Causal Linkage among Agricultural Insurance, Air Pollution, and Agricultural Green Total Factor Productivity in United States: Pairwise Granger Causality Approach
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
4. Results and Discussion
5. Conclusions and Policy Recommendation
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Su, Y.; He, S.; Wang, K.; Shahtahmassebi, A.R.; Zhang, L.; Zhang, J.; Zhang, M.; Gan, M. Quantifying the sustainability of three types of agricultural production in China: An emergy analysis with the integration of environmental pollution. J. Clean. Prod. 2019, 252, 119650. [Google Scholar] [CrossRef]
- Feng, C.; Huang, J.-B.; Wang, M. Analysis of green total-factor productivity in China’s regional metal industry: A meta-frontier approach. Resour. Policy 2018, 58, 219–229. [Google Scholar] [CrossRef]
- Fuglie, K.; Wang, S.; Ball, V. Introduction to productivity growth in agriculture. In Productivity Growth in Agriculture: An International Perspective; CABI: Wallingford, UK, 2012; pp. 1–11. [Google Scholar]
- Fuglie, K.O.; Wang, S.L.; Ball, V.E. Productivity Growth in Agriculture: An International Perspective; CABI: Wallingford, UK, 2012. [Google Scholar]
- Alston, M.J.; Beddow, J.M.; Pardey, P.G. Global Patterns of Crop Yields and other Partial Productivity Measures and Prices. In The Shifting Patterns of Agricultural Production and Productivity Worldwide; Midwest Agribusiness Trade Research and Information Center: Ames, IA, USA, 2010; pp. 39–61. [Google Scholar]
- Sheng, Y.; Mullen, J.D.; Zhao, S. A Turning Point in Agricultural Productivity: Consideration of the Causes; ABARES: Canberra, ACT, Australia, 2011. [Google Scholar]
- World Bank. Cost of Pollution in China; World Bank: Wahshington, DC, USA, 2007. [Google Scholar]
- Li, H.; Tang, M.; Cao, A.; Guo, L. Assessing the relationship between air pollution, agricultural insurance, and agricultural green total factor productivity: Evidence from China. Environ. Sci. Pollut. Res. 2022, 1–15. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, W.; Zheng, F. Effects of industrial air pollution on the technical efficiency of agricultural production: Evidence from China. Environ. Impact Assess. Rev. 2020, 83, 106407. [Google Scholar] [CrossRef]
- Davidson, E.A.; Potter, C.S.; Schlesinger, P.; Klooster, S.A. Model estimates of regional nitric oxide emissions from soils of the southeastern United States. Ecol. Appl. 1998, 8, 748–759. [Google Scholar] [CrossRef]
- Jaeglé, L.; Steinberger, L.; Martin, R.V.; Chance, K. Global partitioning of NO x sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions. Faraday Discuss. 2005, 130, 407–423. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Schichtel, B.A.; Walker, J.T.; Schwede, D.B.; Chen, X.; Lehmann, C.M.; Puchalski, M.A.; Gay, D.A.; Collett, J.L., Jr. Increasing importance of deposition of reduced nitrogen in the United States. Proc. Natl. Acad. Sci. USA 2016, 113, 5874–5879. [Google Scholar] [CrossRef]
- Zhou, N.; Zhang, S.; Chen, J.E.; Han, X. The role of information technologies (ITs) in firms’ resource orchestration process: A case analysis of China’s “Huangshan 168”. Int. J. Inf. Manag. 2017, 37, 713–715. [Google Scholar] [CrossRef]
- Moore, N.P. The oestrogenic potential of the phthalate esters. Reprod. Toxicol. 2000, 14, 183–192. [Google Scholar] [CrossRef]
- Pozzer, A.; Tsimpidi, A.P.; Karydis, V.A.; De Meij, A.; Lelieveld, J. Impact of agricultural emission reductions on fine-particulate matter and public health. Atmos. Chem. Phys. 2017, 17, 12813–12826. [Google Scholar] [CrossRef] [Green Version]
- Ge, P.; Wang, S.; Huang, X. Measurement for China’s agricultural green TFP. China Popul. Resour. Environ. 2018, 28, 66–74. [Google Scholar]
- Jia, J.-J.; Xu, J.-H.; Fan, Y. Public acceptance of household energy-saving measures in Beijing: Heterogeneous preferences and policy implications. Energy Policy 2018, 113, 487–499. [Google Scholar] [CrossRef]
- Qiu, Q.; Wang, Y.; Qiao, S.; Liu, R.; Bian, Z.; Yao, T.; Nguyen, T.S. Does air pollution affect consumer online purchasing behavior? The effect of environmental psychology and evidence from China. J. Clean. Prod. 2020, 260, 120795. [Google Scholar] [CrossRef]
- United States Department of Agriculture (Risk Management Agency). 2021. Available online: https://www.rma.usda.gov/SummaryOfBusiness (accessed on 6 July 2022).
- Mishra, A.K.; Nimon, R.W.; El-Osta, H.S. Is moral hazard good for the environment? Revenue insurance and chemical input use. J. Environ. Manag. 2005, 74, 11–20. [Google Scholar] [CrossRef]
- Visser, M.; Jumare, H.; Brick, K. Risk preferences and poverty traps in the uptake of credit and insurance amongst small-scale farmers in South Africa. J. Econ. Behav. Organ. 2020, 180, 826–836. [Google Scholar] [CrossRef]
- Kwadzo, T.G.; Kuwornu, J.K.; Amadu, I.S. Food crop farmers’ willingness to participate in market-based crop insurance scheme: Evidence from Ghana. Res. Appl. Econ. 2013, 5, 1. [Google Scholar] [CrossRef]
- Gunnsteinsson, S. Experimental identification of asymmetric information: Evidence on crop insurance in the Philippines. J. Dev. Econ. 2020, 144, 102414. [Google Scholar] [CrossRef]
- Karlan, D.; Osei, R.; Osei-Akoto, I.; Udry, C. Agricultural decisions after relaxing credit and risk constraints. Q. J. Econ. 2014, 129, 597–652. [Google Scholar] [CrossRef]
- Fang, L.; Hu, R.; Mao, H.; Chen, S. How crop insurance influences agricultural green total factor productivity: Evidence from Chinese farmers. J. Clean. Prod. 2021, 321, 128977. [Google Scholar] [CrossRef]
- Wang, H.; Cui, H.; Zhao, Q. Effect of green technology innovation on green total factor productivity in China: Evidence from spatial durbin model analysis. J. Clean. Prod. 2021, 288, 125624. [Google Scholar] [CrossRef]
- Lu, X.-h.; Jiang, X.; Gong, M.-q. How land transfer marketization influence on green total factor productivity from the approach of industrial structure? Evidence from China. Land Use Policy 2020, 95, 104610. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, X.; Wang, Y. China’s agricultural green total factor productivity based on carbon emission: An analysis of evolution trend and influencing factors. J. Clean. Prod. 2021, 278, 123692. [Google Scholar] [CrossRef]
- Lin, B.; Chen, Z. Does factor market distortion inhibit the green total factor productivity in China? J. Clean. Prod. 2018, 197, 25–33. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Z. Impact and threshold effect of Internet technology upgrade on forestry green total factor productivity: Evidence from China. J. Clean. Prod. 2020, 271, 122657. [Google Scholar] [CrossRef]
- Ezzati, M.; Lopez, A.D.; Rodgers, A.; Vander Hoorn, S.; Murray, C.J.; Comparative Risk Assessment Collaborating Group. Selected major risk factors and global and regional burden of disease. Lancet 2002, 360, 1347–1360. [Google Scholar] [CrossRef]
- Krewski, D.; Jerrett, M.; Burnett, R.T.; Ma, R.; Hughes, E.; Shi, Y.; Turner, M.C.; Pope, A.C., 3rd; Thurston, G.; Calle, E.E.; et al. Extended Follow-Up and Spatial Analysis of the AMERICAN Cancer Society Study Linking Particulate Air Pollution and Mortality. Res. Rep. 2009, 140, 5–114; discussion 115–136. [Google Scholar]
- Chen, W.; Tong, D.Q.; Zhang, S.; Zhang, X.; Zhao, H. Local PM10 and PM2.5 emission inventories from agricultural tillage and harvest in northeastern China. J. Environ. Sci. 2017, 57, 15–23. [Google Scholar] [CrossRef]
- Miao, W.; Huang, X.; Song, Y. An economic assessment of the health effects and crop yield losses caused by air pollution in mainland China. J. Environ. Sci. 2017, 56, 102–113. [Google Scholar] [CrossRef]
- Zivin, J.G.; Neidell, M. Air pollution’s hidden impacts. Science 2018, 359, 39–40. [Google Scholar] [CrossRef]
- Goodwin, B.K.; Smith, V.H. What harm is done by subsidizing crop insurance? Am. J. Agric. Econ. 2013, 95, 489–497. [Google Scholar] [CrossRef]
- Urruty, N.; Deveaud, T.; Guyomard, H.; Boiffin, J. Impacts of agricultural land use changes on pesticide use in French agriculture. Eur. J. Agron. 2016, 80, 113–123. [Google Scholar] [CrossRef]
- Tang, L.; Luo, X. Can agricultural insurance encourage farmers to apply biological pesticides? Evidence from rural China. Food Policy 2021, 105, 102174. [Google Scholar] [CrossRef]
- Sehrawat, M.; Giri, A.K. An empirical relationship between financial development indicators and human capital in some selected Asian countries. Int. J. Soc. Econ. 2017, 44, 337–349. [Google Scholar] [CrossRef]
- Coelli, T.J.; Rao, D.P. Total factor productivity growth in agriculture: A Malmquist index analysis of 93 countries, 1980–2000. Agric. Econ. 2005, 32, 115–134. [Google Scholar] [CrossRef]
- Ludena, C.E.; Hertel, T.W.; Preckel, P.V.; Foster, K.; Nin, A. Productivity growth and convergence in crop, ruminant, and nonruminant production: Measurement and forecasts. Agric. Econ. 2007, 37, 1–17. [Google Scholar] [CrossRef]
- Ahmed, N.; Areche, F.O.; Sheikh, A.A.; Lahiani, A. Green Finance and Green Energy Nexus in ASEAN Countries: A Bootstrap Panel Causality Test. Energies 2022, 15, 5068. [Google Scholar] [CrossRef]
- Headey, D.; Alauddin, M.; Rao, D.P. Explaining agricultural productivity growth: An international perspective. Agric. Econ. 2010, 41, 1–14. [Google Scholar] [CrossRef]
- Fuglie, K.O. Total factor productivity in the global agricultural economy: Evidence from FAO data. Shifting Patterns Agric. Prod. Product. Worldw. 2010, 63–95. Available online: https://www.instepp.umn.edu/products/total-factor-productivity-global-agricultural-economy-evidence-fao-data (accessed on 6 July 2022).
- Rao, D.P.; Maddison, A.; Lee, B. International Comparison of Farm Sector Performance: Methodological Options and Empirical Findings for Asia-Pacific Economies, 1900–1994; Edward Elgar: Cheltenham, UK, 2002. [Google Scholar]
- Centers for Disease Control and Prevention, C.D.C. Available online: https://www.cdc.gov/about/index.html (accessed on 6 July 2022).
- Li, C.; Lau, A.H.; Mao, J.; Chu, D.A. Retrieval, validation, and application of the 1-km aerosol optical depth from MODIS measurements over Hong Kong. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2650–2658. [Google Scholar]
- Lu, X.; Lin, C.; Li, W.; Chen, Y.; Huang, Y.; Fung, J.C.; Lau, A.K. Analysis of the adverse health effects of PM2.5 from 2001 to 2017 in China and the role of urbanization in aggravating the health burden. Sci. Total Environ. 2019, 652, 683–695. [Google Scholar] [CrossRef]
- Hammer, M.S.; van Donkelaar, A.; Li, C.; Lyapustin, A.; Sayer, A.M.; Hsu, N.C.; Levy, R.C.; Garay, M.J.; Kalashnikova, O.V.; Kahn, R.A.; et al. Global Estimates and Long-Term Trends of Fine Particulate Matter Concentrations (1998–2018). Environ. Sci. Technol. 2020, 54, 7879–7890. [Google Scholar] [CrossRef]
- Honma, S.; Hu, J.-L. Industry-level total-factor energy efficiency in developed countries: A Japan-centered analysis. Appl. Energy 2014, 119, 67–78. [Google Scholar] [CrossRef]
- Mousavi-Avval, S.H.; Rafiee, S.; Jafari, A.; Mohammadi, A. Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach. Appl. Energy 2011, 88, 3765–3772. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Goto, M. DEA radial measurement for environmental assessment: A comparative study between Japanese chemical and pharmaceutical firms. Appl. Energy 2014, 115, 502–513. [Google Scholar] [CrossRef]
- Yang, T.; Zhu, Y.; Li, Y.; Zhou, B. Achieving win-win policy outcomes for water resource management and economic development: The experience of Chinese cities. Sustain. Prod. Consum. 2021, 27, 873–888. [Google Scholar] [CrossRef]
- Ahmed, N.; Sheikh, A.A.; Mahboob, F.; Ali MS, E.; Jasińska, E.; Jasiński, M.; Leonowicz, Z.; Burgio, A. Energy Diversification: A Friend or Foe to Economic Growth in Nordic Countries? A Novel Energy Diversification Approach. Energies 2022, 15, 5422. [Google Scholar] [CrossRef]
- IBNET. Data-Envelop-Analysis. 2022. Available online: https://www.ib-net.org/benchmarking-methodologies/performance-benchmarking/data-envelop-analysis/#:~:text=Advantages%20of%20DEA%3A%20The%20main,on%20size%20and%20output%20levels (accessed on 6 July 2022).
- Liao, J.; Yu, C.; Feng, Z.; Zhao, H.; Wu, K.; Ma, X. Spatial differentiation characteristics and driving factors of agricultural eco-efficiency in Chinese provinces from the perspective of ecosystem services. J. Clean. Prod. 2021, 288, 125466. [Google Scholar] [CrossRef]
- Tao, X.; Wang, P.; Zhu, B. Provincial green economic efficiency of China: A non-separable input–output SBM approach. Appl. Energy 2016, 171, 58–66. [Google Scholar] [CrossRef]
- Ahmed, N.; Sheikh, A.A.; Hamid, Z.; Senkus, P.; Borda, R.C.; Wysokińska-Senkus, A.; Glabiszewski, W. Exploring the Causal Relationship among Green Taxes, Energy Intensity, and Energy Consumption in Nordic Countries: Dumitrescu and Hurlin Causality Approach. Energies 2022, 15, 5199. [Google Scholar] [CrossRef]
- Rahman, M.M.; Nepal, R.; Alam, K. Impacts of human capital, exports, economic growth and energy consumption on CO2 emissions of a cross-sectionally dependent panel: Evidence from the newly industrialized countries (NICs). Environ. Sci. Policy 2021, 121, 24–36. [Google Scholar] [CrossRef]
- Alola, A.A.; Joshua, U. Carbon emission effect of energy transition and globalization: Inference from the low-, lower middle-, upper middle-, and high-income economies. Environ. Sci. Pollut. Res. 2020, 27, 38276–38286. [Google Scholar] [CrossRef]
- Pedroni, P. Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxf. Bull. Econ. Stat. 1999, 61, 653–670. [Google Scholar] [CrossRef]
- Kao, C. Spurious regression and residual-based tests for cointegration in panel data. J. Econom. 1999, 90, 1–44. [Google Scholar] [CrossRef]
- Gutierrez, L. On the power of panel cointegration tests: A Monte Carlo comparison. Econ. Lett. 2003, 80, 105–111. [Google Scholar] [CrossRef]
- Saidi, K.; Mbarek, M.B. Nuclear energy, renewable energy, CO2 emissions, and economic growth for nine developed countries: Evidence from panel Granger causality tests. Prog. Nucl. Energy 2016, 88, 364–374. [Google Scholar] [CrossRef]
- Engle, R.F.; Granger, C.W. Co-integration and error correction: Representation, estimation, and testing. Econometrica 1987, 55, 251–276. [Google Scholar] [CrossRef]
- Granger, C.W. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Rahman, M.M.; Velayutham, E. Renewable and non-renewable energy consumption-economic growth nexus: New evidence from South Asia. Renew. Energy 2020, 147, 399–408. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y.; Smith, R.P. Pooled mean group estimation of dynamic heterogeneous panels. J. Am. Stat. Assoc. 1999, 94, 621–634. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Smith, R. Estimating long-run relationships from dynamic heterogeneous panels. J. Econom. 1995, 68, 79–113. [Google Scholar] [CrossRef]
- Bahmani-Oskooee, M.; Domac, I. On the link between dollarisation and inflation: Evidence from Turkey. Comp. Econ. Stud. 2003, 45, 306–328. [Google Scholar] [CrossRef]
- Duasa, J. Determinants of Malaysian trade balance: An ARDL bound testing approach. Glob. Econ. Rev. 2007, 36, 89–102. [Google Scholar] [CrossRef]
- Kao, C.; Chiang, M.-H. On the estimation and inference of a cointegrated regression in panel data. In Nonstationary Panels, Panel Cointegration, and Dynamic Panels; Emerald Group Publishing Limited: Bingley, UK, 2001. [Google Scholar]
- Phillips, P.C.; Hansen, B.E. Statistical inference in instrumental variables regression with I (1) processes. Rev. Econ. Stud. 1990, 57, 99–125. [Google Scholar] [CrossRef]
- Hamit-Haggar, M. Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective. Energy Econ. 2012, 34, 358–364. [Google Scholar] [CrossRef]
- Lu, F.; Wang, W.; Liu, M.; Liu, M.; Qi, D. The non-linear effect of agricultural insurance on agricultural green competitiveness. Technol. Anal. Strat. Manag. 2022, 1–16. [Google Scholar] [CrossRef]
- Heck, W.W. Assessment of crop loss from ozone. J. Air Pollut. Control. Assoc. 1982, 32, 353–361. [Google Scholar] [CrossRef]
- Marshall, J.D.; Nethery, E.; Brauer, M. Within-urban variability in ambient air pollution: Comparison of estimation methods. Atmos. Environ. 2008, 42, 1359–1369. [Google Scholar] [CrossRef]
- Miller, J.E. Effects on photosynthesis, carbon allocation, and plant growth associated with air pollutant stress. In Assessment of Crop Loss from Air Pollutants; Springer: Cham, Switzerland, 1988; pp. 287–314. [Google Scholar]
- El-Geundi, M.S. Adsorbents for industrial pollution control. Adsorpt. Sci. Technol. 1997, 15, 777–787. [Google Scholar] [CrossRef]
- Emberson, L.D.; Ashmore, M.R.; Murray, F.; Kuylenstierna, J.C.I.; Percy, K.E.; Izuta, T.; Zheng, Y.; Shimizu, H.; Sheu, B.H.; Liu, C.P.; et al. Impacts of Air Pollutants on Vegetation in Developing Countries. Water Air Soil Pollut. 2001, 130, 107–118. [Google Scholar] [CrossRef]
- Wahid, A.; Maggs, R.; Shamsi, S.; Bell, J.; Ashmore, M. Effects of air pollution on rice yield in the Pakistan Punjab. Environ. Pollut. 1995, 90, 323–329. [Google Scholar] [CrossRef]
- Graff Zivin, J.; Neidell, M. The impact of pollution on worker productivity. Am. Econ. Rev. 2012, 102, 3652–3673. [Google Scholar] [CrossRef]
- Hanna, R.; Oliva, P. The effect of pollution on labor supply: Evidence from a natural experiment in Mexico City. J. Public Econ. 2015, 122, 68–79. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Food and Rural Affairs. Effects of Air Pollution on Agriculture Crops. 2003. Available online: http://omafra.gov.on.ca/english/crops/facts/01–015.htm (accessed on 6 July 2022).
- Farrin, K.; Miranda, M.J. A heterogeneous agent model of credit-linked index insurance and farm technology adoption. J. Dev. Econ. 2015, 116, 199–211. [Google Scholar] [CrossRef]
- Bojnec, Š.; Fertő, I. Farm income sources, farm size and farm technical efficiency in Slovenia. Post Communist Econ. 2013, 25, 343–356. [Google Scholar] [CrossRef]
- Porter, J. Food Security and Food Production Systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability PartA: Global and Sectoral Aspects Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 485–533. [Google Scholar]
- Ugarte, C.; Calderini, D.F.; Slafer, G.A. Grain weight and grain number responsiveness to pre-anthesis temperature in wheat, barley and triticale. Field Crop. Res. 2007, 100, 240–248. [Google Scholar] [CrossRef]
- Wheeler, T.R.; Craufurd, P.Q.; Ellis, R.H.; Porter, J.R.; Prasad, P.V.V. Temperature variability and the yield of annual crops. Agric. Ecosyst. Environ. 2000, 82, 159–167. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, X.; Tian, X. The impact of fine particulate matter (PM2.5) on China’s agricultural production from 2001 to 2010. J. Clean. Prod. 2018, 178, 133–141. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Y.; Zhao, Y.; Henze, D.K.; Zhu, L.; Song, Y.; Paulot, F.; Liu, X.; Pan, Y.; Lin, Y.; et al. Agricultural ammonia emissions in China: Reconciling bottom-up and top-down estimates. Atmospheric Chem. Phys. 2018, 18, 339–355. [Google Scholar] [CrossRef]
- Ramzan, M.; Iqbal, H.A.; Usman, M.; Ozturk, I. Environmental pollution and agricultural productivity in Pakistan: New insights from ARDL and wavelet coherence approaches. Environ. Sci. Pollut. Res. 2022, 29, 28749–28768. [Google Scholar] [CrossRef]
Variables | Min | Mean | Max | Std. Dev. |
---|---|---|---|---|
Insurance | 0 | 0.57879 | 9.52442 | 1.06275 |
AGTFP | 0.07739 | 0.79461 | 1.09 | 0.17113 |
PM2.5 | 16.786 | 52.36033 | 99.408 | 19.05647 |
Variables | Pesaran Scaled LM | Pesaran CSD | Breusch–Pagan LM | |||
---|---|---|---|---|---|---|
Statistics | Prob. Value | Statistics | Prob. Value | Statistics | Prob. Value | |
lninsurance | 131.15 * | <0.01 | 29.51 * | <0.01 | 1719.64 * | <0.01 |
lnAGTFP | 141.35 * | <0.01 | 30.64 * | <0.01 | 789.52 * | <0.01 |
lnPM2.5 | 171.52 * | <0.01 | 41.22 * | <0.01 | 1892.61 * | <0.01 |
Tests | Series | |||
---|---|---|---|---|
Lninsurance | lnPM2.5 | lnAGTFP | ||
LLC test | Level | <0.05 | <0.05 | <0.05 |
1st diff | <0.01 | <0.01 | <0.01 | |
Pesaran and Shin test | Level | <0.05 | 0.094 | <0.01 |
1st diff | <0.01 | <0.01 | <0.01 | |
ADF-Fisher chi-square test | Level | <0.05 | 0.074 | <0.01 |
1st diff | <0.01 | <0.01 | <0.01 | |
PP-Fisher chi-square test | Level | <0.05 | 0.017 | <0.01 |
1st diff | <0.01 | <0.01 | <0.01 |
Null Hypothesis: | F-Stat. | p-Value | ||
---|---|---|---|---|
Lninsurance | x-> | Ln AGTFP | 3.339 | <0.01 |
Ln AGTFP | x-> | Lninsurance | 0.994 | 0.311 |
LnPM2.5 | x-> | Ln AGTFP | 4.379 | <0.01 |
Ln AGTFP | x-> | LnPM2.5 | 0.991 | 0.337 |
LnPM2.5 | x-> | Lninsurance | 1.125 | 0.178 |
Lninsurance | x-> | LnPM2.5 | 4.809 | <0.01 |
Kao’s test | ||||
Null hypothesis | T-stat | p-value | ||
No cointegration | −3.167 | <0.01 |
Variable | Coefficient | Standard Error | Prob. |
---|---|---|---|
Short-run equation | |||
COINTEQ01 | −0.3556 | 0.05621 | <0.01 |
D(LNINSURANCE) | 0.0117 | 0.0971 | <0.10 |
D(LNPM2.5) | −0.0075 | 0.0253 | <0.10 |
Constant | 0.1127 | 0.0478 | <0.01 |
Long-run equation | |||
LNINSURANCE | 0.0121 | 0.0079 | <0.01 |
LNPM2.5 | −0.1132 | 0.0480 | <0.01 |
Dependent Variable log AGTFP | |||||||
---|---|---|---|---|---|---|---|
PFMOLS | PDOLS | ||||||
Series | Co-Eff. | t-Stats. | Prob.-Value | Series | Co-Eff. | t-Stats. | Prob.-Value |
Lninsurance | 0.029 | 4.958 | <0.01 | Lninsurance | 0.058 | 4.781 | <0.01 |
LnPM2.5 | −0.112 | 1.957 | 0.041 | LnPM2.5 | −0.051 | 2.017 | 0.049 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, N.; Hamid, Z.; Mahboob, F.; Rehman, K.U.; Ali, M.S.e.; Senkus, P.; Wysokińska-Senkus, A.; Siemiński, P.; Skrzypek, A. Causal Linkage among Agricultural Insurance, Air Pollution, and Agricultural Green Total Factor Productivity in United States: Pairwise Granger Causality Approach. Agriculture 2022, 12, 1320. https://doi.org/10.3390/agriculture12091320
Ahmed N, Hamid Z, Mahboob F, Rehman KU, Ali MSe, Senkus P, Wysokińska-Senkus A, Siemiński P, Skrzypek A. Causal Linkage among Agricultural Insurance, Air Pollution, and Agricultural Green Total Factor Productivity in United States: Pairwise Granger Causality Approach. Agriculture. 2022; 12(9):1320. https://doi.org/10.3390/agriculture12091320
Chicago/Turabian StyleAhmed, Nihal, Zeeshan Hamid, Farhan Mahboob, Khalil Ur Rehman, Muhammad Sibt e Ali, Piotr Senkus, Aneta Wysokińska-Senkus, Paweł Siemiński, and Adam Skrzypek. 2022. "Causal Linkage among Agricultural Insurance, Air Pollution, and Agricultural Green Total Factor Productivity in United States: Pairwise Granger Causality Approach" Agriculture 12, no. 9: 1320. https://doi.org/10.3390/agriculture12091320
APA StyleAhmed, N., Hamid, Z., Mahboob, F., Rehman, K. U., Ali, M. S. e., Senkus, P., Wysokińska-Senkus, A., Siemiński, P., & Skrzypek, A. (2022). Causal Linkage among Agricultural Insurance, Air Pollution, and Agricultural Green Total Factor Productivity in United States: Pairwise Granger Causality Approach. Agriculture, 12(9), 1320. https://doi.org/10.3390/agriculture12091320