Impact of Drought and Groundwater Quality on Agriculture in a Semi-Arid Zone of Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Characterization of the Study Area
2.2. Hydrogeological Framework
2.3. Assessment of Drought and Agricultural Production
2.4. Sampling and Activities Laboratory Measurements
2.5. Classification of Water in Connection with Agricultural Use
3. Results
3.1. Drought and Sown and Harvested Agricultural Area
3.2. Groundwater Quality and Limitations on Its Use
3.2.1. Acid and Alkaline Conditions
3.2.2. Sodicity Conditions
3.2.3. Salinity Conditions
3.2.4. Classification of Water Considering % Na, RAS, and EC
3.2.5. Presence of Toxic Ions (Chlorides and Sodium) for Plants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dracup, J.A.; Lee, K.S.; Paulson, E.G., Jr. On the statistical characteristics of drought events. Water Resour. Res. 1980, 16, 289–296. [Google Scholar] [CrossRef]
- McKee, B.; Doesken, J.; Kleist, J. The relationship of drought frequency and duration to time scale. In Proceedings of the eighth Conference on Applied Climatology, American Meteorological Society (AMS), Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Medellín-Azuara, J.; Howitt, R.E.; Lund, J.R. Modeling economic-engineering responses to drought: The California case. In Drought in Arid and Semi-Arid Regions; Springer: Dordrecht, The Netherlands, 2013; pp. 341–356. [Google Scholar]
- Liu, L.; Hong, Y.; Bednarczyk, C.N.; Yong, B.; Shafer, M.A.; Riley, R.; Hocker, J.E. Hydro-climatological drought analyses and projections using meteorological and hydrological drought indices: A case study in Blue River Basin, Oklahoma. Water Resour. Manag. 2012, 26, 2761–2779. [Google Scholar] [CrossRef]
- Schwabe, K.; Albiac-Murillo, J.; Connor, J.D.; Hassan, R.; Meza González, L. (Eds.) Drought in Arid and Semi-Arid Regions. A Multi-Disciplinary and Cross-Country Perspective; Springer: Berlin/Heidelberg, Germany, 2013; 507p. [Google Scholar]
- Namias, J. Nature and Possible Causes of the Northeastern United States Drought during 1962–1965. Mon. Weather Rev. 1966, 94, 543–557. [Google Scholar] [CrossRef]
- Cacciamani, C.; Morgillo, A.; Marchesi, S.; Pavan, V. Monitoring and forecasting drought on a regional scale: Emilia-Romagna region. In Methods and Tools for Drought Analysis and Management; Rossi, G., Vega, T., Bonaccorso, B., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 29–48. [Google Scholar]
- Jain, S.K.; Keshri, R.; Goswami, A.; Sarkar, A. Application of meteorological and vegetation indices for evaluation of drought impact: A case study for Rajasthan, India. Nat. Hazards 2010, 54, 643–656. [Google Scholar] [CrossRef]
- Kallis, G. Droughts. Annu. Rev. Environ. Resour. 2008, 33, 85–118. [Google Scholar] [CrossRef]
- Pereira, L.S. Drought impacts in agriculture: Water conservation and water saving practices and management. In Methods and Tools for Drought Analysis and Management; Springer: Dordrecht, The Netherlands, 2007; pp. 349–373. [Google Scholar]
- Barrios Castillo, I. Calidad de Aguas Naturales, Residuales en el Sistema hidrográfico del Valle del Mezquital, Hidalgo, México. Master’s Thesis, Colegio de Posgraduados, Montecillo, Mexico, 2014; p. 155. [Google Scholar]
- Tabari, H.; Nikbakht, J.; Hosseinzadeh Talaee, P. Hydrological Drought Assessment in Northwestern Iran Based on Streamflow Drought Index (SDI). Water Resour. Manag. 2012, 27, 137–151. [Google Scholar] [CrossRef]
- Vasiliades, L.; Loukas, A.; Liberis, N. A water balance derived drought index for Pinios River Basin, Greece. Water Resour. Manag. 2011, 25, 1087–1101. [Google Scholar] [CrossRef]
- Florescano, E.; Swan, S. Breve Historia de la Sequía en México. 2000. Available online: http://revistas.bancomext.gob.mx/rce/magazines/421/9/RCE9.pdf (accessed on 24 June 2021).
- Padilla, G.; Rodríguez, L.; Castorena, G.; Florescano, E. Análisis Histórico de las Sequías en México; SARH: Mexico City, Mexico, 1980. [Google Scholar]
- Marcos, A. Propuestas Generales de Manejo; Mitigación de Sequias en la Zona Huasteca del Estado de San Luis Potosí. Ph.D. Thesis en Ciencias Ambientales, UASLP, San Luis, Mexico, 2009. [Google Scholar]
- Daniel, C.A. ¿Cómo se cuantifican las sequías? Rev. Univ. Potos. UASLP 2012, 7, 10–15. [Google Scholar]
- Deshpande, S.M.; Aher, K.R. Evaluation of Groundwater Quality and Its Suitability for Drinking and Agriculture Use in Parts of Vaijapur, District Aurangabad, MS, India. Res. J. Chem. Sci. 2012, 1, 25–31. Available online: http://isca.in/rjcs/Archives/vol2/i1/04.ISCA-RJCS-2011-216_Done.pdf (accessed on 10 February 2022).
- Yalt, S.; Aksu, H. Drought Analysis of Iğdır Turkey. Turk. J. Agric.-Food Sci. Technol. 2019, 7, 2227–2232. [Google Scholar] [CrossRef]
- Ghassem, F.; Jakeman, A.J.; Nix, H.A. Salinization of Land and Water Resources. Human Causes, Extent, Management and Case Studies; Centre for Resource and Environmental Studies, Australian National University; CABI: Wallingford, UK, 1995; p. 540. [Google Scholar]
- Obiefuna, G.I.; Sheriff, A. Assessment of Shallow Ground Water Quality of Pindiga Gombe Area, Yola Area, NE, Nigeria for Irrigation and Domestic Purposes. Res. J. Environ. Earth Sci. 2011, 2, 31–141. [Google Scholar]
- Urquijo, J.; De Stefano, L. Perception of drought and local responses by farmers: A perspective from the Jucar River Basin, Spain. Water Resour. Manag. 2016, 30, 577–591. [Google Scholar] [CrossRef]
- Giordano, M.; Villholt, K.G. (Eds.) The Agricultural Groundwater Revolution. Opportunities and Threats to Development; International Water Management Institute: Colombo, Sri Lanka, 2007. [Google Scholar]
- Essien Obot, E.; Francis, U. Investigation of Ikpa River Water Quality with Consideration for Domestic and Agricultural Uses. Wudpecker J. Agric. Res. 2013, 2, 315–323. [Google Scholar]
- Ayers, S.; Westcot, D. Water Quality for Agriculture; Food and Agriculture Organization of the United Nations: Roma, Italy, 1985; pp. 163–174. [Google Scholar]
- Eaton, F.M. Significance of carbonates in irrigation water. Soil Sci. 1950, 69, 123–133. [Google Scholar] [CrossRef]
- Richards, L.A. Diagnosis and improvement of saline and alkali soils. Soil Sci. 1954, 78, 154. [Google Scholar] [CrossRef]
- Kubicz, J. The application of Standardized Precipitation Index (SPI) to monitor drought in surface and groundwaters. In Proceedings of the E3S Web of Conferences, EDP Sciences 2018. Volume 44, p. 00082. Available online: https://doi.org/10.1051/e3sconf/20184400082 (accessed on 15 May 2021).
- Villalpando Tovalín, F. Estructura de Ensamble de Datos Georreferenciados; No Referenciados a Través de Optimización de Estrategias Fotogramétricas SFM-MVS: Aplicaciones en Cuerpos de Agua Superficiales. 2022. Available online: https://repositorio.ipicyt.edu.mx/handle/11627/5708 (accessed on 15 May 2021).
- Campos-Aranda, D. Detección de registros homogéneos en 16 series amplias de precipitación anual del Altiplano Potosino, México. Tecnol. Cienc. Del Agua 2020, 11, 107–157. [Google Scholar] [CrossRef]
- Giddings, L.; Soto, M.; Rutherford, B.M.; Maarouf, A. Standardized precipitation index zones for Mexico. Atmósfera 2005, 18, 33–56. [Google Scholar]
- Jarju, A.M.; Solly, B. Analysis of the Efficiency of Precipitation on the Evolution of Agricultural Production in Upper-Casamance (South Senegal) between 1985 and 2018. In Proceedings of the Eurasia Proceedings of Science Technology Engineering and Mathematics. 2020; Volume 10, pp. 1–11. Available online: https://dergipark.org.tr/en/pub/epstem/issue/58035/834956 (accessed on 10 May 2021).
- Javadinejad, S.; Dara, R.; Jafary, F. Evaluation of hydro-meteorological drought indices for characterizing historical and future droughts and their impact on groundwater. Resour. Environ. Inf. Eng. 2020, 2, 71–83. [Google Scholar] [CrossRef]
- Marín, L.E. Perspectives on Mexican Ground Water Resources. Ground Water 2002, 40, 6. [Google Scholar] [CrossRef]
- Sainz de la Maza, M.; del Jesus, M. Analysis of historical droughts through their induced impacts. Ing. Del Agua 2020, 24, 141–156. [Google Scholar] [CrossRef]
- Escalante, C.A.; Reyes, L. Técnicas Estadísticas en Hidrología; UNAM, Facultad de Ingeniería: Mexico City, Mexico, 2002. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater. 2005. Available online: https://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/ReferencesPapers.aspx?ReferenceID=1870039 (accessed on 10 June 2021).
- Zuur, A.F.; Leno, E.N.; Smith, G.M. Principal component analysis and redundancy analysis. In Analysing Ecological Data; Statistics for Biology and Health; Springer: New York, NY, USA, 2007; pp. 193–224. [Google Scholar] [CrossRef]
- Aguilera, M.; Martínez, R. Relaciones Agua Suelo Planta Atmósfera, 4th ed.; Departamento de Irrigación, Universidad Autónoma Chapingo: Texcoco, Mexico, 1996; p. 256. [Google Scholar]
- Wilcox, L.V. Circular 969. In Classification and Use of Irrigation Waters; United States Deparment of Agriculture: Washington, DC, USA, 1955; p. 19. [Google Scholar]
- Doneen, L.D. Notes on Water Quality in Agriculture; Department of Water Science and Engineering, University of California: Davis, CA, USA, 1964. [Google Scholar]
- Palacios, O.; Aceves, E. Instructivo para el Registro, Muestreo e Interpretación de Datos de Calidad del Agua para Riego; Serie de Apuntes No. 15; Colegio de Posgraduados: Chapingo, Mexico, 1970; p. 197049. [Google Scholar]
- Nagarajan, R. Drought Assessment; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Méndez Montealvo, H.M. Actualización Geohidrológica del Valle de Ahualulco en el Estado de San Luis Potosí. Tesis de Licenciatura, Facultad de Ingeniería-UASLP. 1998. Available online: https://repositorioinstitucional.uaslp.mx/xmlui/bitstream/handle/i/2488/IGE1AGV99801.pdf?sequence=3 (accessed on 21 April 2021).
- Velasco Mendoza, M.A. Caracterización del Acuífero de Ahualulco, San Luis Potosí en una Zona de Riego, a Partir de Tomografía Eléctrica en Pozos; en Superficie. Tesis de Licenciatura. ESIA-IPN. 2017. Available online: https://tesis.ipn.mx/handle/123456789/22795 (accessed on 21 April 2021).
- Romero, J. Calidad del Agua, 3rd ed.; Evaluation of Groundwater Quality in Intensive Irrigated Zone of Northeastern Tunisia; Available online: https://www.sciencedirect.com/science/article/abs/pii/S2352801X19302747 (accessed on 15 July 2021).
- Peinado, H.; Green, C.; Herrera, J.; Escolero, O.; Delgado, O.; Belmonte, S.; Ladrón, M. Calidad; aptitud de uso agrícola; doméstico del agua del acuífero del río Sinaloa, porción costera. Hidrobiológica 2011, 1, 63–76. [Google Scholar]
- Rodríguez, M.; D’Urso, C.; Rodríguez, G.; Sales, A. Evaluación de la Calidad de Aguas para Riego de la Cuenca del Río Calera, Tucumán, Argentina. Ciencia 2008, 7, 15–28. [Google Scholar]
- Ayars, J.E. Adapting irrigated agriculture to drought in the San Joaquin Valley of California. In Drought in Arid and Semi-Arid Regions; Springer: Dordrecht, The Netherlands, 2013; pp. 25–39. [Google Scholar]
- Meena, A.L.; Bisht, P. Assessment of water quality for irrigation purpose: A case study of Bassi and Chaksu Tehsils, Jaipur District, Rajasthan, India. Sustain. Agr. Food Environ. Res. 2020, 8, 323180. [Google Scholar] [CrossRef]
- Nag, S.K.; Ghosh, P. Variation in Groundwater Levels and Water Quality in Chhatna Block, Bankura District, West Bengal—A GIS Approach. J. Geol. Soc. India 2013, 81, 261–280. [Google Scholar] [CrossRef]
- Ishaku, J.M.; Ahmed, A.S.; Abubakar, M.A. Assessment of Groundwater Quality Using Chemical Indices and GIS Mapping in Jada Area, Northeastern Nigeria. J. Earth Sci. Geotechn. Eng. 2011, 1, 35–60. Available online: http://www.scienpress.com/upload/geo/vol%201_1_3.pdf (accessed on 15 July 2021).
- Pérez, C.; Martínez, M.; Sánchez, J. Efecto del riego con agua de mala calidad sobre la desertificación de zonas semi-áridas en Murcia, España. Geoderma 2003, 113, 109–125. [Google Scholar]
- Joshi, D.M.; Kumar, A.; Agrawal, N. Assessment of the Irrigation Water Quality of River Ganga in Haridwar District. Rasayan J. Chem. 2009, 2, 285–292. Available online: http://www.rasayanjournal.co.in/vol-2/issue-2/7.pdf (accessed on 15 July 2021).
- Nagaraju, A.; Suresh, S.; Killham, K.; Hudson-Edwards, K. Hydrogeochemistry of Waters of Mangampeta Barite Mining Area, Cuddapah Basin, Andhra Pradesh, India. Turk. J. Eng. Environ. Sci. 2006, 30, 203–219. Available online: http://journals.tubitak.gov.tr/engineering/issues/muh-06-30-4/muh-30-4-1-0406-2.pdf (accessed on 15 July 2021).
- Hamdy, A.; Abdel-Dayem, S.; Abu-Zeid, M. Saline Water Management for Optimum Crop Production. Agric. Water Manag. 1993, 24, 189–203. Available online: http://www.ijser.org/onlineResearchPaperViewer.aspx?Preliminary-study-on-irrigational-quality-of-some-ground-water-sources-of-Kashmir-India.pdf (accessed on 12 March 2021). [CrossRef]
- Eriyagama, N.; Smakhtin, V.; Gamage, N. Mapping Drought Patterns and Impacts: A Global Perspective; IWMI Research Report 133; International Water Management Institute: Colombo, Sri Lanka, 2009; 31p. [Google Scholar]
- Sharma, D.P.; Rao, K.V.G.K. Strategy for long term use of saline drainage water for irrigation in semi-arid regions. Soil Tillage Res. 1998, 4, 287–295. [Google Scholar] [CrossRef]
- Bosongo, G.B.; Longo, J.N.; Goldin, J.; Muamba, V.L. Socioeconomic impacts of floods and droughts in the middle Zambezi river basin. Int. J. Clim. Chang. Strateg. Manag. 2014, 6, 131–144. [Google Scholar] [CrossRef]
- Hutmacher, R.B. Crop Choices with Limiting Water Supplies: Deficit Irrigation and Sensitive Crop Growth Stages. In Drought in Arid and Semi-Arid Regions; Springer: Dordrecht, The Netherlands, 2013; pp. 123–142. [Google Scholar]
- Slegers, M. «If only it would rain»: Farmers’ perceptions of rainfall and drought in semi-arid central. Tanzania. J. Arid. Environ. 2008, 72, 2106–2123. [Google Scholar] [CrossRef]
- Mancilla, O. Índices de Salinidad; Calidad de las Aguas Superficiales de Tlaxcala, Puebla, Veracruz. Ph.D. Thesis, Colegio de Posgraduados, Montecillo, Mexico, 2012; p. 263. [Google Scholar]
- Kumar, P.S.; Balamurugan, P. Evaluation of groundwater quality for irrigation purpose in attur taluk, Salem, Tamilnadu, India. Water Energy Int. 2018, 61, 59–64. [Google Scholar]
INDEX | Equation | Reference |
---|---|---|
sodium adsorption ratio (SAR) | [27] | |
Residual Sodium Carbonate (RSC) | [26] | |
percentage Sodium Soluble (SSP) | ∗ 100 | [26] |
Sodium Percentage (% Na) | ∗ 100 | [40] |
Ratio Kelly (RK) | [27] | |
permeability index (PI) | [41] | |
Salinity Effective (SE) | [42] | |
Salinity Potential (SP) | [42] | |
osmotic potential (OP) | [40] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santacruz-De León, G.; Moran-Ramírez, J.; Ramos-Leal, J.A. Impact of Drought and Groundwater Quality on Agriculture in a Semi-Arid Zone of Mexico. Agriculture 2022, 12, 1379. https://doi.org/10.3390/agriculture12091379
Santacruz-De León G, Moran-Ramírez J, Ramos-Leal JA. Impact of Drought and Groundwater Quality on Agriculture in a Semi-Arid Zone of Mexico. Agriculture. 2022; 12(9):1379. https://doi.org/10.3390/agriculture12091379
Chicago/Turabian StyleSantacruz-De León, German, Janete Moran-Ramírez, and José Alfredo Ramos-Leal. 2022. "Impact of Drought and Groundwater Quality on Agriculture in a Semi-Arid Zone of Mexico" Agriculture 12, no. 9: 1379. https://doi.org/10.3390/agriculture12091379
APA StyleSantacruz-De León, G., Moran-Ramírez, J., & Ramos-Leal, J. A. (2022). Impact of Drought and Groundwater Quality on Agriculture in a Semi-Arid Zone of Mexico. Agriculture, 12(9), 1379. https://doi.org/10.3390/agriculture12091379