An Economic Evaluation of Improved Rice Production Technology in Telangana State, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Demonstrations of Improved Rice Production Technology
2.3. Analytical Framework
- A sudden exogenous source of variation, which is usually referred to as the treatment.
- A quantifiable and measurable outcome that is either the direct target of the variation or an indirect proxy.
- A treatment group that is subjected to the change.
- A control group that is similar in characteristic to the treatment group but is not subjected to the change.
3. Results
3.1. Details of SCSP Demonstrations
3.2. A Comparison of Paddy Productivity
3.3. Double Difference Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Nirmala, B.; Tuti, M.D.; Mahender, K.R.; Amtul, W.; Muthuraman, P.; Brajendra, P.; Vidhan, S.T. Integrated assessment of system of rice intensification vs. conventional method of transplanting for economic benefit, energy efficiency and lower global warming potential in India. Agroecol. Sustain. Food Syst. 2021, 45, 745–766. [Google Scholar] [CrossRef]
- Nirmala, B.; Muthuraman, P.; Meera, S.N.; Sain, M.; Viraktamath, B.C. Economics of hybrid rice seed production in India. In Accelerating Hybrid rice Development; Xie, F., Hardy, B., Eds.; International Rice Research Institute: Los Baños, PH, USA, 2009; ISBN 978-971-22-0252-0. [Google Scholar]
- Nirmala, B. Hybrid Rice Seed Production in Telangana and Andhra Pradesh States of India: A Situation Analysis. Int. J. Agric. Sci. 2015, 7, 883–886. [Google Scholar]
- Beigh, M.A.; Rufaida, M.S.Z.A.; Matoo, J.M.; Sibat, F.K. Impact analysis of front line demonstration of rice (Oryza sativa) on the yield, economics and farmer’s knowledge in the temperate region of India. Sci. Res. Essays 2015, 10, 49–455. [Google Scholar] [CrossRef]
- Nirmala, B.; Deshmanya, J.; Muthuraman, P.; Meera, S.N.; Sain, M. Yield gap analysis of rice in Raichur district of Karnataka. Karnataka J. Agric. Sci. 2010, 22, 238–846. [Google Scholar]
- Census of India. Available online: https://censusindia.gov.in (accessed on 24 May 2022).
- Report on Covid-19: Resilience & Capacity Building of Scheduled Caste and Scheduled Tribe Communities at Grassroots. 2021. SEED Division, Department of Science and Technology, Government of India. New Delhi.p.24. Available online: https://dst.gov.in/sites/default/files/Report%20on%20Interventions%20for%20SC%20%26%20ST-01.pdf (accessed on 4 June 2022).
- Dar, M.H.; Alain, J.; Kyle, E.; Erin, M.K.; Elisabeth, S. Endogenous Information Sharing and the Gains from Using Network Information to Maximize Technology Adoption. Working Paper; January 2019. Available online: https://www.povertyactionlab.org/evaluation/impact-demonstration-plots-adoption-new-rice-varieties-bangladesh (accessed on 28 May 2022).
- Rajput, F.K. Group-dynamic techniques In National Book Foundation; Memon, R.A., Bashir, E., Eds.; Extension Methods: Islamabad, Pakistan, 1997; pp. 179–205. [Google Scholar]
- Singha, A.K.; Baruah, M.J. Farmers’ adoption behaviour in rice technology: An analysis of adoption behaviour of farmers in rice technology under different farming systems in Assam. J. Hum. Ecol. 2011, 35, 167–172. [Google Scholar] [CrossRef]
- Singh, R.; Soni, E.L.; Singh, V.; Bugalia, H.L. Dissemination of improved production technologies of solanaceous vegetable in Banswara district of Rajasthan through Frontline demonstrations. Rajasthan J. Ext. Educ. 2011, 19, 97–100. [Google Scholar]
- Bouis, H. Plant breeding: A new tool for fighting micronutrient malnutrition. J. Nutr. 2002, 132, 491S–494S. [Google Scholar] [CrossRef]
- Ondrasek, G.; Rathod, S.; Manohara, K.K.; Gireesh, C.; Anantha, M.S.; Sakhare, A.S.; Parmar, B.; Yadav, B.K.; Bandumula, N.; Raihan, F.; et al. Salt Stress in Plants and Mitigation Approaches. Plants 2022, 11, 717. [Google Scholar] [CrossRef]
- Biofortification. Available online: http://irri.org/biofortification (accessed on 20 June 2022).
- Nestel, P.; Bouis, H.E.; Meenakshi, J.V.; Pfeiffer, P. Biofortification of staple food crops. J. Nutr. 2006, 136, 1064–1067. [Google Scholar] [CrossRef]
- Cakmak, I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil. 2008, 302, 1–17. [Google Scholar] [CrossRef]
- Black, E.; Allen, L.H.; Bhutta, Z.A.; Caulfield, L.E.; Onis, M.; Ezzati, M. Maternal and child undernutrition: Global and regional exposures and health consequences. Lancet 2008, 371, 243–260. [Google Scholar] [CrossRef]
- Tan, Z.; Ma, G.; Lin, L.; Liu, C.; Liu, Y.; Jiang, J. Prevalence of subclinical vitamin A deficiency and its affecting factors in 8,669 children of China. Zhonghua Yu Fang Yi XueZaZhi 2002, 6, 161–163. [Google Scholar]
- Razzaq, A.; Tang, Y.; Qing, P. Towards Sustainable Diets: Understanding the Cognitive Mechanism of Consumer Acceptance of Biofortified Foods and the Role of Nutrition Information. Int. J. Environ. Res. Public Health 2021, 18, 1175. [Google Scholar] [CrossRef] [PubMed]
- Birol, E.; Meenakshi, J.V.; Oparinde, A.; Perez, S.; Tomlins, K. Developing country consumers’ acceptance of biofortified foods: A synthesis. Food Secur. 2015, 7, 555–568. [Google Scholar] [CrossRef] [Green Version]
- Babu, V.R. Importance and advantages of rice biofortification with iron and zinc. J. SAT 2013, 1, 1–11. [Google Scholar]
- Nirmala, B.; Babu, V.R.; Neeraja, C.N.; Waris, A.; Muthuraman, P.; Sanjeeva, R.D. Linking agriculture and nutrition: An ex-ante analysis of zinc biofortification of rice in India. Agric. Econ. Res. Rev. 2016, 29, 171–177. [Google Scholar] [CrossRef]
- Indian Institute of Rice Research Developed Technologies. Available online: https://www.icar-iirr.org/index.php/en/institute-research/institue-technologies-developed?id=141 (accessed on 8 June 2022).
- Xiangtian, M.; Yaying, L.; Yang, Z.; Huaiying, Y. Green manure application improves rice growth and urea nitrogen use efficiency assessed using N labeling. Soil Sci. Plant Nutr. 2019, 65, 511–518. [Google Scholar] [CrossRef]
- Amarpreet, S.; Yashbir, S.S. Effect of summer green manuring crops and zinc fertilizer sources on productivity, Zn-uptake and economics of basmati rice. J. Plant Nutr. 2016, 39, 204–218. [Google Scholar] [CrossRef]
- Borthakur, A.K.; Pandey, M.; Singh, K.; Tripathi, P.P. Effect of green manuring on growth, yield, economics of rice production and its influence on soil fertility status of East Kameng, Arunachal Pradesh. India J. AgriSearch 2018, 5, 34–36. [Google Scholar] [CrossRef]
- Becker, M.; Ladha, J.K.; Ali, M. Green manure technology: Potential, usage, and limitations. A case study for lowland rice. In Management of Biological Nitrogen Fixation for the Development of More Productive and Sustainable Agricultural Systems; Ladha, J.K., Peoples, M.B., Eds.; Springer: Dordrecht, The Netherlands, 1995; Volume 65. [Google Scholar] [CrossRef]
- Watanabe, M.; Sumita, Y.; Azechi, I.; Ito, K.; Noda, K. Production Costs and Benefits of Japonica Rice in Mwea, Kenya. Agriculture 2021, 11, 629. [Google Scholar] [CrossRef]
- Agricultural Statistics at a Glance; Directorate of Economics and Statistics, Ministry of Agriculture and Farmers Welfare, Government of India: New Delhi, India, 2021.
- Socio-Economic Outlook; Government of Telangana: Hyderabad, India, 2022.
- Leaf Color Chart. Available online: http://www.knowledgebank.irri.org/step-by-step-production/growth/soil-fertility/leaf-color-chart (accessed on 1 June 2022).
- Binh, T.N.; Erik, B. Impact Evaluation: Methodological and Operational Issues; Economic Analysis and Operations Support Division; Asian Development Bank.40.; Economics and Research Department: Metro Manila, Philippines, 2006. [Google Scholar]
- Abadie, A. Semiparametric difference-in-differences estimators. Rev. Econ. Stud. 2005, 72, 1–19. [Google Scholar] [CrossRef]
- Cao, Z. Difference-in-Difference and Instrumental Variables Approaches. In An Alternative and Complement to Propensity Score Matching in Estimating Treatment Effects; CER Issue Brief; CER Infrastructure: Craigieburn, Australia, 2011. [Google Scholar]
- Galiani, S.; Gertler, P.; Schargrodsky, E. Water for Life: The Impact of the Privatization of Water Services on Child Mortality. J. Political Econ. 2005, 113, 83–120. [Google Scholar] [CrossRef]
- Palanisami, K.; Ranganathan, C.; Sureshkumar, D.; Malik, R. Enhancing the crop yield through capacity building programs: Application of double difference method for evaluation of drip capacity building program in Tamil Nadu State, India. Agric. Sci. 2014, 5, 33–42. [Google Scholar] [CrossRef]
- McEwan, P.J. International Encyclopedia of Education, 3rd ed.; Academic Press: Oxford, UK, 2010. [Google Scholar]
- Fredriksson, A.; Oliveira, G.M.D. Impact evaluation using Difference-in-Differences. RAUSP Manag. J. 2019, 54, 519–532. [Google Scholar] [CrossRef]
- Coady, W.; Kosali, S.; Ricardo, A.; Bello, G. Designing differences in difference studies: Best practices for public health policy research. Annu. Rev. Public Health 2018, 39, 453–469. [Google Scholar]
- Tuti, M.D.; Papolu, M.K.; Sreedevi, B.; Bandumula, N.; Kuchi, S.; Bandeppa, S.; Saha, S.; Parmar, B.; Rathod, S.; Ondrasek, G.; et al. Sustainable Intensification of a Rice–Maize System through Conservation Agriculture to Enhance System Productivity in Southern India. Plants 2022, 11, 1229. [Google Scholar] [CrossRef]
- Pawan, K.S.; Pardeep, W.; Parveen, K.; Rakesh, S.; Rajbir, S.; Chahal, V.P. Economics of demonstrating wheat production technology under rain-fed ecosystems Agric. Econ. Res. Rev. 2020, 33, 109–118. [Google Scholar] [CrossRef]
- Sanjeeva, R.D.; Neeraja, C.N.; Madhu, B.P.; Nirmala, B.; Suman, K.; Rao, L.V.S.; Surekha, K.; Raghu, P.; Longvah, T.; Surendra, P.; et al. Zinc Biofortified Rice Varieties: Challenges, Possibilities, and Progress in India. Front. Nutr. 2020, 7, 26. [Google Scholar] [CrossRef]
- Nirmala, B.; Neeraja, C.N.; Amtul, W.; Sanjeeva, R.D.; Muthuraman, P. An economic analysis of biofortified rice varieties. Oryza Int. J. 2019, 56, 412–417. [Google Scholar]
- Dhaka, B.; Meena, B.S.; Suwalka, R.L. Popularization of improved maize production technology through frontline demonstrations insouth eastern Rajasthan. J. Agric. Sci. 2010, 1, 39–42. [Google Scholar] [CrossRef]
- Singh, D.P.; Chandra, V.; Tiwari, T. Impact Analysis of Front Line Demonstration on Rice (Oryza sativa L.) The Yield, Economics and Farmer’s Knowledge in Eastern Uttar Pradesh, India. Int. J. Curr. Microbiol. Appl. Sci. 2020, 10, 308–313. [Google Scholar]
- Sagar, R.L.; Chandra, G. Performance of Frontline Demonstration on Kharif rice (Oryza sativa L.) in Sundarban, West Bengal. J. Indian Soc. Coast. Agric. Res. 2003, 21, 69–70. [Google Scholar]
- Nirmala, B.; Amtul, W.; Muthuraman, P. Technology dissemination approaches for bridging rice yield gaps on small farms. Indian Res. J. Ext. Educ. 2016, 16, 128–133. [Google Scholar]
- Samanth, T.K. Evaluation of Front Line Demonstration on Drought Tolerant Rice (Oryza sativa L.) Variety Satyabhama in Mid Central Table Land Zone of Odisha. Int. J. Bio-Resour. Stress Manag. 2017, 8, 871–876. [Google Scholar] [CrossRef]
- Savic, R.; Stajic, M.; Blagojević, B.; Bezdan, A.; Vranesevic, M.; Nikolić Jokanović, V.; Baumgertel, A.; Bubalo Kovačić, M.; Horvatinec, J.; Ondrasek, G. Nitrogen and Phosphorus Concentrations and Their Ratios as Indicators of Water Quality and Eutrophication of the Hydro-System Danube–Tisza–Danube. Agriculture 2022, 12, 935. [Google Scholar] [CrossRef]
Particulars | Beneficiaries | Non-Beneficiaries | Difference Across Groups |
---|---|---|---|
Group I (Demonstrations) | B1 | C1 | B1 − C1 |
Group II (Control) | B0 | C0 | B0 − C0 |
Difference across time | B1- B0 | C1- C0 | (B1- B0) – (C1- C0) |
Parameters | Conventional Practices | Demonstrations |
---|---|---|
Number of farms | 139 | 142 |
Area (ha) | 0.82 | 0.62 |
Rice variety | Telangana Sona | DRR Dhan 48 |
Rice seed rate (kg/ha) | 75 | 50 |
Integrated Nutrient Management | Green manure crops | |
Leaf Color Charts (LCC) |
Particulars | Control | Demonstration | t-Value | p-Value |
---|---|---|---|---|
Age of the farmer (years) | 48.47 (±0.06) | 48.94 (±0.08) | −0.406 | 0.685 |
Formal education of the farmer (years) | 2.43 (±0.03) | 3.42 (±0.03) | −1.867 | 0.063 |
Family size (number) | 4.86 (±0.01) | 4.92 (±0.01) | −0.335 | 0.738 |
Operational holding (ha) | 1.64 *** (±0.01) | 1.11 (±0.01) | 6.759 | 0 |
Area under rice (ha) | 0.87 *** (±0.4) | 0.62 (0.00) | 4.590 | 0 |
Particulars | 2020 | 2021 | Average of Two Years | |||
---|---|---|---|---|---|---|
Control Plots | Demonstration Plots | Control Plots | Demonstration Plots | Control Plots | Demonstration Plots | |
Mean (t/ha) | 4.58 | 4.74 | 4.50 | 5.53 | 4.54 | 5.13 |
Standard error | 0.006 | 0.006 | 0.008 | 0.006 | 0.006 | 0.004 |
Skewness | −0.57 | −0.54 | −1.13 | −1.28 | −1.14 | −0.90 |
Kurtosis | 0.29 | 0.12 | 0.89 | 0.95 | 1.72 | 0.86 |
Minimum | 2.00 | 2.10 | 0.90 | 3.00 | 1.45 | 3.25 |
Maximum | 6.00 | 6.00 | 7.00 | 7.00 | 6.40 | 6.15 |
CV | 19.08 | 17.27 | 25.43 | 14.14 | 19.42 | 11.46 |
F Test for Equality of Variances | t-Test for Equality of Means | |||
---|---|---|---|---|
F | Sig. | T | Sig. (Two-Tailed) | |
Comparison of control plots yield with demonstration plots yield (2020) Equal variances assumed | 1.139 | 0.22 | −1.594 | 0.112 |
Comparison of control plots yield with demonstration plots yield (2021) Unequal variance assumed | 2.143 | 0 | −8.763 | 0 |
Demonstration Plots Average Productivity | Control Plots Average Productivity | Yield Advantage over the Control (%) |
---|---|---|
5.52 | 4.5 | 22.67 |
Variable | Coefficients | Standard Error | t-Value | Pr (>|t|) |
---|---|---|---|---|
Intercept | 5.724 | 0.234 | 24.447 | 0.000 *** |
Treatment | 0.125 | 0.110 | 1.131 | 0.258 |
Post | −0.067 | −0.067 | −0.637 | 0.524 |
DID (Treat × Post) | 0.864 | 0.1489 | 5.806 | 0.000 *** |
Age of the farmer | −0.006 | 0.004 | −1.649 | 0.099 |
Formal education of the farmer | −0.028 | 0.008 | −3.190 | 0.001 ** |
Family size | −0.101 | 0.025 | −3.934 | 0.000 *** |
Operational holding | −0.038 | 0.030 | −1.241 | 0.215 |
Average area under Rice | −0.050 | 0.058 | −0.860 | 0.390 |
Adjusted R2 | 0.221 | |||
F value | 20.91 | |||
p-value | 0.000 |
Parameter | Control Plots | Demonstration Plots |
---|---|---|
Total cost of inputs (INR/ha) | 68,171 | 60,632 |
Yield (t/ha) | 4.5 | 5.52 |
Gross Returns (INR/ha) | 95,000 | 115,072 |
Net Returns (INR/ha) | 26,829 | 54,440 |
B:C Ratio | 1.4 | 1.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bandumula, N.; Rathod, S.; Ondrasek, G.; Pillai, M.P.; Sundaram, R.M. An Economic Evaluation of Improved Rice Production Technology in Telangana State, India. Agriculture 2022, 12, 1387. https://doi.org/10.3390/agriculture12091387
Bandumula N, Rathod S, Ondrasek G, Pillai MP, Sundaram RM. An Economic Evaluation of Improved Rice Production Technology in Telangana State, India. Agriculture. 2022; 12(9):1387. https://doi.org/10.3390/agriculture12091387
Chicago/Turabian StyleBandumula, Nirmala, Santosha Rathod, Gabrijel Ondrasek, Muthuraman Pitchiah Pillai, and Raman Meenakshi Sundaram. 2022. "An Economic Evaluation of Improved Rice Production Technology in Telangana State, India" Agriculture 12, no. 9: 1387. https://doi.org/10.3390/agriculture12091387
APA StyleBandumula, N., Rathod, S., Ondrasek, G., Pillai, M. P., & Sundaram, R. M. (2022). An Economic Evaluation of Improved Rice Production Technology in Telangana State, India. Agriculture, 12(9), 1387. https://doi.org/10.3390/agriculture12091387