Evaluation of Markers Associated with Physiological and Biochemical Traits during Storage of ‘Nam Dok Mai Si Thong’ Mango Fruits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mangoes and Damage Induction Procedure
2.2. Sensory Qualities of Mango
2.3. Near-Infrared Spectra Acquisition
2.4. Physiological Parameters
2.4.1. Weight Loss
2.4.2. Colour Attributes
2.4.3. Firmness
2.4.4. Mango Juice Extraction, pH, and Total Soluble Solids
2.4.5. Titratable Acidity
2.4.6. Peel Electrolyte Leakage
2.5. Biochemical Analyses
2.5.1. Total Phenolic Compounds
2.5.2. Total Flavonoid Compounds
2.5.3. Antioxidants
2.5.4. Total Sugar and Reducing Sugar
2.6. Statistical Analysis
3. Results and Discussion
3.1. Fruit Ripening Characteristics
3.2. Burning Characteristics
3.3. Infectious Disease Characteristics
3.4. PLS Correlations
3.5. Near-Infrared Spectra
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tangpao, T.; Kumpoun, W.; Withee, P.; Cheewangkoon, R.; Sommano, S.R. Usages of Thai basil oil vapour in controlling Colletotrichum sp. in postharvest storage of ‘Nam Dok Mai Si Thong’ mangoes. Acta Hortic. 2022, 1336, 221–228. [Google Scholar] [CrossRef]
- Sangudom, T.; Wattanawan, C.; Makkumrai, W.; Chatbanyong, R.; Tongtao, S. Improvement on the supply chain of Thai mango for exporting. Acta Hortic. 2019, 1244, 209–214. [Google Scholar] [CrossRef]
- Lin Aung, Y.; Lorjaroenphon, Y.; Rumpagaporn, P.; Sae-tan, S.; Na Jom, K. Comparative Investigation of Combined Metabolomics-Flavoromics during the Ripening of Mango (Mangifera indica L.) cv. ‘Nam Dok Mai Si Thong’ and ‘Nam Dok Mai No. 4’. Plants 2021, 10, 2198. [Google Scholar] [CrossRef] [PubMed]
- Noiwan, D.; Suppakul, P.; Joomwong, A.; Uthaibutra, J.; Rachtanapun, P. Kinetics of Mango Fruits (Mangifera indica cv. ‘Nam Dok Mai Si Thong’) Quality Changes during Storage at Various Temperatures. J. Agric. Sci. 2017, 9, 199. [Google Scholar] [CrossRef]
- Ntsoane, M.L.; Zude-Sasse, M.; Mahajan, P.; Sivakumar, D. Quality assesment and postharvest technology of mango: A review of its current status and future perspectives. Sci. Hortic. 2019, 249, 77–85. [Google Scholar] [CrossRef]
- Alam, S.K.; Rahman, M.; Reza, M.; Amin, M.N.; Hussen, M.A. Postharvest loss assessment of mango at different stages of supply chain through traditional and improved handling practices. Adv. Plants Agric. Res. 2019, 9, 384–388. [Google Scholar] [CrossRef]
- Islam, M.K.; Khan, M.Z.H.; Sarkar, M.A.R.; Absar, N.; Sarkar, S.K. Changes in Acidity, TSS, and Sugar Content at Different Storage Periods of the Postharvest Mango (Mangifera indica L.) Influenced by Bavistin DF. Int. J. Food Sci. 2013, 2013, 939385. [Google Scholar] [CrossRef]
- Jha, S.N.; Narsaiah, K.; Jaiswal, P.; Bhardwaj, R.; Gupta, M.; Kumar, R.; Sharma, R. Nondestructive prediction of maturity of mango using near infrared spectroscopy. J. Food Eng. 2014, 124, 152–157. [Google Scholar] [CrossRef]
- Mercadante, A.Z.; Rodriguez-Amaya, D.B. Effects of Ripening, Cultivar Differences, and Processing on the Carotenoid Composition of Mango. J. Agric. Food Chem. 1998, 46, 128–130. [Google Scholar] [CrossRef]
- Chin, C.F.; Teoh, E.Y.; Chee, M.J.Y.; Al-Obaidi, J.R.; Rahmad, N.; Lawson, T. Comparative Proteomic Analysis on Fruit Ripening Processes in Two Varieties of Tropical Mango (Mangifera indica). Protein J. 2019, 38, 704–715. [Google Scholar] [CrossRef]
- Wongkaew, M.; Sangta, J.; Chansakaow, S.; Jantanasakulwong, K.; Rachtanapun, P.; Sommano, S.R. Volatile profiles from over-ripe purée of Thai mango varieties and their physiochemical properties during heat processing. PLoS ONE 2021, 16, e0248657. [Google Scholar] [CrossRef]
- Muda, P.; Seymour, G.; Errington, N.; Tucker, G. Compositional changes in cell wall polymers during mango fruit ripening. Carbohydr. Polym. 1995, 26, 255–260. [Google Scholar] [CrossRef]
- Uddin, M.; Shefat, S.; Afroz, M.; Moon, N. Management of anthracnose disease of mango caused by Colletotrichum gloeosporioides: A review. Acta Sci. Agric. 2018, 2, 169–177. [Google Scholar]
- Dowling, M.; Peres, N.; Villani, S.; Schnabel, G. Managing Colletotrichum on Fruit Crops: A “Complex” Challenge. Plant Dis. 2020, 104, 2301–2316. [Google Scholar] [CrossRef] [PubMed]
- Danh, L.T.; Giao, B.T.; Duong, C.T.; Nga, N.T.T.; Tien, D.T.K.; Tuan, N.T.; Huong, B.T.C.; Nhan, T.C.; Trang, D.T.X. Use of Essential Oils for the Control of Anthracnose Disease Caused by Colletotrichum acutatum on Post-Harvest Mangoes of Cat Hoa Loc Variety. Membranes 2021, 11, 719. [Google Scholar] [CrossRef] [PubMed]
- Karunanayake, C.; Liyanage, K.; Jayakody, L.; Somaratne, S. Basil oil incorporated beeswax coating to increase shelf life and reduce anthracnose development in mango cv. Willard. Ceylon J. Sci. 2020, 49, 355–361. [Google Scholar] [CrossRef]
- Wang, H.; Peng, J.; Xie, C.; Bao, Y.; He, Y. Fruit quality evaluation using spectroscopy technology: A review. Sensors 2015, 15, 11889–11927. [Google Scholar] [CrossRef]
- Taira, E.; Nakamura, S.; Hiyane, R.; Honda, H.; Ueno, M. Development of a nondestructive measurement system for mango fruit using near infrared spectroscopy. Eng. Appl. Sci. Res. 2017, 44, 189–192. [Google Scholar]
- Theanjumpol, P.; Wongzeewasakun, K.; Muenmanee, N.; Wongsaipun, S.; Krongchai, C.; Changrue, V.; Boonyakiat, D.; Kittiwachana, S. Non-destructive identification and estimation of granulation in ‘Sai Num Pung’ tangerine fruit using near infrared spectroscopy and chemometrics. Postharvest Biol. Technol. 2019, 153, 13–20. [Google Scholar] [CrossRef]
- Penchaiya, P.; Tijskens, L.M.M.; Uthairatanakij, A.; Srilaong, V.; Tansakul, A.; Kanlayanarat, S. Modelling quality and maturity of ‘Namdokmai Sithong’ mango and their variation during storage. Postharvest Biol. Technol. 2020, 159, 111000. [Google Scholar] [CrossRef]
- Sommano, S.; Kanphet, N.; Siritana, D.; Ittipunya, P. Correlation Between Browning Index and Browning Parameters During the Senesence of Longan Peel. Int. J. Fruit Sci. 2011, 11, 197–205. [Google Scholar] [CrossRef]
- Rathore, H.A.; Masud, T.; Sammi, S.; Soomro, A.H. Effect of storage on physico-chemical composition and sensory properties of mango (Mangifera indica L.) variety Dosehari. Pak. J. Nutr. 2007, 6, 143–148. [Google Scholar] [CrossRef]
- Wongkaew, M.; Kittiwachana, S.; Phuangsaijai, N.; Tinpovong, B.; Tiyayon, C.; Pusadee, T.; Chuttong, B.; Sringarm, K.; Bhat, F.M.; Sommano, S.R.; et al. Fruit Characteristics, Peel Nutritional Compositions, and Their Relationships with Mango Peel Pectin Quality. Plants 2021, 10, 1148. [Google Scholar] [CrossRef] [PubMed]
- Ayele, L.; W/Tsadik, K.; Abegaz, K.; Yetneberk, S. Postharvest Ripening and Shelf Life of Mango (Mangifera indica L.) Fruit as Influenced by 1-Methylcyclopropene and Polyethylene Packaging. Ethiop. J. Agric. Sci. 2012, 22, 26–44. [Google Scholar]
- Ruter, J.M. High-temperature-induced electrolyte leakage from excised leaves and roots of three hollies. Hortscience 1993, 28, 927–928. [Google Scholar] [CrossRef]
- Sommano, S. Physiological and Biochemical Changes During Heat Stress Induced Browning of Detached Backhousia myrtifolia (Cinnamon Myrtle) Tissues. Trop. Plant Biol. 2015, 8, 31–39. [Google Scholar] [CrossRef]
- Sunanta, P.; Pankasemsuk, T.; Jantanasakulwong, K.; Chaiyaso, T.; Leksawasdi, N.; Phimolsiripol, Y.; Rachtanapun, P.; Seesuriyachan, P.; Sommano, S.R. Does Curing Moisture Content Affect Black Garlic Physiochemical Quality? Horticulturae 2021, 7, 535. [Google Scholar] [CrossRef]
- Adewusi, E.A.; Moodley, N.; Steenkamp, V. Antioxidant and acetylcholinesterase inhibitory activity of selected southern African medicinal plants. S. Afr. J. Bot. 2011, 77, 638–644. [Google Scholar] [CrossRef]
- Sangta, J.; Wongkaew, M.; Tangpao, T.; Withee, P.; Haituk, S.; Arjin, C.; Sringarm, K.; Hongsibsong, S.; Sutan, K.; Pusadee, T.; et al. Recovery of Polyphenolic Fraction from Arabica Coffee Pulp and Its Antifungal Applications. Plants 2021, 10, 1422. [Google Scholar] [CrossRef]
- Penchaiya, P.; Jansasithorn, R.; Kanlayanarat, S. Effect of 1-MCP on physiological changes in mango ‘Nam Dokmai’. Acta Hortic. 2006, 712, 717–721. [Google Scholar] [CrossRef]
- Maldonado-Celis, M.E.; Yahia, E.M.; Bedoya, R.; Landázuri, P.; Loango, N.; Aguillón, J.; Restrepo, B.; Guerrero Ospina, J.C. Chemical Composition of Mango (Mangifera indica L.) Fruit: Nutritional and Phytochemical Compounds. Front. Plant Sci. 2019, 10, 1073. [Google Scholar] [CrossRef] [PubMed]
- Penchaiya, P.; Tijskens, L.M.M. Assessing the peel colour behaviour of mango ‘Nam Dok Mai See Thong’ during cool storage. Acta Horticlturae 2017, 1154, 207–212. [Google Scholar] [CrossRef]
- Malundo, T.; Shewfelt, R.; Ware, G.O.; Baldwin, E.A. Sugars and Acids Influence Flavor Properties of Mango (Mangifera indica). J. Am. Soc. Hortic. Sci. 2001, 126, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Cao, S.; Su, X.; Jiang, Y. Respiratory activity and mitochondrial membrane associated with fruit senescence in postharvest peaches in response to UV-C treatment. Food Chem. 2014, 161, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef] [PubMed]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Tacias-Pascacio, V.; Castañeda, D.; Fernandez-Lafuente, R.; Berenguer-Murcia, A.; Meza Gordillo, R.; Gutiérrez, L.-F.; Pacheco López, N.; Cuevas-Bernardino, J.C.; Ayora, T. Phenolic compounds in mango fruit: A review. J. Food Meas. Charact. 2022, 16, 619–636. [Google Scholar] [CrossRef]
- Palafox-Carlos, H.; Yahia, E.; Islas-Osuna, M.A.; Gutierrez-Martinez, P.; Robles-Sánchez, M.; González-Aguilar, G.A. Effect of ripeness stage of mango fruit (Mangifera indica L., cv. Ataulfo) on physiological parameters and antioxidant activity. Sci. Hortic. 2012, 135, 7–13. [Google Scholar] [CrossRef]
- Sivankalyani, V.; Feygenberg, O.; Diskin, S.; Wright, B.; Alkan, N. Increased anthocyanin and flavonoids in mango fruit peel are associated with cold and pathogen resistance. Postharvest Biol. Technol. 2016, 111, 132–139. [Google Scholar] [CrossRef]
- Bambalele, N.L.; Mditshwa, A.; Magwaza, L.S.; Tesfay, S.Z. Recent Advances on Postharvest Technologies of Mango Fruit: A Review. Int. J. Fruit Sci. 2021, 21, 565–586. [Google Scholar] [CrossRef]
- González-Aguilar, G.A.; Wang, C.Y.; Buta, J.G.; Krizek, D.T. Use of UV-C irradiation to prevent decay and maintain postharvest quality of ripe ‘Tommy Atkins’ mangoes. Int. J. Food Sci. Technol. 2001, 36, 767–773. [Google Scholar] [CrossRef]
- Marić, T.; Friščić, M.; Marijanović, Z.; Maleš, Ž.; Jerković, I. Comparison of Volatile Organic Compounds of Sideritis romana L. and Sideritis montana L. from Croatia. Molecules 2021, 26, 5968. [Google Scholar] [CrossRef]
- Tangpao, T.; Charoimek, N.; Teerakitchotikan, P.; Leksawasdi, N.; Jantanasakulwong, K.; Rachtanapun, P.; Seesuriyachan, P.; Phimolsiripol, Y.; Chaiyaso, T.; Ruksiriwanich, W.; et al. Volatile Organic Compounds from Basil Essential Oils: Plant Taxonomy, Biological Activities, and Their Applications in Tropical Fruit Productions. Horticulturae 2022, 8, 144. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; Feo, V.D. Essential Oils and Antifungal Activity. Pharmaceutics 2017, 10, 86. [Google Scholar] [CrossRef]
- D’Agostino, M.; Tesse, N.; Frippiat, J.P.; Machouart, M.; Debourgogne, A. Essential Oils and Their Natural Active Compounds Presenting Antifungal Properties. Molecules 2019, 24, 3713. [Google Scholar] [CrossRef]
- Chang, Y.; Harmon, P.F.; Treadwell, D.D.; Carrillo, D.; Sarkhosh, A.; Brecht, J.K. Biocontrol Potential of Essential Oils in Organic Horticulture Systems: From Farm to Fork. Front. Nutr. 2022, 8, 1275. [Google Scholar] [CrossRef]
- Cai, C.; Ma, R.; Duan, M.; Deng, Y.; Liu, T.; Lu, D. Effect of starch film containing thyme essential oil microcapsules on physicochemical activity of mango. LWT Food Sci. Technol. 2020, 131, 109700. [Google Scholar] [CrossRef]
- Konsue, W.; Dethoup, T.; Limtong, S. Biological Control of Fruit Rot and Anthracnose of Postharvest Mango by Antagonistic Yeasts from Economic Crops Leaves. Microorganisms 2020, 8, 317. [Google Scholar] [CrossRef]
- Raviadaran, R.; Chandran, D.; Shin, L.H.; Manickam, S. Optimization of palm oil in water nano-emulsion with curcumin using microfluidizer and response surface methodology. LWT-Food Sci. Technol. 2018, 96, 58–65. [Google Scholar] [CrossRef]
- Matulaprungsan, B.; Wongs-Aree, C.; Penchaiya, P.; Boonyaritthongchai, P.; Srisurapanon, V.; Kanlayanarat, S. Analysis of Critical Control Points of Post-Harvest Diseases in the Material Flow of Nam Dok Mai Mango Exported to Japan. Agriculture 2019, 9, 200. [Google Scholar] [CrossRef]
- Ortutu, S.; Aremu, M. Evaluation of Peroxidase (POD) Activity of Mango (Mangifera indica) Fruit Pulp at Different Level of Ripeness. Int. J. Sci. Res. Publ. IJSRP 2021, 11, 450–464. [Google Scholar] [CrossRef]
- Queiroz, C.; Mendes Lopes, M.L.; Fialho, E.; Valente-Mesquita, V.L. Polyphenol Oxidase: Characteristics and Mechanisms of Browning Control. Food Rev. Int. 2008, 24, 361–375. [Google Scholar] [CrossRef]
- Sommano, S.; Joyce, D.C.; Dinh, S.Q.; D’arcy, B. Infection by Alternaria alternata causes discolouration of Backhousia myrtifolia foliage and flowers. J. Hortic. Sci. Biotechnol. 2012, 87, 41–46. [Google Scholar] [CrossRef]
- Binder, B.M. Ethylene signaling in plants. J. Biol. Chem. 2020, 295, 7710–7725. [Google Scholar] [CrossRef]
- Schouten, R.E.; Fan, S.; Verdonk, J.C.; Wang, Y.; Kasim, N.F.M.; Woltering, E.J.; Tijskens, L.M.M. Mango Firmness Modeling as Affected by Transport and Ethylene Treatments. Front. Plant Sci. 2018, 9, 1647. [Google Scholar] [CrossRef]
- Lo’ay, A.; Harbinson, J.; Kooten, O.; Linssen, J. Antioxidant enzymes and oxidative stress in mangoes. Wagening. Agric. Univ. Pap. 2005, 119–162. [Google Scholar]
- Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Lammertyn, J.; Peirs, A.; De Baerdemaeker, J.; Nicolaï, B. Light penetration properties of NIR radiation in fruit with respect to non-destructive quality assessment. Postharvest Biol. Technol. 2000, 18, 121–132. [Google Scholar] [CrossRef]
- Moscetti, R.; Haff, R.P.; Stella, E.; Contini, M.; Monarca, D.; Cecchini, M.; Massantini, R. Feasibility of NIR spectroscopy to detect olive fruit infested by Bactrocera oleae. Postharvest Biol. Technol. 2015, 99, 58–62. [Google Scholar] [CrossRef]
- Peirs, A.; Lammertyn, J.; Ooms, K.; Nicolaï, B.M. Prediction of the optimal picking date of different apple cultivars by means of VIS/NIR-spectroscopy. Postharvest Biol. Technol. 2001, 21, 189–199. [Google Scholar] [CrossRef]
- Al-Maskri, A.Y.; Hanif, M.A.; Al-Maskari, M.Y.; Abraham, A.S.; Al-sabahi, J.N.; Al-Mantheri, O. Essential Oil from Ocimum basilicum (Omani Basil): A Desert Crop. Nat. Prod. Commun. 2011, 6, 1934578X1100601020. [Google Scholar] [CrossRef]
- Senthilkumar, T.; Jayas, D.; White, N. Detection of different stages of fungal infection in stored canola using near-infrared hyperspectral imaging. J. Stored Prod. Res. 2015, 63, 80–88. [Google Scholar] [CrossRef]
- Wang, D.; Dowell, F.; Ram, M.; Schapaugh, W. Classification of fungal-damaged soybean seeds using near-infrared spectroscopy. Int. J. Food Prop. 2004, 7, 75–82. [Google Scholar] [CrossRef]
- Alhamdan, A.M.; Fickak, A.; Atia, A.R. Evaluation of sensory and texture profile analysis properties of stored Khalal Barhi dates nondestructively using Vis/NIR spectroscopy. J. Food Process Eng. 2019, 42, e13215. [Google Scholar] [CrossRef]
- Polesello, A.; Giangiacomo, R.; Forni, E.; Braga, F. The use of NIR spectrophotometry to estimate the pectic substances in fruit and fruit products. Carbohydr. Polym. 1990, 12, 27–38. [Google Scholar] [CrossRef]
- Bizzani, M.; Flores, D.W.M.; Colnago, L.A.; Ferreira, M.D. Non-invasive spectroscopic methods to estimate orange firmness, peel thickness, and total pectin content. Microchem. J. 2017, 133, 168–174. [Google Scholar] [CrossRef]
- Mukhtar, A.; Latif, S.; Mueller, J. Effect of Heat Exposure on Activity Degradation of Enzymes in Mango Varieties Sindri, SB Chaunsa, and Tommy Atkins during Drying. Molecules 2020, 25, 5396. [Google Scholar] [CrossRef]
- Vélez Rivera, N.; Gómez-Sanchis, J.; Chanona-Pérez, J.; Carrasco, J.J.; Millán-Giraldo, M.; Lorente, D.; Cubero, S.; Blasco, J. Early detection of mechanical damage in mango using NIR hyperspectral images and machine learning. Biosyst. Eng. 2014, 122, 91–98. [Google Scholar] [CrossRef]
- Mogollón, R.; Contreras, C.; da Silva Neta, M.L.; Marques, E.J.N.; Zoffoli, J.P.; de Freitas, S.T. Non-destructive prediction and detection of internal physiological disorders in ‘Keitt’ mango using a hand-held Vis-NIR spectrometer. Postharvest Biol. Technol. 2020, 167, 111251. [Google Scholar] [CrossRef]
- Dos Santos Neto, J.P.; de Assis, M.W.D.; Casagrande, I.P.; Cunha Júnior, L.C.; de Almeida Teixeira, G.H. Determination of ‘Palmer’ mango maturity indices using portable near infrared (VIS-NIR) spectrometer. Postharvest Biol. Technol. 2017, 130, 75–80. [Google Scholar] [CrossRef]
- Sohaib Ali Shah, S.; Zeb, A.; Qureshi, W.S.; Malik, A.U.; Tiwana, M.; Walsh, K.; Amin, M.; Alasmary, W.; Alanazi, E. Mango maturity classification instead of maturity index estimation: A new approach towards handheld NIR spectroscopy. Infrared Phys. Technol. 2021, 115, 103639. [Google Scholar] [CrossRef]
- Woo, P.S.; Ibrahim, M.F. pH Prediction of Perlis Sunshine Mango Using NIR Spectrometer. IOP Conf. Ser. Mater. Sci. Eng. 2019, 705, 12021. [Google Scholar] [CrossRef]
- Rungpichayapichet, P.; Mahayothee, B.; Nagle, M.; Khuwijitjaru, P.; Müller, J. Robust NIRS models for non-destructive prediction of postharvest fruit ripeness and quality in mango. Postharvest Biol. Technol. 2016, 111, 31–40. [Google Scholar] [CrossRef]
Stage/Degree of Symptom | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Ripening-decay index | |||||
(Score 1–20) raw, yellow, hard texture | (Score 21–40) raw, yellow, semi-hard texture | (Score 41–60) ripe, orange-yellow, firm texture | (Score 61–100) overripe, orange-yellow, soft texture, slightly alcoholic smell | ||
Burning index | (Score 1–20) no burning | ||||
(Score 21–40) 0–5% of skin surface | (Score 41–60) 5–15% of skin surface | (Score 61–100) 15–30% of skin surface | |||
Infectious index | (Score 1–20) no dark spot | ||||
(Score 21–40) 0–5% of skin surface | (Score 41–60) 5–15% of skin surface | (Score 61–80) 15–30% of skin surface | (Score 81–100) >30% of skin surface |
Indexes | Ripening 1 | Ripening 2 | Ripening 3 | Ripening 4 |
---|---|---|---|---|
Number | 29 | 14 | 43 | 41 |
L* | 81.52 ± 0.20 d | 79.57 ± 0.53 c | 75.59 ± 0.32 b | 73.27 ± 0.35 a |
a* | 1.58 ± 0.14 a | 1.83 ± 0.20 a | 4.03 ± 0.25 b | 5.71 ± 0.30 c |
b* | 31.37 ± 0.63 a | 33.88 ± 1.03 b | 40.8 ± 0.70 c | 43.3 ± 0.48 d |
F w/Peel (N) | 31.37 ± 0.47 d | 24.16 ± 1.48 c | 13.49 ± 0.98 b | 9.23 ± 0.51 a |
F w/o Peel (N) | 24.11 ± 0.76 d | 14.64 ± 1.92 c | 4.03 ± 0.30 b | 1.53 ± 0.27 a |
Weight loss (%) | 1.71 ± 0.25 a | 2.71 ± 0.18 b | 4.17 ± 0.18 c | 6.29 ± 0.31 d |
pH | 3.29 ± 0.04 a | 3.42 ± 0.09 a | 4.64 ± 0.10 c | 5.37 ± 0.07 d |
TSS | 7.93 ± 0.28 a | 8.61 ± 0.33 ab | 8.96 ± 0.23 b | 8.33 ± 0.20 ab |
TA | 0.94 ± 0.05 d | 0.69 ± 0.08 c | 0.17 ± 0.02 b | 0.06 ± 0.01 a |
TSS/TA | 9.38 ± 0.73 a | 15.94 ± 2.91 a | 110.64 ± 12.68 b | 169.83 ± 9.51 c |
Phenolics (mg/L) | 367.09 ± 27.46 d | 300.56 ± 35.70 c | 180.81 ± 16.74 b | 71.59 ± 13.46 a |
Flavonoids (mg/L) | 37.22 ± 2.40 b | 27.01 ± 1.77 a | 31.09 ± 2.03 ab | 54.35 ± 3.11 c |
ttSugar (µg/L) | 7685.77 ± 494.03 a | 8151.23 ± 738.22 a | 12,963.8 ± 1156.53 b | 10,840.8 ± 993.27 ab |
Reducing sugar (µg/L) | 3858.8 ± 142.16 b | 3800.81 ± 214.64 b | 3892.46 ± 160.39 b | 3249.79 ± 179.45 a |
DPPH (%) | 82.57 ± 1.84 c | 77.13 ± 4.05 c | 57.47 ± 3.09 b | 29.22 ± 3.14 a |
ABTS (%) | 82.03 ± 3.77 b | 92.14 ± 0.95 c | 88.07 ± 1.69 bc | 61.83 ± 3.28 a |
EL (%) | 52.17 ± 0.81 bc | 49.58 ± 1.17 a | 51.06 ± 0.66 ab | 54.34 ± 0.64 c |
Degree of Burning | Burning 1 | Burning 2 | Burning 3 | Burning 4 |
---|---|---|---|---|
Number | 92 | 5 | 22 | 8 |
L* | 76.93 ± 0.40 b | 77.71 ± 1.65 b | 76.54 ± 0.74 b | 72.74 ± 0.75 a |
a* ns | 3.69 ± 0.25 | 3.93 ± 0.93 | 3.55 ± 0.39 | 5.20 ± 0.51 |
b* ns | 38.94 ± 0.68 | 37.83 ± 3.08 | 37.43 ± 1.12 | 39.88 ± 0.80 |
F w/Peel (N) | 18.45 ± 1.06 b | 18.30 ± 4.83 b | 15.75 ± 1.96 ab | 8.85 ± 0.71 a |
F w/o Peel (N) ns | 9.92 ± 1.04 | 8.98 ± 4.88 | 7.86 ± 1.96 | 1.17 ± 0.35 |
Weight loss (%) | 3.88 ± 0.24 a | 4.09 ± 1.05 a | 4.36 ± 0.44 a | 6.44 ± 0.52 b |
pH | 4.38 ± 0.11 ab | 4.26 ± 0.45 a | 4.42 ± 0.18 ab | 5.22 ± 0.16 b |
TSS ns | 8.54 ± 0.17 | 8.54 ± 0.28 | 8.53 ± 0.21 | 7.71 ± 0.29 |
TA ns | 0.40 ± 0.04 | 0.41 ± 0.19 | 0.30 ± 0.08 | 0.06 ± 0.01 |
TSS/TA ns | 91.71 ± 9.33 | 117.19 ± 62.66 | 94.96 ± 17.45 | 137.94 ± 15.99 |
Phenolics (mg/L) | 212.56 ± 17.00 b | 205.29 ± 94.26 ab | 203.66 ± 33.01 ab | 62.64 ± 20.98 a |
Flavonoids (mg/L) ns | 38.13 ± 1.89 | 34.27 ± 4.24 | 44.32 ± 4.44 | 46.10 ± 6.60 |
ttSugar (µg/L) ns | 10,557.60 ± 633.10 | 9375.00 ± 1814.05 | 11,229.50 ± 1724.54 | 9211.78 ± 1170.12 |
Reducing sugar (µg/L) ns | 3744.85 ± 102.34 | 3361.25 ± 364.31 | 3572.72 ± 262.20 | 3225.13 ± 418.73 |
DPPH (%) | 58.53 ± 2.76 b | 53.96 ± 17.15 b | 57.26 ± 6.13 b | 28.75 ± 5.54 a |
ABTS (%) ns | 79.64 ± 2.06 | 71.45 ± 13.80 | 80.33 ± 4.44 | 67.43 ± 7.17 |
EL ns | 51.97 ± 0.48 | 54.08 ± 1.28 | 52.62 ± 1.06 | 52.67 ± 1.10 |
Degree of Infection | Infectious 1 | Infectious 2 | Infectious 3 | Infectious 4 | Infectious 5 |
---|---|---|---|---|---|
Number | 67 | 31 | 16 | 7 | 6 |
L* | 79.35 ± 0.34 c | 74.35 ± 0.25 b | 73.26 ± 0.57 b | 73.49 ± 0.48 b | 70.65 1 ± 0.09 a |
a* | 2.28 ± 0.17 a | 4.87 ± 0.24 b | 5.39 ± 0.39 bc | 6.34 ± 0.68 cd | 7.34 ± 1.13 d |
b* | 34.96 ± 0.66 a | 42.54 ± 0.78 b | 42.59 ± 0.58 b | 44.05 ± 1.44 b | 43.83 ± 1.53 b |
F w/Peel (N) | 23.53 ± 1.06 c | 12.08 ± 1.33 b | 9.87 ± 0.45 ab | 10.15 ± 1.20 ab | 4.39 ± 1.05 a |
F w/o Peel (N) | 15.08 ± 1.20 b | 2.54 ± 0.40 a | 2.21 ± 0.39 a | 1.93 ± 0.66 a | 0.36 ± 0.20 a |
Weight loss (%) | 2.93 ± 0.23 a | 5.08 ± 0.34 b | 5.08 ± 0.42 b | 6.93 ± 0.86 c | 6.90 ± 0.85 c |
pH | 3.73 ± 0.09 a | 5.12 ± 0.11 b | 6.17 ± 0.12 b | 5.36 ± 0.09 bc | 5.72 ± 0.17 c |
TSS ns | 8.36 ± 0.18 | 8.49 ± 0.29 | 8.82 ± 0.25 | 8.50 ± 0.34 | 8.92 ± 0.79 |
TA | 0.62 ± 0.05 b | 0.09 ± 0.02 a | 0.09 ± 0.03 a | 0.06 ± 0.00 a | 0.05 ± 0.01 a |
TSS/TA | 38.39 ± 6.81 a | 160.35 ± 14.74 b | 151.97 ± 14.09 b | 158.50 ± 12.37 b | 188.58 ± 36.29 b |
Phenolics (mg/L) | 284.35 ± 19.79 b | 129.55 ± 20.34 a | 103.87 ± 21.69 a | 86.92 ± 27.79 a | 37.56 ± 8.97 a |
Flavonoids (mg/L) | 33.18 ± 1.56 a | 42.53 ± 3.94 ab | 45.49 ± 5.18 ab | 52.34 ± 4.83 bc | 64.57 ± 7.83 c |
ttSugar (µg/L) ns | 9136.86 ± 521.85 | 13,557.20 ± 1765.05 | 10,716.10 ± 878.45 | 10,175.6 ± 1401.46 | 10,632.00 ± 1988.85 |
Reducing sugar (µg/L) | 3869.01 ± 103.03 b | 3611.42 ± 228.35 b | 3530.59 ± 273.45 b | 3217.65 ± 384.73 ab | 2590.47 ± 347.22 a |
DPPH (%) | 71.34 ± 2.57 c | 44.81 ± 4.69 b | 39.27 ± 5.47 b | 32.63 ± 7.43 ab | 19.66 ± 2.47 a |
ABTS (%) | 85.68 ± 1.92 b | 73.78 ± 4.25 b | 74.21 ± 5.15 b | 69.71 ± 6.32 b | 48.01 ± 6.02 a |
EL | 51.18 ± 0.58 a | 53.52 ± 0.67 ab | 52.45 ± 1.04 a | 52.08 ± 1.58 a | 56.42 ± 1.43 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tangpao, T.; Phuangsaujai, N.; Kittiwachana, S.; George, D.R.; Krutmuang, P.; Chuttong, B.; Sommano, S.R. Evaluation of Markers Associated with Physiological and Biochemical Traits during Storage of ‘Nam Dok Mai Si Thong’ Mango Fruits. Agriculture 2022, 12, 1407. https://doi.org/10.3390/agriculture12091407
Tangpao T, Phuangsaujai N, Kittiwachana S, George DR, Krutmuang P, Chuttong B, Sommano SR. Evaluation of Markers Associated with Physiological and Biochemical Traits during Storage of ‘Nam Dok Mai Si Thong’ Mango Fruits. Agriculture. 2022; 12(9):1407. https://doi.org/10.3390/agriculture12091407
Chicago/Turabian StyleTangpao, Tibet, Nutthatida Phuangsaujai, Sila Kittiwachana, David R. George, Patcharin Krutmuang, Bajaree Chuttong, and Sarana Rose Sommano. 2022. "Evaluation of Markers Associated with Physiological and Biochemical Traits during Storage of ‘Nam Dok Mai Si Thong’ Mango Fruits" Agriculture 12, no. 9: 1407. https://doi.org/10.3390/agriculture12091407
APA StyleTangpao, T., Phuangsaujai, N., Kittiwachana, S., George, D. R., Krutmuang, P., Chuttong, B., & Sommano, S. R. (2022). Evaluation of Markers Associated with Physiological and Biochemical Traits during Storage of ‘Nam Dok Mai Si Thong’ Mango Fruits. Agriculture, 12(9), 1407. https://doi.org/10.3390/agriculture12091407