Remotely Sensed Prediction of Rice Yield at Different Growth Durations Using UAV Multispectral Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Design
2.2. Ground-Data Acquisition
2.3. Canopy Reflectance Derived from UAV Images
2.4. VI Calculation Based on UAV Data
2.5. Tasseled Cap Transformation
2.6. Accuracy Evaluation Using Leave-One-Out Cross-Validation
3. Results
3.1. Rice-Yield Estimation using Ground Measurements at Different Stages
3.2. Rice-Yield Estimation Using TCT Parameters
3.3. Rice-Yield Estimation Combining TCT Parameters and VIs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, Y.G.; Williams, P.N.; Meharg, A.A. Exposure to inorganic arsenic from rice: A global health issue? Environ. Pollut. 2008, 154, 169–171. [Google Scholar] [CrossRef]
- Zhang, J.T.; Feng, L.P.; Zou, H.P.; Liu, D.L. Using ORYZA2000 to model cold rice yield response to climate change in the Heilongjiang province, China. Crop J. 2015, 3, 317–327. [Google Scholar] [CrossRef]
- Yang, G.J.; Liu, J.G.; Zhao, C.J.; Li, Z.H.; Huang, Y.B.; Yu, H.Y.; Xu, B.; Yang, X.D.; Zhu, D.M.; Zhang, X.Y.; et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives. Front. Plant Sci. 2017, 8, 26. [Google Scholar] [CrossRef]
- Zhang, J.T.; Tian, H.Q.; Yang, J.; Pan, S.F. Improving representation of crop growth and yield in the dynamic land ecosystem model and its application to China. J. Adv. Model. Earth Syst. 2018, 10, 1680–1707. [Google Scholar] [CrossRef]
- Luo, S.; He, Y.B.; Li, Q.; Jiao, W.H.; Zhu, Y.Q.; Zhao, X.H. Nondestructive estimation of potato yield using relative variables derived from multi-period LAI and hyperspectral data based on weighted growth stage. Plant Methods 2020, 16, 14. [Google Scholar] [CrossRef]
- Palosuo, T.; Kersebaum, K.C.; Angulo, C.; Hlavinka, P.; Moriondo, M.; Olesen, J.E.; Patil, R.H.; Ruget, F.; Rumbaur, C.; Takac, J.; et al. Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models. Eur. J. Agron. 2011, 35, 103–114. [Google Scholar] [CrossRef]
- Liu, N.F.; Budkewitsch, P.; Treitz, P. Examining spectral reflectance features related to Arctic percent vegetation cover: Implications for hyperspectral remote sensing of Arctic tundra. Remote Sens. Environ. 2017, 192, 58–72. [Google Scholar] [CrossRef]
- Vilfan, N.; van der Tol, C.; Muller, O.; Rascher, U.; Verhoef, W. Fluspect-B: A model for leaf fluorescence, reflectance and transmittance spectra. Remote Sens. Environ. 2016, 186, 596–615. [Google Scholar] [CrossRef]
- Kross, A.; McNairn, H.; Lapen, D.; Sunohara, M.; Champagne, C. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 235–248. [Google Scholar] [CrossRef]
- Moharana, S.; Dutta, S. Spatial variability of chlorophyll and nitrogen content of rice from hyperspectral imagery. ISPRS-J. Photogramm. Remote Sens. 2016, 122, 17–29. [Google Scholar] [CrossRef]
- Duan, B.; Fang, S.H.; Zhu, R.S.; Wu, X.T.; Wang, S.Q.; Gong, Y.; Peng, Y. Remote estimation of rice yield with unmanned aerial vehicle (UAV) data and spectral mixture analysis. Front. Plant Sci. 2019, 10, 14. [Google Scholar] [CrossRef] [PubMed]
- Lobell, D.B.; Azzari, G.; Burke, M.; Gourlay, S.; Jin, Z.; Kilic, T.; Murray, S. Eyes in the sky, boots on the ground: Assessing satellite- and ground-based approaches to crop yield measurement and analysis. Am. J. Agr. Econ. 2020, 102, 202–219. [Google Scholar] [CrossRef]
- Schwalbert, R.A.; Amado, T.J.C.; Nieto, L.; Varela, S.; Corassa, G.M.; Horbe, T.A.N.; Rice, C.W.; Peralta, N.R.; Ciampitti, I.A. Forecasting maize yield at field scale based on high-resolution satellite imagery. Biosyst. Eng. 2018, 171, 179–192. [Google Scholar] [CrossRef]
- Cao, H.T.; Gu, X.F.; Sun, Y.; Gao, H.L.; Tao, Z.; Shi, S.Y. Comparing, validating and improving the performance of reflectance obtention method for UAV-Remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 15. [Google Scholar] [CrossRef]
- Aslan, M.F.; Durdu, A.; Sabanci, K.; Ropelewska, E.; Gueltekin, S.S. A comprehensive survey of the recent studies with UAV for precision agriculture in open fields and greenhouses. Appl. Sci. 2022, 12, 29. [Google Scholar] [CrossRef]
- Liu, S.S.; Li, L.T.; Gao, W.H.; Zhang, Y.K.; Liu, Y.N.; Wang, S.Q.; Lu, J.W. Diagnosis of nitrogen status in winter oilseed rape (Brassica napus L.) using in-situ hyperspectral data and unmanned aerial vehicle (UAV) multispectral images. Comput. Electron. Agric. 2018, 151, 185–195. [Google Scholar] [CrossRef]
- Deng, L.; Mao, Z.H.; Li, X.J.; Hu, Z.W.; Duan, F.Z.; Yan, Y.N. UAV-based multispectral remote sensing for precision agriculture: A comparison between different cameras. ISPRS-J. Photogramm. Remote Sens. 2018, 146, 124–136. [Google Scholar] [CrossRef]
- Wang, F.L.; Wang, F.M.; Zhang, Y.; Hu, J.H.; Huang, J.F.; Xie, J.K. Rice yield estimation using parcel-level relative spectra variables from UAV-based hyperspectral imagery. Front. Plant Sci. 2019, 10, 12. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS-J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Duan, B.; Fang, S.H.; Gong, Y.; Peng, Y.; Wu, X.T.; Zhu, R.S. Remote estimation of grain yield based on UAV data in different rice cultivars under contrasting climatic zone. Field Crop. Res. 2021, 267, 11. [Google Scholar] [CrossRef]
- Joshi, P.P.; Wynne, R.H.; Thomas, V.A. Cloud detection algorithm using SVM with SWIR2 and tasseled cap applied to Landsat 8. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 10. [Google Scholar] [CrossRef]
- Mostafiz, C.; Chang, N.B. Tasseled cap transformation for assessing hurricane landfall impact on a coastal watershed. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 736–745. [Google Scholar] [CrossRef]
- Wang, Z.L.; Chen, J.X.; Zhang, J.W.; Fan, Y.F.; Cheng, Y.J.; Wang, B.B.; Wu, X.L.; Tan, X.M.; Tan, T.T.; Li, S.L.; et al. Predicting grain yield and protein content using canopy reflectance in maize grown under different water and nitrogen levels. Field Crop. Res. 2021, 260, 15. [Google Scholar] [CrossRef]
- Wan, L.; Cen, H.Y.; Zhu, J.P.; Zhang, J.F.; Zhu, Y.M.; Sun, D.W.; Du, X.Y.; Zhai, L.; Weng, H.Y.; Li, Y.J.; et al. Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer–A case study of small farmlands in the South of China. Agric. For. Meteorol. 2020, 291, 15. [Google Scholar] [CrossRef]
- Liu, X.J.; Zhang, K.; Zhang, Z.Y.; Cao, Q.; Lv, Z.F.; Yuan, Z.F.; Tian, Y.C.; Cao, W.X.; Zhu, Y. Canopy chlorophyll density based index for estimating nitrogen status and predicting grain yield in rice. Front. Plant Sci. 2017, 8, 12. [Google Scholar] [CrossRef]
- Smith, G.M.; Milton, E.J. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sens. 1999, 20, 2653–2662. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B-Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Gitelson, A.A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Crist, E.P.; Cicone, R.C. A physically-based transformation of thematic mapper data—The TM tasseled cap. IEEE Trans. Geosci. Remote Sensing 1984, 22, 256–263. [Google Scholar] [CrossRef]
- Wong, T.T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit. 2015, 48, 2839–2846. [Google Scholar] [CrossRef]
- Ma, Y.R.; Ma, L.L.; Zhang, Q.; Huang, C.P.; Yi, X.; Chen, X.Y.; Hou, T.Y.; Lv, X.; Zhang, Z. Cotton yield estimation based on vegetation indices and texture features derived from RGB image. Front. Plant Sci. 2022, 13, 17. [Google Scholar] [CrossRef]
- Li, B.; Xu, X.M.; Zhang, L.; Han, J.W.; Bian, C.S.; Li, G.C.; Liu, J.G.; Jin, L.P. Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging. ISPRS-J. Photogramm. Remote Sens. 2020, 162, 161–172. [Google Scholar] [CrossRef]
- Fei, S.P.; Hassan, M.A.; Xiao, Y.G.; Su, X.; Chen, Z.; Cheng, Q.; Duan, F.Y.; Chen, R.Q.; Ma, Y.T. UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat. Precis. Agric. 2022, 23, 26. [Google Scholar] [CrossRef]
- Ashapure, A.; Jung, J.H.; Chang, A.J.; Oh, S.; Yeom, J.; Maeda, M.; Maeda, A.; Dube, N.; Landivar, J.; Hague, S.; et al. Developing a machine learning based cotton yield estimation framework using multi-temporal UAS data. ISPRS-J. Photogramm. Remote Sens. 2020, 169, 180–194. [Google Scholar] [CrossRef]
- Zhang, K.; Ge, X.K.; Shen, P.C.; Li, W.Y.; Liu, X.J.; Cao, Q.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting rice grain yield based on dynamic changes in vegetation indexes during early to mid-growth stages. Remote Sens. 2019, 11, 24. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, K.; Ikeura, H.; Phongchanmaixay, S.; Khanthavong, P. Canopy hyperspectral sensing of paddy fields at the booting stage and PLS regression can assess grain yield. Remote Sens. 2018, 10, 15. [Google Scholar] [CrossRef]
- Peng, Y.; Zhu, T.E.; Li, Y.C.; Dai, C.; Fang, S.H.; Gong, Y.; Wu, X.T.; Zhu, R.S.; Liu, K. Remote prediction of yield based on LAI estimation in oilseed rape under different planting methods and nitrogen fertilizer applications. Agric. For. Meteorol. 2019, 271, 116–125. [Google Scholar] [CrossRef]
- Feng, W.; Guo, B.B.; Zhang, H.Y.; He, L.; Zhang, Y.S.; Wang, Y.H.; Zhu, Y.J.; Guo, T.C. Remote estimation of above ground nitrogen uptake during vegetative growth in winter wheat using hyperspectral red-edge ratio data. Field Crop. Res. 2015, 180, 197–206. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Gitelson, A.A.; Schepers, J.S.; Walthall, C.L. Application of spectral remote sensing for agronomic decisions. Agron. J. 2008, 100, S117–S131. [Google Scholar] [CrossRef] [Green Version]
Vegetation Indices | Formulas | References |
---|---|---|
Normalized Difference Vegetation Index (NDVI) | (R800 − R670)/(R800 + R670) | [27] |
Red-Edge Chlorophyll Index (CIred edge) | R800/R720 − 1 | [28] |
Green-Edge Chlorophyll Index (CIgreen) | R800/R550 − 1 | [28] |
Two-Band Enhanced Vegetation Index (EVI2) | 2.5(R800 − R670)/(1 + R800 + 2.4R670) | [29] |
Normalized Difference Red Edge (NDRE) | (R800 − R720)/(R800 + R720) | [30] |
Wide-Dynamic-Range Vegetation Index (WDRVI) | (αR800 − ρ670)/(αR800 + R670), α = 2 | [31] |
MERIS Terrestrial Chlorophyll Index (MTCI) | (R800 − R720)/(R720 − R670) | [32] |
Soil-Adjusted Vegetation Index (SAVI) | (1 + L)(R800 − R670)/(R800 + R670 + L), L = 0.5 | [33] |
Variable | Growth Stage | Min | Max | Mean | p-Value | CV |
---|---|---|---|---|---|---|
Yield | -- | 2.70 | 4.34 | 3.57 | 0.89 | 11.17% |
LAI | Booting stage | 2.70 | 6.20 | 4.53 | 0.14 | 15.24% |
Heading stage | 2.50 | 6.40 | 4.66 | 0.31 | 17.13% | |
CH | Booting stage | 0.70 | 1.03 | 0.91 | 0.08 | 12.36% |
Heading stage | 1.03 | 1.25 | 1.16 | 0.06 | 21.66% | |
CCC | Booting stage | 87.66 | 201.74 | 148.61 | 0.07 | 23.14% |
Heading stage | 86.74 | 233.92 | 163.50 | 0.06 | 28.63% | |
Brightness | Booting stage | 0.34 | 0.49 | 0.44 | 0.17 | 9.44% |
Heading stage | 0.33 | 0.53 | 0.44 | 0.29 | 13.95% | |
Greenness | Booting stage | 0.07 | 0.11 | 0.09 | 0.08 | 14.67% |
Heading stage | 0.05 | 0.13 | 0.10 | 0.49 | 21.14% | |
Third Component | Booting stage | 0.31 | 0.59 | 0.49 | 0.17 | 14.81% |
Heading stage | 0.30 | 0.59 | 0.46 | 0.98 | 16.73% | |
T − G | Booting stage | 0.21 | 0.51 | 0.40 | 0.08 | 20.04% |
Heading stage | 0.20 | 0.51 | 0.37 | 0.43 | 22.62% | |
T/B | Booting stage | 0.91 | 1.19 | 1.11 | 0.00 | 7.30% |
Heading stage | 0.85 | 1.27 | 1.06 | 0.26 | 11.63% |
Growth Stage | LAI | CH | CCC (LAI × SPAD) | Brightness | Greenness | Third Component | T − G | T/B |
---|---|---|---|---|---|---|---|---|
Booting stage | 0.754 ** | 0.659 ** | 0.789 ** | 0.585 ** | −0.648 ** | 0.750 ** | 0.787 ** | 0.815 ** |
Heading stage | 0.684 ** | 0.527 ** | 0.589 ** | 0.343 ** | −0.407 ** | 0.739 ** | 0.794 ** | 0.702 ** |
Evaluating Indicators | Parameters | NDVI | CIred edge | CIgreen | EVI2 | NDRE | WDRVI | MTCI | SAVI |
---|---|---|---|---|---|---|---|---|---|
Adjusted R2 | VI | 0.628 | 0.614 | 0.591 | 0.553 | 0.624 | 0.634 | 0.606 | 0.558 |
VI × Brightness | 0.406 | 0.622 | 0.638 | 0.449 | 0.614 | 0.532 | 0.620 | 0.441 | |
VI × Greenness | 0.345 | 0.562 | 0.568 | 0.016 | 0.152 | 0.019 | 0.565 | 0.062 | |
VI × Third Component | 0.575 | 0.624 | 0.637 | 0.545 | 0.633 | 0.604 | 0.622 | 0.550 | |
VI × (T − G) | 0.622 | 0.623 | 0.636 | 0.584 | 0.639 | 0.631 | 0.621 | 0.592 | |
VI × (T/B) | 0.665 | 0.620 | 0.603 | 0.635 | 0.637 | 0.662 | 0.614 | 0.645 | |
RMSE | VI | 0.254 | 0.265 | 0.273 | 0.283 | 0.261 | 0.254 | 0.268 | 0.281 |
VI × Brightness | 0.334 | 0.264 | 0.257 | 0.321 | 0.265 | 0.290 | 0.265 | 0.323 | |
VI × Greenness | 0.342 | 0.281 | 0.278 | 0.426 | 0.407 | 0.428 | 0.280 | 0.411 | |
VI × Third Component | 0.277 | 0.264 | 0.258 | 0.289 | 0.259 | 0.266 | 0.265 | 0.286 | |
VI × (T − G) | 0.262 | 0.265 | 0.259 | 0.276 | 0.257 | 0.258 | 0.266 | 0.273 | |
VI × (T/B) | 0.245 | 0.263 | 0.269 | 0.256 | 0.256 | 0.245 | 0.266 | 0.252 |
Evaluating Indicators | Parameters | NDVI | CIred edge | CIgreen | EVI2 | NDRE | WDRVI | MTCI | SAVI |
---|---|---|---|---|---|---|---|---|---|
Adjusted R2 | VI | 0.477 | 0.472 | 0.305 | 0.585 | 0.506 | 0.460 | 0.485 | 0.600 |
VI × Brightness | 0.273 | 0.574 | 0.409 | 0.324 | 0.582 | 0.583 | 0.580 | 0.302 | |
VI × Greenness | 0.105 | 0.497 | 0.409 | 0.003 | 0.088 | 0.158 | 0.466 | 0.010 | |
VI × Third Component | 0.597 | 0.555 | 0.436 | 0.533 | 0.612 | 0.589 | 0.567 | 0.542 | |
VI × (T − G) | 0.634 | 0.546 | 0.436 | 0.583 | 0.604 | 0.581 | 0.558 | 0.595 | |
VI × (T/B) | 0.484 | 0.459 | 0.314 | 0.640 | 0.488 | 0.454 | 0.472 | 0.633 | |
RMSE | VI | 0.308 | 0.310 | 0.352 | 0.276 | 0.299 | 0.312 | 0.307 | 0.269 |
VI × Brightness | 0.379 | 0.287 | 0.329 | 0.363 | 0.281 | 0.279 | 0.285 | 0.369 | |
VI × Greenness | 0.396 | 0.306 | 0.329 | 0.432 | 0.436 | 0.417 | 0.317 | 0.426 | |
VI × Third Component | 0.275 | 0.292 | 0.320 | 0.298 | 0.272 | 0.277 | 0.289 | 0.295 | |
VI × (T − G) | 0.264 | 0.295 | 0.320 | 0.283 | 0.275 | 0.280 | 0.291 | 0.279 | |
VI × (T/B) | 0.305 | 0.313 | 0.349 | 0.258 | 0.304 | 0.314 | 0.310 | 0.260 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, S.; Jiang, X.; Jiao, W.; Yang, K.; Li, Y.; Fang, S. Remotely Sensed Prediction of Rice Yield at Different Growth Durations Using UAV Multispectral Imagery. Agriculture 2022, 12, 1447. https://doi.org/10.3390/agriculture12091447
Luo S, Jiang X, Jiao W, Yang K, Li Y, Fang S. Remotely Sensed Prediction of Rice Yield at Different Growth Durations Using UAV Multispectral Imagery. Agriculture. 2022; 12(9):1447. https://doi.org/10.3390/agriculture12091447
Chicago/Turabian StyleLuo, Shanjun, Xueqin Jiang, Weihua Jiao, Kaili Yang, Yuanjin Li, and Shenghui Fang. 2022. "Remotely Sensed Prediction of Rice Yield at Different Growth Durations Using UAV Multispectral Imagery" Agriculture 12, no. 9: 1447. https://doi.org/10.3390/agriculture12091447
APA StyleLuo, S., Jiang, X., Jiao, W., Yang, K., Li, Y., & Fang, S. (2022). Remotely Sensed Prediction of Rice Yield at Different Growth Durations Using UAV Multispectral Imagery. Agriculture, 12(9), 1447. https://doi.org/10.3390/agriculture12091447