. Eng. Agric. e Ambient. 2018, 22, 499–505. [Google Scholar] [CrossRef]
- Tunde-Akintunde, T.Y. Mathematical modeling of sun and solar drying of chilli pepper. Renew. Energy 2011, 36, 2139–2145. [Google Scholar] [CrossRef]
- Corrêa, P.C.; Oliveira, G.H.H.; Botelho, F.M.; Goneli, A.L.D.; Carvalho, F.M. Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Rev. Ceres 2010, 57, 595–601. [Google Scholar] [CrossRef]
- Perez, L.G.; de Oliveira, F.M.N.; Andrade, J.S.; Filho, M.M. Cintica de secagem da polpa cupuau (Theobroma grandiflorum) prdesidratada por imerso-impregnao. Rev. Cienc. Agron. 2013, 44, 102–106. [Google Scholar] [CrossRef]
- Therdthai, N.; Zhou, W. Characterization of microwave vacuum drying and hot air drying of mint leaves (Mentha cordifolia Opiz ex Fresen). J. Food Eng. 2009, 91, 482–489. [Google Scholar] [CrossRef]
- Lisboa, H.M.; Araujo, H.; Paiva, G.; Oriente, S.; Pasquali, M.A.D.B.; Duarte, M.E.; Mata, M.E.C. Determination of characteristic properties of mulatto beans (Phaseolus vulgaris L.) during convective drying. J. Agric. Food Res. 2019, 1, 100003. [Google Scholar] [CrossRef]
- Zhao, C.C.; Ameer, K.; Eun, J.B. Effects of various drying conditions and methods on drying kinetics and retention of bioactive compounds in sliced persimmon. LWT 2021, 143, 111149. [Google Scholar] [CrossRef]
- Jideani, V.A.; Mpotokwana, S.M. Modeling of water absorption of Botswana bambara varieties using Peleg’s equation. J. Food Eng. 2009, 92, 182–188. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Mao, X.; Huang, H.; Wang, T.; Qu, Z.; Miao, J.; Gao, W. Effects of drying processes on starch-related physicochemical properties, bioactive components and antioxidant properties of yam flours. Food Chem. 2017, 224, 224–232. [Google Scholar] [CrossRef]
- Acar, C.; Dincer, I.; Mujumdar, A. A comprehensive review of recent advances in renewable-based drying technologies for a sustainable future. Dry Technol. 2020, 40, 1029–1050. [Google Scholar] [CrossRef]
Model Designation | Model | Equation | |
---|---|---|---|
1 | Page | (2) | |
2 | Midilli | (3) | |
3 | Henderson & Pabis | (4) | |
4 | Approximation of Diffusion | (5) | |
5 | Two Terms | (6) | |
6 | Two-Term Exponential | (7) | |
7 | Logarithmic | (8) | |
8 | Thompson | (9) | |
9 | Newton | (10) | |
10 | Verma | (11) | |
11 | Wang & Singh | (12) | |
12 | Valcam | (13) |
Material | Temperature °C | Analyses | ||||
---|---|---|---|---|---|---|
Moisture Content (% w.b.) | Protein % | Lipids % | Ash % | Total Titratable Acidity * % | ||
Fresh mass of jambu leaves | --- | 92.71 ± 0.29 | 3.39 ± 0.23 | 0.24 ± 0.08 | 1.34 ± 0.04 | 0.03 ± 0.0 |
Foam | --- | 90.31 ± 0.05 | 3.30 ± 0.22 | 0.26 ± 0.07 | 1.31 ± 0.01 | 0.04 ± 0.0 |
Dried mass of jambu leaves | 50 | 5.70 aA | 28.33 aA | 0.78 aB | 17.18 aA | 0.26 aA |
60 | 3.79 aB | 30.44 aA | 0.68 aB | 16.28 aA | 0.29 aA | |
70 | 2.21 aB | 28.48 aA | 0.69 aB | 16.32 aA | 0.27 aA | |
Dried foam | 50 | 6.29 aA | 24.75 aA | 4.72 aA | 14.20 aB | 0.24 aA |
60 | 7.67 aA | 22.98 aB | 4.71 aA | 13.74 aA | 0.24 aA | |
70 | 6.58 aA | 23.37 aA | 4.09 aA | 13.00 aB | 0.20 aB |
Model | Mass of Leaves | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
50 °C | 60 °C | 70 °C | ||||||||||
SE (Decimal) | P (%) | χ2 (Decimal) × 10−³ | R2 (%) | SE (Decimal) | P (%) | χ2 (Decimal) × 10−³ | R2 (%) | SE (Decimal) | P (%) | χ2 (Decimal) × 10−³ | R2 (%) | |
Wang & Singh | 0.0074 | 6.90 | 0.055 | 99.94 | 0.009 | 7.075 | 0.09 | 99.91 | 0.011 | 4.2 | 0.13 | 99.87 |
Verma | 0.0881 | 75.95 | 7.7532 | 91.79 | 0.180 | 167.9 | 32.51 | 68.31 | 0.012 | 4.9 | 0.15 | 99.85 |
Valcam | 0.0363 | 35.56 | 1.3184 | 98.60 | 0.047 | 54.3 | 2.19 | 97.86 | 0.042 | 10.7 | 1.77 | 97.19 |
Thompson | 0.0528 | 46.59 | 2.7902 | 96.96 | 0.051 | 56.8 | 2.65 | 97.33 | 0.060 | 27.5 | 3.54 | 96.36 |
Page | 0.0234 | 20.44 | 0.5494 | 99.40 | 0.024 | 26.2 | 0.56 | 99.44 | 0.021 | 10.1 | 0.46 | 99.53 |
Newton | 0.0521 | 46.58 | 2.7099 | 96.96 | 0.051 | 56.8 | 2.57 | 97.33 | 0.058 | 27.5 | 3.42 | 96.36 |
Midilli | 0.0069 | 6.13 | 0.0480 | 99.95 | 0.009 | 8.2 | 0.07 | 99.93 | 0.006 | 2.4 | 0.03 | 99.97 |
Logarithmic | 0.0083 | 8.22 | 0.0686 | 99.93 | 0.009 | 9.3 | 0.08 | 99.92 | 0.008 | 3.6 | 0.07 | 99.93 |
Henderson & Pabis | 0.0460 | 41.13 | 2.1155 | 97.69 | 0.043 | 49.5 | 1.88 | 98.11 | 0.049 | 22.9 | 2.39 | 97.54 |
Two-term exponential | 0.0528 | 46.58 | 2.7896 | 96.96 | 0.051 | 56.8 | 2.65 | 97.33 | 0.060 | 27.5 | 3.54 | 96.36 |
Two terms | 0.0236 | 21.84 | 0.5576 | 99.43 | 0.045 | 49.5 | 2.01 | 98.11 | 0.024 | 11.5 | 0.57 | 99.46 |
Approximation of diffusion | 0.0094 | 8.98 | 0.0882 | 99.91 | 0.011 | 10.6 | 0.13 | 99.87 | 0.012 | 4.9 | 0.15 | 99.85 |
Model | Foam | |||||||||||
50 °C | 60 °C | 70 °C | ||||||||||
SE (decimal) | P (%) | χ2 (decimal) × 10−³ | R2 (%) | SE (decimal) | P (%) | χ2 (decimal) × 10−³ | R2 (%) | SE (decimal) | P (%) | χ2 (decimal) × 10−³ | R2 (%) | |
Wang & Singh | 0.006 | 4.1 | 0.03 | 99.97 | 0.010 | 6.2 | 0.10 | 99.90 | 0.016 | 7.3 | 0.27 | 99.77 |
Verma | 0.242 | 154.6 | 58.38 | 44.48 | 0.346 | 217.0 | 119.56 | 0.00 | 0.439 | 313.1 | 192.32 | 0.00 |
Valcan | 0.050 | 37.2 | 2.50 | 97.62 | 0.043 | 29.4 | 1.83 | 98.40 | 0.052 | 38.2 | 2.72 | 97.80 |
Thompson | 0.049 | 35.8 | 2.43 | 97.61 | 0.060 | 39.8 | 3.59 | 96.73 | 0.064 | 46.4 | 4.08 | 96.52 |
Page | 0.022 | 15.6 | 0.50 | 99.50 | 0.023 | 15.0 | 0.52 | 99.52 | 0.020 | 15.2 | 0.39 | 99.67 |
Newton | 0.048 | 35.8 | 2.35 | 97.61 | 0.059 | 39.8 | 3.44 | 96.73 | 0.062 | 46.4 | 3.87 | 96.52 |
Midilli | 0.008 | 5.0 | 0.06 | 99.95 | 0.007 | 4.8 | 0.05 | 99.95 | 0.008 | 4.3 | 0.06 | 99.95 |
Logarithmic | 0.010 | 7.2 | 0.09 | 99.91 | 0.010 | 7.0 | 0.10 | 99.91 | 0.013 | 7.5 | 0.16 | 99.87 |
Henderson & Pabis | 0.043 | 31.5 | 1.86 | 98.17 | 0.050 | 33.6 | 2.48 | 97.74 | 0.050 | 37.5 | 2.47 | 97.89 |
Two-term exponential | 0.049 | 35.8 | 2.43 | 97.61 | 0.060 | 39.8 | 3.59 | 96.73 | 0.064 | 46.4 | 4.07 | 96.52 |
Two terms | 0.021 | 15.8 | 0.46 | 99.58 | 0.025 | 17.0 | 0.62 | 99.48 | 0.053 | 37.5 | 2.76 | 97.89 |
Approximation of diffusion | 0.010 | 7.4 | 0.10 | 99.91 | 0.013 | 8.3 | 0.17 | 99.86 | 0.019 | 10.4 | 0.37 | 99.70 |
Model | Wang & Singh | Midilli | Logarithmic | ||||
---|---|---|---|---|---|---|---|
Drying | Temperature °C | BIC | AIC | BIC | AIC | BIC | AIC |
Mass of Leaves | 50 | −242.58 | −247.33 | −242.15 | −250.07 | −231.76 | −238.10 |
60 | −205.62 | −210.11 | −207.35 | −214.83 | −207.87 | −213.86 | |
70 | −150.17 | −154.48 | −173.45 | −180.62 | −147.70 | −153.43 | |
Foam | 50 | −224.32 | −228.62 | −189.15 | −194.88 | −189.15 | −194.88 |
60 | −156.83 | −160.61 | −169.75 | −176.04 | −154.81 | −159.84 | |
70 | −106.23 | −109.36 | −133.10 | −138.32 | −114.71 | −118.88 |
Model | Temperature (°C) | Mass of Leaves | Foam | ||||||
---|---|---|---|---|---|---|---|---|---|
a | b | k | n | a | b | k | n | ||
Midilli | 50 | 0.997247 | −0.014930 | 0.073879 | 1.142397 | 0.990898 | −0.017696 | 0.157579 | 1.160437 |
60 | 1.006883 | −0.019378 | 0.127761 | 1.088324 | 0.998051 | −0.032604 | 0.242910 | 1.185451 | |
70 | 1.003061 | −0.031494 | 0.143453 | 1.178146 | 1.008538 | −0.038754 | 0.444715 | 1.204884 | |
Wang & Singh | 50 | −0.099148 | 0.002023 | −−−− | −−−− | −0.186675 | 0.008153 | −−−− | −−−− |
60 | −0.146170 | 0.004782 | −−−− | −−−− | −0.275789 | 0.016182 | −−−− | −−−− | |
70 | −0.181939 | 0.005765 | −−−− | −−−− | −0.435303 | 0.041703 | −−−− | −−−− |
Mass of Jambu Leaves | |||
---|---|---|---|
Temperature (°C) | ΔH (KJ mol−1) | ΔS (KJ mol−1 K−1) | ΔG (KJ mol−1) |
50 | 40.79223 | −0.27725 | 130.3847 |
60 | 40.70909 | −0.2775 | 133.1584 |
70 | 40.62595 | −0.27775 | 135.9347 |
Foam | |||
Temperature (°C) | ΔH (KJ mol−1) | ΔS (KJ mol−1 K−1) | ΔG (KJ mol−1) |
50 | 28.62219 | −0.32029 | 132.1241 |
60 | 28.53905 | −0.32054 | 135.3282 |
70 | 28.45591 | −0.32079 | 138.5349 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, F.P.; Resende, O.; Sousa, E.P.d.; Célia, J.A.; de Oliveira, K.B. Application of Mathematical Models and Thermodynamic Properties in the Drying of Jambu Leaves. Agriculture 2022, 12, 1252. https://doi.org/10.3390/agriculture12081252
Gomes FP, Resende O, Sousa EPd, Célia JA, de Oliveira KB. Application of Mathematical Models and Thermodynamic Properties in the Drying of Jambu Leaves. Agriculture. 2022; 12(8):1252. https://doi.org/10.3390/agriculture12081252
Chicago/Turabian StyleGomes, Francileni Pompeu, Osvaldo Resende, Elisabete Piancó de Sousa, Juliana Aparecida Célia, and Kênia Borges de Oliveira. 2022. "Application of Mathematical Models and Thermodynamic Properties in the Drying of Jambu Leaves" Agriculture 12, no. 8: 1252. https://doi.org/10.3390/agriculture12081252
APA StyleGomes, F. P., Resende, O., Sousa, E. P. d., Célia, J. A., & de Oliveira, K. B. (2022). Application of Mathematical Models and Thermodynamic Properties in the Drying of Jambu Leaves. Agriculture, 12(8), 1252. https://doi.org/10.3390/agriculture12081252