Phenolic and Total Flavonoid Contents and Physicochemical Traits of Romanian Monofloral Honeys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Honey Samples
2.2. Color
2.3. Water-Insoluble Solids
2.4. Refractive Index, Moisture and Solid Substances
2.5. Total Soluble Solids and Specific Gravity
2.6. pH and Free Acidity
2.7. Ash and Electrical Conductivity
2.8. Total Phenolic Content and Total Flavonoid Content
2.9. Statistical Analyses
3. Results
3.1. Physicochemical Analyses
3.2. Correlations between Physicochemical Parameters
4. Discussion
4.1. Water-Insoluble Solids (WIS)
4.2. Color
4.3. Refractive Index, Moisture and Solid Substance Content, Total Soluble Solids and Specific Gravity
4.4. pH and Free Acidity
4.5. Ash and Electrical Conductivity
4.6. Total Phenolic Content and Total Flavonoid Content
4.7. Correlations between Honey Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pocol, C.B.; Šedík, P.; Brumă, I.S.; Amuza, A.; Chirsanova, A. Organic Beekeeping Practices in Romania: Status and Perspectives towards a Sustainable Development. Agriculture 2021, 11, 281. [Google Scholar] [CrossRef]
- Pauliuc, D.; Oroian, M. Organic Acids and Physico-Chemical Parameters of Romanian Sunflower Honey. Food Environ. Saf. J. 2020, 19, 148–155. [Google Scholar]
- Pauliuc, D.; Dranca, F.; Oroian, M. Antioxidant Activity, Total Phenolic Content, Individual Phenolics and Physicochemical Parameters Suitability for Romanian Honey Authentication. Foods 2020, 9, 306. [Google Scholar] [CrossRef]
- Al, M.L.; Daniel, D.; Moise, A.; Bobis, O.; Laslo, L.; Bogdanov, S. Physico-chemical and bioactive properties of different floral origin honeys from Romania. Food Chem. 2009, 112, 863–867. [Google Scholar] [CrossRef]
- Popescu, N.; Meica, S. Bee products and their chemical analysis. In Produsele Apicole si Analiza lor Chimica; Diacon Coresi: Bucuresti, RO, USA, 1997. [Google Scholar]
- Da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Testa, R.; Asciuto, A.; Schifani, G.; Schimmenti, E.; Migliore, G. Quality Determinants and Effect of Therapeutic Properties in Honey Consumption. An Exploratory Study on Italian Consumers. Agriculture 2019, 9, 174. [Google Scholar] [CrossRef]
- Ciucure, C.T.; Geană, E.-I. Phenolic compounds profile and biochemical properties of honeys in relationship to the honey floral sources. Phytochem. Anal. 2019, 30, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Geana, E.I.; Ciucure, C.T. Establishing authenticity of honey via comprehensive Romanian honey analysis. Food Chem. 2020, 306, 125595. [Google Scholar] [CrossRef]
- Ciulu, M.; Spano, N.; Pilo, M.I.; Sanna, G. Recent Advances in the Analysis of Phenolic Compounds in Unifloral Honeys. Molecules 2016, 21, 451. [Google Scholar] [CrossRef] [PubMed]
- De-Melo, A.A.M.; de Almeida-Muradian, L.B.; Sancho, M.T.; Pascual-Maté, A. Composition and properties of Apis mellifera honey: A review. J. Apic. Res. 2017, 57, 5–37. [Google Scholar] [CrossRef]
- Ahmida, N.H.; Elagori, M.; Agha, A.; Elwerfali, S.; Ahmida, M.H. Physicochemical, heavy metals and phenolic compounds analysis of Libyan honey samples collected from Benghazi during 2009–2010. Food Nutr. Sci. 2013, 4, 33–40. [Google Scholar] [CrossRef] [Green Version]
- El Sohaimy, S.A.; Masry, S.H.D.; Shehata, M.G. Physicochemical characteristics of honey from different origins. Ann. Agric. Sci. 2015, 60, 279–287. [Google Scholar] [CrossRef]
- Majewska, E.; Druzynska, B.; Wołosiak, R. Determination of the botanical origin of honeybee honeys based on the analysis oftheir selected physicochemical parameters coupled with chemometric assays. Food Sci. Biotechnol. 2019, 28, 1307–1314. [Google Scholar] [CrossRef]
- Krishnasree, V.; Ukkuru, P.M. Quality Analysis of Bee Honeys. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 626–636. [Google Scholar] [CrossRef]
- Sant’Ana, L.D.; Ferreira, A.B.; Lorenzon, M.C.A.; Berbara, R.L.L.; Castro, R.N. Correlation of total phenolic and flavonoid contents of Brazilian honeys with color and antioxidant capacity. Int. J. Food Prop. 2014, 17, 65–76. [Google Scholar]
- Pontis, J.A.; Costa, L.A.M.A.D.; Silva, S.J.R.D.; Flach, A. Color, phenolic and flavonoid content, and antioxidant activity of honey from Roraima, Brazil. Food Sci. Technol. 2014, 34, 69–73. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Al-Amri, A.; Al-Hadhrami, A.; Al-Belushi, S. Color, flavonoids, phenolics and antioxidants of Omani honey. Heliyon 2018, 4, e00874. [Google Scholar] [CrossRef] [PubMed]
- Cimpoiu, C.; Hosu, A.; Miclaus, V.; Puscas, A. Determination of the floral origin of some Romanian honeys on the basis of physical and biochemical properties. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 100, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Ratiu, I.A.; Al-Suod, H.; Bukowska, M.; Ligor, M.; Buszewski, B. Correlation study of honey regarding their physicochemical properties and sugars and cyclitols content. Molecules 2020, 25, 34. [Google Scholar] [CrossRef] [PubMed]
- Romanian Standards Association. SR (Romanian Standard) 784-3:2009: Honey Bee. Part 3: Analytical Methods. Available online: https://e-standard.eu/en/standard/174480 (accessed on 16 April 2018).
- USDA. Extracted Honey Grading Manual, United States Department of Agriculture. Standards for Honey Grading; USDA: Washington DC, USA, 1985. Available online: https://www.ams.usda.gov/sites/default/files/media/Extracted_Honey_Inspection_Instructions%5B1%5D.pdf (accessed on 10 December 2018).
- Bogdanov, S. Harmonized Methods of the International Honey Commission. 2009. Available online: https://www.ihc-platform.net/ihcmethods2009.pdf (accessed on 30 May 2018).
- Sereia, M.J.; Março, P.H.; Perdoncini, M.R.G.; Parpinelli, R.S.; de Lima, E.G.; Anjo, F.A. Chapter 9: Techniques for the Evaluationof Physicochemical Quality and Bioactive Compounds in Honey. In Honey Analysis; INTECH: London, UK, 2017; pp. 194–214. [Google Scholar]
- Bobis, O.; Marghitas, L.; Rindt, I.K.; Niculae, M.; Dezmirean, D. Honeydew honey: Correlations between chemical composition, antioxidant capacity and antibacterial effect. Sci. Pap. Anim. Sci. Biotechnol. 2008, 41, 271–277. [Google Scholar]
- Pourtallier, J.; Taliercio, Y. Honey Control Analyses. Apiacta 1972, 1, 2–5. [Google Scholar]
- European Commission. Council Directive 2001/110/CE concerning honey. Off. J. Eu. Communities 2002, 10, 47–52. [Google Scholar]
- Becerril-Sánchez, A.L.; Quintero-Salazar, B.; Dublán-García, O.; Escalona-Buendía, H.B. Phenolic Compounds in Honey and Their Relationship with Antioxidant Activity, Botanical Origin, and Color. Antioxidants 2021, 10, 1700. [Google Scholar] [CrossRef] [PubMed]
- Flanjak, I.; Kenjerić, D.; Bubalo, D.; Primorac, L. Characterisation of Selected Croatian Honey Types Based on the Combination of Antioxidant Capacity, Quality Parameters, and Chemometrics. Eur. Food Res. Technol. 2016, 242, 467–475. [Google Scholar] [CrossRef]
- Chiş, A.M.; Purcărea, C. Storage effect on antioxidant capacities of some monofloral honey. Studia Univ. Vasile Goldiş Life Sci. Ser. 2017, 27, 91–97. [Google Scholar]
- Pauliuc, D.; Dranca, F.; Ropciuc, S.; Oroian, M. Advanced Characterization of Monofloral Honeys from Romania. Agriculture 2022, 12, 526. [Google Scholar] [CrossRef]
- Aazza, S.; Lyoussi, B.; Antunes, D.; Miguel, M.G. Physicochemical Characterization and Antioxidant Activity of Commercial Portuguese Honeys. J. Food Sci. 2013, 78, 1159–1165. [Google Scholar] [CrossRef]
- Chirsanova, A.; Capcanari, T.; Boistean, A. Quality Assessment of Honey in Three Different Geographical Areas from Republic of Moldova. Food Nutr. Sci. 2021, 12, 962–977. [Google Scholar] [CrossRef]
- Smetanska, I.; Alharthi, S.S.; Selim, K.A. Physicochemical, antioxidant capacity and color analysis of six honeys from different origin. J. King Saud Univ. Sci. 2021, 33, 101447. [Google Scholar] [CrossRef]
- Živković, J.; Sunarić, S.; Stanković, N.; Mihajilov-Krstev, T.; Spasić, A. Total phenolic and flavonoid contents, antioxidant and antibacterial activities of selected honeys against human pathogenic bacteria. Acta Pol. Pharm. Drug Res. 2019, 76, 671–681. [Google Scholar] [CrossRef]
- Kędzierska-Matysek, M.; Teter, A.; Stryjecka, M.; Skałecki, P.; Domaradzki, P.; Rudaś, M.; Florek, M. Relationships Linking the Colour and Elemental Concentrations of Blossom Honeys with Their Antioxidant Activity: A Chemometric Approach. Agriculture 2021, 11, 702. [Google Scholar] [CrossRef]
- Stihi, C.; Chelarescu, E.D.; Duliu, O.G.; Toma, L.G. Characterization of Romanian honey using physico-chemical parameters and the elemental content determined by analytical techniques. Rom. Rep. Phys. 2016, 68, 362–369. [Google Scholar]
- Akgün, N.; Çelik, Ö.F.; Kelebekli, L. Physicochemical properties, total phenolic content, and antioxidant activity of chestnut, rhododendron, acacia and multifloral honey. J. Food Meas. Charact. 2021, 15, 3501–3508. [Google Scholar] [CrossRef]
- Miłek, M.; Bocian, A.; Kleczyńska, E.; Sowa, P.; Dżugan, M. The Comparison of Physicochemical Parameters, Antioxidant Activity and Proteins for the Raw Local Polish Honeys and Imported Honey Blends. Molecules 2021, 26, 2423. [Google Scholar] [CrossRef] [PubMed]
- Atanassova, J.; Lazarova, Y.; Lazarova, M. Pollen and inorganic characteristics of Bulgarian unifloral honeys. Czech J. Food Sci. 2012, 30, 520–526. [Google Scholar] [CrossRef]
- Rostislav, H.; Petr, T.; Ćavar, Z.S. Characterisation of phenolics and other quality parameters of different types of honey. Czech J. Food Sci. 2016, 34, 244–253. [Google Scholar] [CrossRef]
- Alzahrani, H.A.; Alsabehi, R.; Boukraâ, L.; Abdellah, F.; Bellik, Y.; Bakhotmah, B.A. Antibacterial and Antioxidant Potency of Floral Honeys from Different Botanical and Geographical Origins. Molecules 2012, 17, 10540–10549. [Google Scholar] [CrossRef] [Green Version]
- Attanzio, A.; Tesoriere, L.; Allegra, M.; Livrea, M.A. Monofloral honeys by Sicilian black honeybee (Apis mellifera ssp. sicula) havehigh reducing power and antioxidant capacity. Heliyon 2016, 2, e00193. [Google Scholar] [CrossRef]
- Di Marco, G.; Gismondi, A.; Panzanella, L.; Canuti, L.; Impei, S.; Leonardi, D.; Canini, A. Botanical Influence on Phenolic Profile and Antioxidant Level of Italian Honeys. J. Food Sci. Technol. 2018, 55, 4042–4050. [Google Scholar] [CrossRef]
- Gośliński, M.; Nowak, D.; Szwengiel, A. Multidimensional Comparative Analysis of Bioactive Phenolic Compounds of Honeys of Various Origin. Antioxidants 2021, 10, 530. [Google Scholar] [CrossRef]
- Tomczyk, M.; Tarapatskyy, M.; Dżugan, M. The influence of geographical origin on honey composition studied by Polish and Slovak honeys. Czech J. Food Sci. 2019, 37, 232–238. [Google Scholar] [CrossRef]
- Milosavljević, S.; Jadranin, M.; Mladenović, M.; Tešević, V.; Menković, N.; Mutavdžić, D.; Krstić, G. Physicochemical parameters as indicators of the authenticity of monofloral honey from the territory of the Republic of Serbia. Maced. J. Chem. Chem. Eng. 2021, 40, 57–67. [Google Scholar] [CrossRef]
- Sakač, M.; Jovanov, P.; Marić, A.; Četojević-Simin, D.; Novaković, A.; Plavšić, D.; Škrobot, D.; Kovač, R. Antioxidative, Antibacterial and Antiproliferative Properties of Honey Types from the Western Balkans. Antioxidants 2022, 11, 1120. [Google Scholar] [CrossRef] [PubMed]
- Dżugan, M.; Tomczyk, M.; Sowa, P.; Grabek-Lejko, D. Antioxidant Activity as Biomarker of Honey Variety. Molecules 2018, 23, 2069. [Google Scholar] [CrossRef] [PubMed]
- Chiş, A.M.; Purcărea, C. The phisico-chemical caracterisation of sun flower honey from bihor county. An. Univ. Din Oradea Fasc. Ecotoxicologie Zooteh. Şi Tehnol. Ind. Aliment. 2015, 14, 107–114. [Google Scholar]
- Živkov-Baloš, M.M.; Jakšić, S.M.; Popov, N.S.; Polaček, V.A. Characterization of Serbian sunflower honeys by their physicochemical characteristics. Food Feed. Res. 2021, 48, 1–8. [Google Scholar] [CrossRef]
- Boussaid, A.; Chouaibi, M.; Rezig, L.; Hellal, R.; Donsì, F.; Ferrari, G.; Hamdi, S. Physicochemical and bioactive properties of six honey samples from various floral origins from Tunisia. Arab. J. Chem. 2018, 11, 265–274. [Google Scholar] [CrossRef]
- De Almeida, A.M.M.; Oliveira, M.B.S.; Da Costa, J.G.; Valentim, I.B.; Goulart, M.O.F. Antioxidant Capacity, Physicochemical and Floral Characterization of Honeys from the NorthEast of Brazil. Rev. Virtual Química 2016, 8, 57–77. [Google Scholar] [CrossRef]
- Kavanagh, S.; Gunnoo, J.; Passos, T.M.; Stout, J.C.; White, B. Physicochemical Properties and Phenolic Content of Honey from Different Floral Origins and from Rural versus Urban Landscapes. Food Chem. 2019, 272, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Ciappini, M.; Gatti, M.; Di Vito, M. El Color Como Indicador Del Contenido de Flavonoides En Miel. Rev. Cienc. Tecnol. 2013, 15, 59–63. [Google Scholar]
- Moniruzzaman, M.; Yung, A.C.; Azlan, S.A.B.M.; Sulaiman, S.A.; Rao, P.V.; Hawlader, M.N.I.; Gan, S.H. Identification of phenolic acids and flavonoids in monofloral honey from Bangladesh by high performance liquid chromatography: Determination of antioxidant capacity. BioMed Res. Int. 2014, 2014, 737490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type | Descriptive Statistics | Color mm Pfund | WIS % | RI | M % | SS % | TSS % | SG % |
---|---|---|---|---|---|---|---|---|
Acacia 8 samples | Min–Max | 0.2–7.5 | 0.035–0.108 | 1.488–1.498 | 15.41–19.49 | 80.51–84.59 | 79.03–83.06 | 1.420–1.448 |
Mean ± SD | 3.9 ± 2.29 | 0.079 ± 0.03 | 1.494 ± 0.00 | 16.98 ± 1.21 | 83.02 ± 1.21 | 81.51 ± 1.20 | 1.437 ± 0.01 | |
CV | 71.20 | 33.81 | 0.21 | 7.15 | 1.46 | 1.47 | 0.58 | |
Linden 7 samples | Min–Max | 21.7–26.7 | 0.062–0.107 | 1.488–1.493 | 17.28–19.20 | 80.80–82.72 | 79.32–81.19 | 1.422–1.435 |
Mean ± SD | 24.5 ± 1.75 | 0.090 ± 0.01 | 1.491 ± 0.00 | 18.10 ± 0.70 | 81.90 ± 0.70 | 80.40 ± 0.68 | 1.430 ± 0.00 | |
CV | 7.14 | 16.19 | 0.12 | 3.87 | 0.86 | 0.85 | 0.33 | |
Rapeseed 5 samples | Min–Max | 52.5–61.0 | 0.074–0.107 | 1.486–1.495 | 16.77–20.07 | 79.93–83.23 | 78.28–81.73 | 1.410–1.439 |
Mean ± SD | 55.6 ± 3.29 | 0.095 ± 0.01 | 1.491 ± 0.00 | 18.21 ± 1.35 | 81.79 ± 1.35 | 80.27 ± 1.39 | 1.428 ± 0.01 | |
CV | 5.92 | 13.42 | 0.23 | 7.40 | 1.65 | 1.74 | 0.80 | |
Sunflower 5 samples | Min–Max | 36.9–82.9 | 0.060–0.114 | 1.487–1.494 | 16.93–19.60 | 80.40–83.07 | 78.92-81.58 | 1.420–1.438 |
Mean ± SD | 61.5 ± 18.92 | 0.080 ± 0.02 | 1.491 ± 0.00 | 18.27 ± 1.23 | 81.73 ± 1.23 | 80.23 ± 1.22 | 1.429 ± 0.01 | |
CV | 30.77 | 26.87 | 0.21 | 6.76 | 1.51 | 1.53 | 0.59 | |
Mint 3 samples | Min–Max | 42.8–86.1 | 0.047–0.087 | 1.489–1.496 | 16.07–18.79 | 81.21–83.93 | 79.73–82.40 | 1.425–1.444 |
Mean ± SD | 68.0 ± 22.52 | 0.072 ± 0.02 | 1.493 ± 0.00 | 17.31 ± 1.38 | 82.69 ± 1.38 | 81.18 ± 1.35 | 1.435 ± 0.01 | |
CV | 33.13 | 30.52 | 0.24 | 7.95 | 1.66 | 1.66 | 0.64 | |
p values (ANOVA) | A vs. L | p = 7.7 × 10−9 | p = 0.3633 | p = 0.0049 | p = 0.0067 | p = 0.0067 | p = 0.0070 | p = 0.0127 |
A vs. R | p = 4.5 × 10−12 | p = 0.1050 | p = 0.0070 | p = 0.0073 | p = 0.0073 | p = 0.0062 | p = 0.0028 | |
A vs. SF | p = 4.3 × 10−11 | p = 0.9999 | p = 0.0037 | p = 0.0040 | p = 0.0040 | p = 0.0045 | p = 0.0076 | |
A vs. M | p = 3.9 × 10−11 | p = 0.8471 | p = 0.9247 | p = 0.9342 | p = 0.9342 | p = 0.9299 | p = 0.9477 | |
L vs. R | p = 3.7 × 10−12 | p = 0.9303 | p = 0.9995 | p = 0.9985 | p = 0.9985 | p = 0.9966 | p = 0.9402 | |
L vs. SF | p = 4.1 × 10−12 | p = 0.5542 | p = 0.9935 | p = 0.9898 | p = 0.9898 | p = 0.9914 | p = 0.9906 | |
L vs. M | p = 4.3 × 10−12 | p = 0.1344 | p = 0.3291 | p = 0.3507 | p = 0.3507 | p = 0.3647 | p = 0.4127 | |
R vs. SF | p = 0.4897 | p = 0.2120 | p = 0.9997 | p = 0.9998 | p = 0.9998 | p = 0.9999 | p = 0.9986 | |
R vs. M | p = 0.0318 | p = 0.0398 | p = 0.2936 | p = 0.2843 | p = 0.2843 | p = 0.2705 | p = 0.1685 | |
SF vs. M | p = 0.5265 | p = 0.8441 | p = 0.2203 | p = 0.2183 | p = 0.2183 | p = 0.2352 | p = 0.2672 |
Type | Descriptive Statistics | pH | FA meq kg−1 | Ash % | EC mS cm−1 | TPC mg GAE/100 g | TFC mg QE/100 g |
---|---|---|---|---|---|---|---|
Acacia 8 samples | Min–Max | 4.14–4.72 | 6.8–15.4 | 0.040–0.100 | 0.130–0.220 | 11.10–17.92 | 0.44–1.63 |
Mean ± SD | 4.36 ± 0.18 | 11.3 ± 2.82 | 0.066 ± 0.02 | 0.173 ± 0.03 | 13.88 ± 2.39 | 0.86 ± 0.40 | |
CV | 4.21 | 24.84 | 32.02 | 17.83 | 17.21 | 46.92 | |
Linden 7 samples | Min–Max | 4.14–4.81 | 12.5–37.2 | 0.157–0.333 | 0.397–0.623 | 20.30–29.29 | 1.01–3.14 |
Mean ± SD | 4.42 ± 0.24 | 27.7 ± 7.93 | 0.246 ± 0.06 | 0.506 ± 0.09 | 24.37 ± 3.08 | 2.02 ± 0.78 | |
CV | 5.51 | 28.65 | 25.99 | 17.03 | 12.65 | 38.70 | |
Rapeseed 5 samples | Min–Max | 3.62–4.26 | 19.9–44.0 | 0.085–0.135 | 0.197–0.290 | 19.70–24.74 | 1.33–3.12 |
Mean ± SD | 4.00 ± 0.25 | 29.1 ± 9.62 | 0.101 ± 0.02 | 0.224 ± 0.04 | 21.72 ± 1.98 | 2.00 ± 0.69 | |
CV | 6.17 | 33.05 | 19.84 | 16.88 | 9.10 | 34.42 | |
Sunflower 5 samples | Min–Max | 3.25–5.03 | 21.6–47.0 | 0.127–0.428 | 0.328–0.637 | 20.60–28.84 | 1.63–3.92 |
Mean ± SD | 4.09 ± 0.67 | 28.8 ± 10.43 | 0.251 ± 0.11 | 0.428 ± 0.12 | 25.12 ± 3.26 | 2.52 ± 0.90 | |
CV | 16.45 | 36.18 | 44.50 | 28.04 | 12.96 | 35.64 | |
Mint 3 samples | Min–Max | 3.80–4.20 | 24.3–40.0 | 0.134–0.238 | 0.220–0.551 | 42.06–50.82 | 2.04–3.97 |
Mean ± SD | 4.02 ± 0.21 | 30.6 ± 8.29 | 0.202 ± 0.06 | 0.394 ± 0.17 | 47.20 ± 4.58 | 3.05 ± 0.97 | |
CV | 5.16 | 27.09 | 29.17 | 42.17 | 9.70 | 31.71 | |
p values (ANOVA) | A vs. L | p = 7.7 × 10−8 | p = 5.5 × 10−10 | p = 3.2 × 10−13 | p = 2.1 × 10−11 | p = 3.5 × 10−10 | p = 1.6 × 10−6 |
A vs. R | p = 4.5 × 10−12 | p = 7.7 × 10−10 | p = 0.3660 | p = 0.3081 | p = 2.8 × 10−10 | p = 1.5 × 10−5 | |
A vs. SF | p = 4.3 × 10−11 | p = 1.5 × 10−9 | p = 3.9 × 10−14 | p = 1.3 × 10−9 | p = 6.1 × 10−12 | p = 6.2 × 10−10 | |
A vs. M | p = 3.9 × 10−11 | p = 1.7 × 10−8 | p = 4.6 × 10−7 | p = 5.9 × 10−8 | p = 3.9 × 10−11 | p = 4.7 × 10−12 | |
L vs. R | p = 3.7 × 10−12 | p = 0.9776 | p = 8.8 × 10−10 | p = 4.6 × 10−10 | p = 0.0420 | p = 0.9999 | |
L vs. SF | p = 4.1 × 10−12 | p = 0.9897 | p = 0.9986 | p = 0.0415 | p = 0.9252 | p = 0.1906 | |
L vs. M | p = 4.3 × 10−12 | p = 0.8508 | p = 0.3167 | p = 0.0068 | p = 7.3 × 10−12 | p = 0.0021 | |
R vs. SF | p = 0.4897 | p = 0.9999 | p = 3.4 × 10−9 | p = 8.7 × 10−9 | p = 0.0091 | p = 0.2251 | |
R vs. M | p = 0.0318 | p = 0.9883 | p = 0.0007 | p = 2.9 × 10−5 | p = 4.8 × 10−8 | p = 0.0034 | |
SF vs. M | p = 0.5265 | p = 0.9783 | p = 0.2585 | p = 0.8516 | p = 5.5 × 10−6 | p = 0.3357 |
Literature source | Country | mm Pfund | |||||
---|---|---|---|---|---|---|---|
Acacia | Linden | Rapeseed | Sunflower | Mint | |||
Our study | Romania | 0.20–7.50 | 21.70–26.70 | 52.50–61.00 | 36.90–82.90 | 42.80–86.10 | |
[30] | Chiş and Purcărea (2017) | Romania | - | - | - | 61.3; 70.5; 88.7 | - |
[4] | Al et al. (2009) | Romania | 11.00–45.00 | 36.00–54.00 | - | 79.00–83.00 | - |
[2] | Pauliuc and Oroian (2020) | Romania | - | - | - | 32.87–47.52 | - |
[3] | Pauliuc et al. (2020) | Romania | - | - | 29.40 | 37.60 | 74.30 |
[31] | Pauliuc et al. (2022) | Romania | 12.87 | 35.64 | 36.14 | 33.66 | 63.86 |
[32] | Aazza et al. (2013) | Portugal | - | - | - | 97.60 | - |
[33] | Chirsanova et al. (2021) | R. Moldova | - | 22.00–38.00 | - | 39.00–41.00 | - |
[29] | Flanjak et al. (2016) | Croatia | 1.00–8.00 | 10.00–29.00 | - | - | - |
[20] | Rațiu et al. (2020) | Poland | - | 68.01; 76.80 | 34.34–114.07 | 62.07; 114.00 | - |
[34] | Smetanska et al. (2021) | Germany | 26.51 | - | - | - | - |
[35] | Živković et al. (2019) | Serbia | 20.00 | 70.00 | - | - | - |
Literature Source | Country | Moisture (%) | pH | Free Acidity (meq kg−1) | Ash (%) | EC (mS cm−1) | TPC mgGAE/100 g | TFC mgQE/100 g | |
---|---|---|---|---|---|---|---|---|---|
Acacia | |||||||||
Our study | Romania | 15.41–19.49 | 4.14–4.72 | 6.8–15.4 | 0.04–0.10 | 0.130–0.220 | 11.10–17.92 | 0.44–1.63 | |
[4] | Al et al. (2009) | Romania | 16.60–19.80 | - | - | 0.03–0.28 | - | 2.00–39.00 | 0.91–2.42 |
[31] | Pauliuc et al. (2022) | Romania | 15.96 | 4.31 | 3.86 | - | 0.12 | - | - |
[37] | Stihi et al. (2016) | Romania | 16.7–22.8 | 3.65–4.63 | - | - | 0.097–0.268 | - | - |
[40] | Atanassova et al. (2012) | Bulgaria | 16.9 | 3.23 | - | - | 0.159 | - | - |
[29] | Flanjak et al. (2016) | Croatia | 14.6–19.9 | - | - | - | 0.1–0.161 | 2.82–5.20 | - |
[41] | Rostislav et al. (2016) | Czech Republic | 17 | 3.82 | 9.6 | - | 0.18 | 23.84 | 0.87 |
[42] | Alzahrani et al. (2012) | Germany | 17 | 5.4 | - | - | - | 62.75 | - |
[11] | Smetanska et al. (2021) | Germany | 18.83 | 4.10 | - | - | - | 21.457 | - |
[43] | Attanzio et al. (2016) | Italy | - | - | - | - | - | 18.2 | 7.6 |
[44] | Di Marco et al. (2018) | Italy | - | - | - | - | - | 10.72 | 3.31 |
[45] | Gośliński et al. (2021) | Poland | - | - | - | - | - | 76.3 | - |
[39] | Milek et al. (2021) | Poland | 17.17 | 3.77 | 20.85 | - | 0.31 | 14.081 | - |
[46] | Tomczyk et al. (2019) | Poland | 17.73 | 3.79 | 25.6 | - | 0.42 | 47 | 0.32 |
[47] | Milosavljević et al. (2021) | Serbia | 14.5–18.5 | - | 6.6–15.5 | 0.04–0.15 | 0.083–0.174 | 58.17–142.61 | - |
[48] | Sakač et al. (2022) | Serbia | 16.4; 17.3 | 3.90; 4.51 | 13.8; 16.3 | - | 0.114; 0.136 | 13.5; 14.4 | - |
[35] | Živković et al. (2019) | Serbia | - | - | - | - | - | 37.93 | - |
[46] | Tomczyk et al. (2019) | Slovakia | 17.86 | 3.71 | 16.1 | - | 0.20 | 20 | 0.14 |
[38] | Akgün et al. (2021) | Turkey | 14.45–21.62 | - | 12–21 | - | 0.14–0.27 | 1–3 | - |
Linden | |||||||||
Our study | Romania | 17.28–19.20 | 4.14–4.81 | 12.5–37.2 | 0.157–0.333 | 0.397–0.623 | 20.30–29.29 | 1.01–3.14 | |
[4] | Al et al. (2009) | Romania | 16.70–19.10 | - | - | 0.19–0.30 | - | 16–38 | 4.7–6.98 |
[31] | Pauliuc et al. (2022) | Romania | 16.75 | 4.05 | 14.55 | - | 0.33 | - | - |
[37] | Stihi et al. (2016) | Romania | 17.2–18.8 | 3.84–4.35 | - | - | 0.202–0.346 | - | - |
[40] | Atanassova et al. (2012) | Bulgaria | 17.1 | 4.04 | - | - | 0.689 | - | - |
[29] | Flanjak et al. (2016) | Croatia | 15.9–20.00 | - | - | - | 0.497–0.628 | 6.62–12.10 | - |
[41] | Rostislav et al. (2016) | Czech Republic | 16 | 4.06 | 14.9 | - | 0.39 | 45.04 | 1.88 |
[44] | Di Marco et al. (2018) | Italy | - | - | - | - | - | 26 | 5.5 |
[49] | Dżugan et al. (2018) | Poland | - | - | - | - | - | 30.27–54.95 | - |
[45] | Gośliński et al. (2021) | Poland | - | - | - | - | - | 91.3 | - |
[39] | Milek et al. (2021) | Poland | 20.30 | 14.13 | 25.50 | - | 0.640 | 43.69 | - |
[46] | Tomczyk et al. (2019) | Poland | 17.76 | 3.81 | 34.2 | - | 0.53 | 38 | 0.5 |
[48] | Sakač et al. (2022) | Serbia | 15.8; 17.1 | 4.62; 4.72 | 14.5; 16.1 | - | 0.488; 0.608 | 53.7; 67.3 | - |
[35] | Živković et al. (2019) | Serbia | - | - | - | - | - | 71.49 | - |
[46] | Tomczyk et al. (2019) | Slovakia | 18.35 | 3.90 | 21.6 | - | 0.23 | 35 | 0.26 |
Rapeseed | |||||||||
Our study | Romania | 16.77–20.07 | 3.62–4.26 | 19.9–44.0 | 0.085–0.135 | 0.197–0.290 | 19.70–24.74 | 1.33–3.12 | |
[3] | Pauliuc et al. (2020) | Romania | 18.4 | 4.22 | 16 | - | 0.162 | 19.9 | 20.2 |
[31] | Pauliuc et al. (2022) | Romania | 17.31 | 4.11 | 17.33 | - | 0.15 | - | - |
[40] | Atanassova et al. (2012) | Bulgaria | 19.7 | 3.33 | - | - | 0.181 | - | - |
[49] | Dżugan et al. (2018) | Poland | - | - | - | - | - | 20.54–31.08 | - |
[45] | Gośliński et al. (2021) | Poland | - | - | - | - | - | 101.6 | - |
[46] | Tomczyk et al. (2019) | Poland | 17.86 | 3.88 | 18.6 | - | 0.23 | 25 | 0.32 |
[48] | Sakač et al. (2022) | Serbia | 18.4; 19.4 | 4.01; 4.10 | 16.3; 21.3 | - | 0.191; 0.224 | 11.5; 11.9 | - |
[46] | Tomczyk et al. (2019) | Slovakia | 17.45 | 3.61 | 13.6 | - | 0.16 | 21 | 0.14 |
Sunflower | |||||||||
Our study | Romania | 16.93–19.60 | 3.25–5.03 | 21.6–47.0 | 0.127–0.428 | 0.328–0.637 | 20.60–28.84 | 1.63–3.92 | |
[50] | Chiş and Purcărea (2015) | Romania | 18.7 | 3.656 | 22.36 | 0.112 | 0.301 | - | - |
[30] | Chiş and Purcărea (2017) | Romania | - | - | - | - | - | 48.6–132.5 | - |
[4] | Al et al. (2009) | Romania | 17.80–19.70 | - | - | 0.35–0.40 | - | 20.00–45.00 | 11.53–15.33 |
[2] | Pauliuc and Oroian (2020) | Romania | 16.23–20.39 | 3.65–4.34 | 15.94–47.32 | - | 0.315–0.441 | - | - |
[3] | Pauliuc et al. (2020) | Romania | 18.4 | 3.94 | 31.6 | - | 0.362 | 21.1 | 22.8 |
[31] | Pauliuc et al. (2022) | Romania | 16.95 | 4.04 | 18.32 | - | 0.31 | - | - |
[37] | Stihi et al. (2016) | Romania | 17 | 3.67 | - | - | 0.188 | - | - |
[45] | Gośliński et al. (2021) | Poland | - | - | - | - | - | 82.4 | - |
[32] | Aazza et al. (2013) | Portugal | 19.2 | 3.84 | 25.50 | 0.15 | 0.235 | 36.69 | 1.93 |
[33] | Chirsanova, A. et al., 2021 | R. Moldova | 16.05–17.52 | 3.68–4.05 | - | 0.31–0.49 | - | - | - |
[47] | Milosavljević et al. (2021) | Serbia | 17.4–19.8 | - | 18.5–39.4 | 0.12–0.30 | 0.189–0.359 | 25.45–61.09 | - |
[48] | Sakač et al. (2022) | Serbia | 17.0 | 3.38 | 28.9 | - | 0.366 | 27.5 | - |
[51] | Živkov-Baloš et al. (2021) | Serbia | 14.6–18.6 | - | 20.40–36.4 | 0.05–0.30 | 0.22–0.54 | - | - |
Mint | |||||||||
Our study | Romania | 16.07–18.79 | 3.80–4.20 | 24.3–40.0 | 0.134–0.238 | 0.220–0.551 | 42.06–50.82 | - | |
[3] | Pauliuc et al. (2020) | Romania | 17.7 | 4.20 | 26.9 | - | 0.474 | 23.7 | 25.7 |
[31] | Pauliuc et al. (2022) | Romania | 16.24 | 4.52 | 33.17 | - | 0.60 | - | - |
[52] | Boussaid et al. (2018) | Tunisia | 19.80 | - | - | 0.13 | 0.43 | 119.42 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albu, A.; Radu-Rusu, R.-M.; Simeanu, D.; Radu-Rusu, C.-G.; Pop, I.M. Phenolic and Total Flavonoid Contents and Physicochemical Traits of Romanian Monofloral Honeys. Agriculture 2022, 12, 1378. https://doi.org/10.3390/agriculture12091378
Albu A, Radu-Rusu R-M, Simeanu D, Radu-Rusu C-G, Pop IM. Phenolic and Total Flavonoid Contents and Physicochemical Traits of Romanian Monofloral Honeys. Agriculture. 2022; 12(9):1378. https://doi.org/10.3390/agriculture12091378
Chicago/Turabian StyleAlbu, Aida, Răzvan-Mihail Radu-Rusu, Daniel Simeanu, Cristina-Gabriela Radu-Rusu, and Ioan Mircea Pop. 2022. "Phenolic and Total Flavonoid Contents and Physicochemical Traits of Romanian Monofloral Honeys" Agriculture 12, no. 9: 1378. https://doi.org/10.3390/agriculture12091378
APA StyleAlbu, A., Radu-Rusu, R.-M., Simeanu, D., Radu-Rusu, C.-G., & Pop, I. M. (2022). Phenolic and Total Flavonoid Contents and Physicochemical Traits of Romanian Monofloral Honeys. Agriculture, 12(9), 1378. https://doi.org/10.3390/agriculture12091378