Mowing Increases Root-to-Shoot Ratio but Decreases Soil Organic Carbon Storage and Microbial Biomass C in a Semiarid Grassland of North China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and Different Mowing Regimes
2.3. Plant Sampling and Analysis
2.4. Soil Sampling and Analysis
2.5. Soil Microbial Biomass
2.6. Data Calculation and Statistical Analysis
3. Results
3.1. Changes in Plant Production under Different Mowing Regimes
3.2. Changes in Soil SOC Content and Storage with Depth and Different Mowing Regimes
3.3. Changes in MBC and MBC/MBN with Depth and Different Mowing Regimes
3.4. Driving Factors of Soil C Storage Change
4. Discussion
4.1. Effects of Mowing Regimes on Plant Communities
4.2. Effects of Different Mowing Gradients on SOC
4.3. Effects of Mowing Regimes on MBC and MBC/MBN
4.4. Implications for Typical Steppe Sustainable Management in Inner Mongolia
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Konieczna, A.; Roman, K.; Borek, K.; Grzegorzewska, E. GHG and NH3 Emissions vs. Energy Efficiency of Maize Production Technology: Evidence from Polish Farms; a Further Study. Energies 2021, 14, 5574. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Munro, S.; Barthold, F. Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China. Glob. Chang. Biol. 2015, 21, 3836–3845. [Google Scholar] [CrossRef] [PubMed]
- White, R.P.; Murray, S.; Rohweder, M.; White, R.P.; Murray, S.; Rohweder, M. Pilot Analysis of Global Ecosystems: Grassland Ecosystems; World Resources Institute: Washington, DC, USA, 2000; Volume 4, p. 275. [Google Scholar]
- Bai, Y.F.; Cotrufo, M.F. Grassland soil carbon sequestration: Current understanding, challenges, and solutions. Science 2022, 377, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, D.; Schipper, L.A.; Pronger, J.; Moinet, G.Y.; Mudge, P.L.; Pereira, R.C.; Kirschbaum, M.U.; McNally, S.R.; Beare, M.H.; Camps-Arbestain, M. Management practices to reduce losses or increase soil carbon stocks in temperate grazed grasslands: New Zealand as a case study. Agric. Ecosyst. Environ. 2018, 265, 432–443. [Google Scholar] [CrossRef]
- Wang, S.; Wilkes, A.; Zhang, Z.; Chang, X.; Lang, R.; Wang, Y.; Niu, H. Management and land use change effects on soil carbon in northern China’s grasslands: A synthesis. Agric. Ecosyst. Environ. 2011, 142, 329–340. [Google Scholar] [CrossRef]
- Briske, D.D. Rangeland systems: Foundation for a conceptual framework. In Rangeland Systems; Briske, D., Ed.; Springer: Cham, Switzerland, 2017; pp. 131–168. [Google Scholar]
- Tian, H.; Chen, G.; Zhang, C.; Melillo, J.M.; Hall, C.A. Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry 2010, 98, 139–151. [Google Scholar] [CrossRef]
- Yang, Z.; Bao, Y.T.; Li, F.Y. Long-term effects of restoration measures on soil C and C: Nutrient ratios in a semiarid steppe. Ecol. Eng. 2020, 153, 105913. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Monreal, C.M.; Carter, M.R.; Angers, D.A.; Ellert, B. Towards a minimum data set to assess soil or-ganic matter quality in agricultural soils. Can. J. Soil Sci. 1994, 74, 367–385. [Google Scholar] [CrossRef]
- Bai, Y.; Wu, J.; Clark, C.M.; Pan, Q.; Zhang, L.; Chen, S.; Wang, Q.; Han, X.; Wisley, B. Grazing alters ecosystem functioning and C:N: P stoichiometry of grasslands along a regional precipitation gradient. J. Appl. Ecol. 2012, 49, 1204–1215. [Google Scholar] [CrossRef]
- Chen, L.L.; Wang, K.X.; Bao, Y.T. Effects of grazing and mowing on vertical distribution of soil nutrients and their stoichiometry (C:N:P) in a semi-arid grassland of North China. Catena 2021, 206, 105507. [Google Scholar] [CrossRef]
- Bao, Y.T.; Li, F.Y.; Bao, Q.; Minggagud, H.; Zhong, Y. Effects of mowing regimes and climate variability on hay production of Leymus chinensis (Trin.) Tzvelev grassland in northern China. Rangeland J. 2014, 36, 593–600. [Google Scholar]
- Wilson, C.H.; Strickland, M.S.; Hutchings, J.A.; Bianchi, T.S.; Flory, S.L. Grazing enhances belowground carbon allocation, microbial biomass, and soil carbon in a subtropical grassland. Glob. Chang. Biol. 2018, 24, 2997–3009. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.L.; Yin, J.X.; Sistla, S.; Yang, J.J.; Sun, Y.; Li, Y.Y.; Lü, X.T.; Han, X.G. Long term mowing did not alter the impacts of nitrogen deposition on litter quality in a temperate steppe. Ecol. Eng. 2017, 102, 404–410. [Google Scholar] [CrossRef]
- Su, N.; Jarvie, S.; Yan, Y.Z.; Gong, X.Q.; Li, F.S.; Han, P.; Zhang, Q. Landscape context determines soil fungal diversity in a fragmented habitat. Catena 2022, 213, 106163. [Google Scholar] [CrossRef]
- Falkowski, P.G.; Fenchel, T.; Delong, E.F. The microbial engines that drive earth’s biogeochemical cycles. Science 2008, 320, 1034–1040. [Google Scholar] [CrossRef]
- Hall, E.K.; Maixner, F.; Franklin, O.; Daims, H.; Richter, A.; Battin, T. Linking microbial and ecosystem ecology using ecological stoichiometry: A synthesis of conceptual and empirical approaches. Ecosystems 2011, 14, 261–273. [Google Scholar] [CrossRef]
- Buchkowski, R.W.; Schmitz, O.J.; Bradford, M.A. Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling. Ecology 2015, 96, 1139–1149. [Google Scholar] [CrossRef]
- Buckley, D.H.; Schmidt, T. Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ. Microbiol. 2003, 5, 441–452. [Google Scholar] [CrossRef]
- Zechmeister-Boltenstern, S.; Keiblinger, K.M.; Mooshammer, M.; Peñuelas, J.; Richter, A.; Sardans, J.; Wanek, W. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecol. Monogr. 2015, 85, 133–155. [Google Scholar] [CrossRef]
- Yang, X.; Dong, Q.; Chu, H.; Ding, C.; Yu, Y.; Zhang, C.; Zhang, Y.; Yang, Z. Different responses of soil element contents and their stoichiometry (C:N:P) to yak grazing and Tibetan sheep grazing in an alpine grassland on the eastern Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 2019, 285, 106628. [Google Scholar] [CrossRef]
- Zheng, S.X.; Ren, H.Y.; Li, W.H.; Lan, Z.C. Scale-dependent effects of grazing on plant C: N: P stoichiometry and linkages to ecosystem functioning in the Inner Mongolia grassland. PLoS ONE 2012, 7, e51750. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.D.; Zhang, N.L.; Zeng, H.; Wang, W. Effects of soil depth and plant–soil interaction on microbial community in temperate grasslands of northern China. Sci. Total Environ. 2018, 630, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis; Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; Part 2, pp. 539–579. [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Brookes, P.C.; Landman, A.; Pruden, G.; Jenkinson, D.S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method for measuring microbial biomass nitrogen in soil. Soil Biol. Biochem. 1985, 17, 837–842. [Google Scholar] [CrossRef]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Chang. Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- An, J.; Liu, C.; Wang, Q.; Yao, M.; Rui, J.; Zhang, S.; Li, X. Soil bacterial community structure in Chinese wetlands. Geoderma 2019, 337, 290–299. [Google Scholar] [CrossRef]
- Chen, L.L.; Bao, Y.T.; Xia, F.S. Grassland management strategies influence soil C, N, and P sequestration through shifting plant community composition in a semi-arid grasslands of northern China. Ecol. Indic. 2022, 134, 108470. [Google Scholar] [CrossRef]
- Zhong, Y.K.; Bao, Q.H.; Sun, W. A study on reasonable mowing system of natural mowing steppe in Baiyinxile farm in Inner Mongolia. Acta Ecol. Sin. 1991, 11, 8. [Google Scholar]
- Shao, Y.Q.; Zhao, J.; Liu, Z.L.; Zhang, H.J.; Baoyin, T. Effects of mowing frequency on soil microbial quantity and plant underground biomass in Leymus chinensis steppe. Chin. J. Ecol. 2006, 25, 1191–1195, (In Chinese with English Abstract). [Google Scholar]
- Zhang, F.; Chen, D.L.; Zhao, M.L.; Zheng, J.H.; Yang, Y.; Qiao, J.R.; Jia, L.X.; Zhao, T.Q. Effects of stubble height on biomass of stipa grandis steppe community. Chin. J. Grassl. 2019, 41, 73–79, (In Chinese with English Abstract). [Google Scholar]
- Chai, Q.L.; Ma, Z.Y.; Chang, X.F.; Wu, G.L.; Zheng, J.Y.; Li, Z.W.; Wang, G.J. Optimizing management to conserve plant diversity and soil carbon stock of semi- arid grasslands on the Loess Plateau. Catena 2019, 172, 781–788. [Google Scholar] [CrossRef]
- Bao, Y.J.; Li, Z.H.; Zhong, Y.K.; Yang, C. The effects of different frequency mowing on energy fixation and allocation of Leymus chinensis steppe community in Xilingol region of Inner Mongolia. Acta Agrestia Sin. 2004, 13, 46–52, (In Chinese with English Abstract). [Google Scholar]
- Yan, L.; Li, Y.; Wang, L.; Zhang, X.D.; Wang, J.Z.; Wu, H.D.; Yan, Z.Q.; Zhang, K.R.; Kang, X.M. Grazing significantly increases root shoot ratio but decreases soil organic carbon in Qinghai-Tibetan Plateau grasslands: A hierarchical meta-analysis. Land Degrad. Dev. 2020, 31, 2369–2378. [Google Scholar] [CrossRef]
- Reid, R.S.; Thornton, P.K.; McCrabb, G.J.; Kruska, R.L.; Atieno, F.; Jones, P.G. Is it possible to mitigate greenhouse gas emissions in pastoral ecosystems of the tropics. Environ. Dev. Sustain. 2004, 6, 91–109. [Google Scholar] [CrossRef]
- Wang, Y.; Li, F.Y.; Song, X.; Wang, X.; Suri, G.; Baoyin, T. Changes in litter decomposition rate of dominant plants in a semi-arid steppe across different land-use types: Soil moisture, not home-field advantage, plays a dominant role. Agric. Ecosyst. Environ. 2020, 303, 107119. [Google Scholar] [CrossRef]
- Yang, J.; Kang, Y.; Sakurai, K.; Ohnishi, K.; Siriguleng. Change of Soil Microbial Biomass C, N between Longtime Free Grazing and Exclosure Pasture in Semiarid Grassland Ecosystem in Tongliao and Chifeng of Inner Mongolia. J. Bioremed. Biodegrad. 2016, 7, 347. [Google Scholar] [CrossRef]
- Fisk, M.C.; Fahey, T.J. Microbial biomass and nitrogen cycling responses to fertilization and litter removal in young northern hardwood forests. Biogeochemistry 2001, 53, 201–223. [Google Scholar] [CrossRef]
- Smith, W.H. Character and significance of forest tree root exudates. Ecology 1976, 57, 324–331. [Google Scholar] [CrossRef]
- Drigo, B.; Pijl, A.S.; Duyts, H.; Kielak, A.M.; Gamper, H.A.; Houtekamer, M.J.; Boschker, H.T.; Bodelier, P.L.; Whiteley, A.S.; Veen, J.A.; et al. Shifting carbon fow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc. Natl. Acad. Sci. USA 2010, 107, 10938–10942. [Google Scholar] [CrossRef]
- Socher, S.A.; Prati, D.; Boch, S.; Müller, J.; Klaus, V.H.; Hölzel, N.; Fischer, M.; Wilson, S. Direct and productivity-mediated indirect effects of fertilization, mowing and grazing on grassland species richness. J. Ecol. 2012, 100, 1391–1399. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, X.; Cui, M.; Wang, J.; Gao, Y. Mowing increases fine root production and root turnover in an artificially restored Songnen grassland. Plant Soil. 2021, 465, 549–561. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, F.; Xiang, Z.; Kuanhu, D. The effects of N and P additions on microbial N transformations and biomass on saline-alkaline grassland of loess plateau of northern China. Geoderma 2014, 213, 419–425. [Google Scholar]
- Liu, W.X.; Jiang, L.; Hu, S.J.; Li, L.H.; Liu, L.L.; Wan, S.Q. Decoupling of soil microbes and plants with increasing anthropogenic nitrogen inputs in a temperate steppe. Soil Biol. Biochem. 2014, 72, 116–122. [Google Scholar] [CrossRef]
- Gilmullina, A.; Rumpel, C.; Blagodatskaya, E.; Chabbi, A. Management of grasslands by mowing versus grazing impacts on soil organic matter quality and microbial functioning. Appl. Soil Ecol. 2020, 156, 103701. [Google Scholar] [CrossRef]
Soil Depths | Treatments | Soil Depths × Treatments | ||||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
BB | 754.622 | <0.001 | 9.044 | <0.001 | 1.835 | 0.095 |
R:S | 877.333 | <0.001 | 4.598 | 0.003 | 1.212 | 0.314 |
SOC | 125.953 | <0.001 | 2.712 | 0.042 | 0.703 | 0.687 |
SOCstorage | 198.937 | <0.001 | 4.799 | 0.003 | 1.209 | 0.315 |
MBC | 453.009 | <0.001 | 56.742 | <0.001 | 3.16 | 0.006 |
MBC/MBN | 29.484 | <0.001 | 6.1 | 0.001 | 2.337 | 0.034 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Liu, H.; Baoyin, T. Mowing Increases Root-to-Shoot Ratio but Decreases Soil Organic Carbon Storage and Microbial Biomass C in a Semiarid Grassland of North China. Agriculture 2022, 12, 1324. https://doi.org/10.3390/agriculture12091324
Li L, Liu H, Baoyin T. Mowing Increases Root-to-Shoot Ratio but Decreases Soil Organic Carbon Storage and Microbial Biomass C in a Semiarid Grassland of North China. Agriculture. 2022; 12(9):1324. https://doi.org/10.3390/agriculture12091324
Chicago/Turabian StyleLi, Lu, Huaiqiang Liu, and Taogetao Baoyin. 2022. "Mowing Increases Root-to-Shoot Ratio but Decreases Soil Organic Carbon Storage and Microbial Biomass C in a Semiarid Grassland of North China" Agriculture 12, no. 9: 1324. https://doi.org/10.3390/agriculture12091324
APA StyleLi, L., Liu, H., & Baoyin, T. (2022). Mowing Increases Root-to-Shoot Ratio but Decreases Soil Organic Carbon Storage and Microbial Biomass C in a Semiarid Grassland of North China. Agriculture, 12(9), 1324. https://doi.org/10.3390/agriculture12091324