Occurrence and Nutrition Indicators of Alfalfa withLeptosphaerulina in Chifeng, Inner Mongolia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Cultivation
2.2. Soil Characteristics
2.3. Climate Information
2.4. Alfalfa Leptosphaerulina Leaf Spot Disease Survey
2.5. Nutrient Sampling and Extraction
2.6. Statistical Analysis
3. Results
3.1. Incidence and Disease Index
3.2. Plant Nutrients
3.3. Leaves Nutrients
3.4. The Relationship between Disease Severity and Nutritional Content
4. Discussion
4.1. Occurrence of Leptosphaerulina Leaf Spot
4.2. Quality of Alfalfa with Leptosphaerulina sp.
4.3. Nutrition of Alfalfa with Leptosphaerulina sp.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radovic, J.; Sokolovic, D.; Markovic, J. Alfalfa-most important perennial forage legume in animal husbandry. Biotechnol. Anim. Husb. 2009, 25, 465–475. [Google Scholar] [CrossRef]
- Earing, J.E.; Cassill, B.D.; Hayes, S.H.; Vanzant, E.S.; Lawrence, L.M. Comparison of in vitro digestibility estimates using the DaisyII incubator with in vivo digestibility estimates in horses. J. Anim. Sci. 2010, 88, 3954–3963. [Google Scholar] [CrossRef]
- Potts, L.B.; Hinkson, J.J.; Graham, B.C.; Loest, C.A.; Turner, J.L. Nitrogen retention and nutrient digestibility in geldings fed grass hay, alfalfa hay, or alfalfa cubes. J. Equine Vet. Sci. 2010, 30, 330–333. [Google Scholar] [CrossRef]
- Sturgeon, L.S.; Baker, L.A.; Pipkin, J.L.; Haliburton, J.C.; Chirase, N.K. The digestibility and mineral availability of Matua, Bermuda grass, and alfalfa hay in mature horses. J. Equine Vet. Sci. 2000, 20, 45–48. [Google Scholar] [CrossRef]
- Woodward, A.D.; Nielsen, B.D.; Liesman, J.; Lavin, T.; Trottier, N.L. Protein quality and utilization of timothy, oat-supplement timothy, and alfalfa at differing harvest maturities in exercised Arabian horses. J. Anim. Sci. 2011, 89, 4081–4092. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.G.; Liu, H.X.; Wang, S.M.; Tian, F.P.; Cheng, G.D. Biomass, persistence and drought resistance of nine lucerne varieties in the dry environment of west China. Aust. J. Exp. Agric. 2005, 45, 59–64. [Google Scholar] [CrossRef]
- Le, X.H.; Franco, C.M.M.; Ballard, R.A.; Drew, E.A. Isolation and characterisation of endophytic actinobacteria and their effect on the early growth and nodulation of lucerne (Medicago sativa L.). Plant Soil 2016, 405, 13–24. [Google Scholar] [CrossRef]
- Guo, T.; Bai, J.; Wang, J.G. Research on the present situation and countermeasures of alfalfa grass industry in China. Chin. J. Grassl. 2018, 40, 111–115. [Google Scholar]
- Chen, L.L.; Yang, X.F.; Wu, Y.H.; Na, R.S.; Lv, N.; Liang, Q.W. Evaluation of production performance of 35 introduced varieties of alfalfa in Chifeng area of Inner Mongolia. Pratacultural. Sci. 2012, 29, 790–797. [Google Scholar]
- Wang, Y.; Yuan, Q.H.; Miao, L.H.; Zhang, L.; Pan, L.Q. The major types and epidemic trends of alfalfa diseases innortheast and north China. Acta Prataculturae Sin. 2016, 25, 52–59. [Google Scholar]
- Zhang, L.L.; Li, Y.Z. First report of alfalfa leaf spot caused by Leptosphaerulina australis in China. Plant Dis. 2021, 105, 2254. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Li, G.; Hou, L.; Zhao, M.; Cai, L. Leptosphaerulina species isolated from golf turfgrass in China, with description of L. macrospora,sp.nov. Mycologia 2021, 5, 956–967. [Google Scholar]
- Xue, F.X. Grassland Conservation. In Pasture Pathology, 3rd ed.; China Agriculture Press: Beijing, China, 2008; p. 118. [Google Scholar]
- Mitkowski, N.A.; Browning, M. Leptosphaerulina australis associated with intensively managed stands of Poa annua and Agrostis palustris. Can. J. Plant Pathol. 2004, 26, 193–198. [Google Scholar] [CrossRef]
- Shurtleff, M.C.; Fermanian, T.W.; Randell, R. Controlling Turfgrass Pest, 3rd ed.; Prentice-Hall: Hoboken, NJ, USA, 1987. [Google Scholar]
- Smiley, R.H.; Dernoeden, P.H.; Clarke, B.B. Compendium of turf grass diseases. In Phytopathological Society; Amer Phytopathological Society, APS Press: St. Paul, Minnesota, USA, 2005; p. 31. [Google Scholar]
- Graham, J.H.; Luttrell, E.S. Species of Leptosphaerulina on forage plants. Phytopathology 1961, 51, 680–693. [Google Scholar]
- Denison, W.C. Ascocarp developmentin Leptosphaerulina argentinensis. J. Mitchell Soc. 1968, 84, 254–257. [Google Scholar]
- Abler, S.W. Ecology and taxonomy of Leptosphaerulina spp. associated with turfgrasses in the United States. Master’s Thesis, Virginia State University, Ettrick, VA, USA, 2003. [Google Scholar]
- Liu, X.P.; Jing, X.M.; Yan, H.X.; Li, G.L.; Luo, Y.H. First report of Leptosphaerulina leaf spot caused by Leptosphaerulina trifolii on alfalfa in Heilongjiang Province, China. Plant Dis. 2019, 103, 2673. [Google Scholar] [CrossRef]
- Leath, K.T. Leptosphaerulina briosiana on alfalfa: Relation of lesion size to leaf age and light intensity. Phytopathology 1974, 64, 243. [Google Scholar] [CrossRef]
- Li, M.T.; Zhu, Y.; Li, J.P.; Dai, R.H.; Liu, X.P. Investigation and correlation analysis of three leaf fungal diseases in different alfalfa varieties. Heilongjiang Animan Sci. Vet. Med. 2021, 114–119. [Google Scholar]
- Cao, S.; Liang, Q.W.; Clement, N.; LI, Y.Z. Paraphoma root rot of alfalfa (Medicago sativa) in InnerMongolia, China. Plant Pathol. 2020, 69, 231–239. [Google Scholar] [CrossRef]
- Berkenkamp, B. Losses from foliage diseases of forage crops in central and northern Alberta in 1970. Can. Plant Dis. Surv. 1971, 51, 96–100. [Google Scholar]
- Hart, R.I.K.; Close, R.C. Control of leaf diseases of lucerne with benomyl. In Proceedings of the 29th New Zealand WeedPest Control Conference, Christchurch, New Zealand, 3–5 August 1976; pp. 42–45. [Google Scholar]
- Morgan, W.C.; Parbery, D.G. Depressed fodder quality and increased oestrogenic activity of lucerne infected with Pseudopeziza medicaginis. Aust. J. Agric. Res. 1980, 31, 1103–1110. [Google Scholar] [CrossRef]
- Nutter, F.W.J.; Guan, J.; Gotlieb, A.R.; Rhodes, L.H.; Grau, C.R.; Sulc, R.M. Quantifying alfalfa yield losses caused by foliar diseases in Iowa, Ohio, Wisconsin, and Vermont. Plant Dis. 2002, 86, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.F.; Wang, H.; Gossen, B.D.; Chang, K.F.; Turnbull, G.D.; Howard, R.J. Impact of foliar diseases on photosynthesis, protein content and seed yield of alfalfa and efficacy of fungicide application. Eur. J. Plant Pathol. 2006, 115, 389–399. [Google Scholar] [CrossRef]
- Zeng, L.; Yuan, Q.H.; Yao, T. Study on yield loss prediction of alfalfa leaf spot. Chin. J. Grassl. 2009, 31, 40–43. [Google Scholar]
- Zhang, L.L.; Shi, M.; Li, Y.Z. Effect of anthracnose infection on alfalfa yield and quality in the Shaerqin area. Acta Prataculture Sin. 2020, 29, 117–126. [Google Scholar]
- Barbetti, M.J.; Nichols, P.G.H. Effect of Phom medicaginis and Leptosphaerulina trifolii on herbage and seed yield and coumestrol content of annual Medicago species. Phytophylactica 1991, 23, 223–227. [Google Scholar]
- Li, Y.; Shi, J.; Cui, N.N.; Han, Y. Lucerne common leaf spot (Pseudopeziza medicaginis) decreases the photosynthetic performance and forage quality of Medicago sativa. Acta Prataculturae Sin. 2017, 26, 149–157. [Google Scholar]
- Yuan, X.J.; Wang, Q.; Li, Z.H.; Yu, C.Q.; Xia, T.Y.J.; Shao, T. Effect of molasses addition on fermentation and nutritive quality of mixedsilage of hulless barley straw and perennial ryegrass inTibet. Acta Pratacature Sin. 2013, 22, 116–123. [Google Scholar]
- Arinze, E.A. Simulation o fnatural and solar heated air hay drying systems. Comput. Electron. Agric. 1993, 19, 325–345. [Google Scholar] [CrossRef]
- Sun, L.L. Effects of storage conditions and timeon the quality of alfalfa hay in Hexi Corridor. Master’s Thesis, College of Pratrcultural Science Gansu Agricultural University, Lanzhou, China, 2021. [Google Scholar]
- Butler, G.W.; Bailey, R.W. Chemistry and Biochemistry of Herbage; Academic Press: New York, NY, USA, 1983; pp. 134–136. [Google Scholar]
- Moore, J.E. Forage quality indices: Development and application. Forage Qual. Eval. Util. 1994, 977–998. [Google Scholar]
- Hong, B.J.; Broderick, G.A.; Walgenbach, R.P. Effect of chemical conditioning of alfalfa on drying rate and nutrient digestion in ruminants. J. Dairy Sci. 1998, 91, 557–558. [Google Scholar] [CrossRef]
- Pleger, L.; Weindl, P.N.; Weindl, P.A.; Carrasco, L.S.; Bellof, G.; Zhao, M.J.; Aulrich, K.; Bellof, G. Precaecal digestibility of crude protein and amino acids from alfalfa (Medicago sativa) and red clover (Trifolium pratense) leaves and silages in broilers. Anim. Feed Sci. Technol. 2021, 275, 114856. [Google Scholar] [CrossRef]
- Sauvant, D.; Perez, J.M.; Tran, G. Tables of Composition and Nutritional Value of Feed Materials, 2nd ed.; Wageningen Academic Publishers, The Netherl and & INRA: Paris, France, 2004. [Google Scholar]
- Li, F. Alfalfa wilt (Verticillium alfalfa) in China. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2021. [Google Scholar]
- Grev, A.M.; Hathaway, M.R.; Sheaffer, C.C.; Scott, W.M.; Reiter, A.S.; Martinson, K.L. Apparent digestibility, fecalparticle size, and mean retention time of reduced lignin alfalfa hay fed to horses. J. Anim. Sci. 2021, 7, 7. [Google Scholar]
- Li, X.X.; Zhang, Y.G.; Hannoufa, A.; Yu, P.Q. Transformation with TT8 and HB12 RNAi constructs in model forage (Medicago sativa, Alfalfa) affects carbohydrate structure and metabolic characteristics in ruminant livestock systems. J. Agric. Food Chem. 2015, 63, 9590. [Google Scholar] [CrossRef]
- Jung, H.J.G.; Samac, D.A.; Sarath, G. Modifying crops to increase cell wall digestibility. Plant Sci. 2012, 185–186, 65–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, M.S.S.; Chen, F.; Shadle, G.; Jackson, L.; Aljoe, H.; Dixon, R.A. Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proc. Natl. Acad. Sci. USA 2005, 102, 16573–16578. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.J.G.; Mertens, D.R.; Payne, A.J. Correlation of acid detergent lignin and klason lignin with digestibility of forage dry matter and neutral detergent fiber. J. Dairy Sci. 1997, 80, 1622. [Google Scholar] [CrossRef]
- Fan, Q. Study on pathogenic mechanism of Phoma medicaginis on alfalfa. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2018. [Google Scholar]
- Mandal, K.; Saravanan, R.; Maiti, S.; Kothari, I.K. Effect of downy mildew disease on photosynthesis and chlorophyII fluorescence in plantago ovata forsk. J. Plant Dis. Prot. 2009, 116, 164–168. [Google Scholar] [CrossRef]
- Zhang, Q.D.; Zhang, S.P.; Zhang, Q.F. Role of magnesium Ion in plant photosynthsis. J. Nat. Sci. Heilongjiang Univ. 1992, 9, 82–88. [Google Scholar]
- Sun, Y.Y.; Xu, M.; Hu, H.L. The research progress of cows rumen bypass protein. Feed Ind. 2017, 38, 48–50. [Google Scholar]
Planting Site No. | Cultivars | Proportion (hm2) | Planting Years | Survey Years | Longitude | Latitude | Altitude |
---|---|---|---|---|---|---|---|
4 | WL525 | 13.33 | 2020 | 2020 | 120°26′16″ | 43°32′5″ | 324.59 |
52 | SW5909 | 35.07 | 2020 | 2020 | 120°29′14″ | 43°27′52″ | 315.13 |
26 | Xinmu No.3 | 4.53 | 2019 | 2020 | 120°15′20″ | 43°34′0″ | 342.95 |
33 | WL440 | 74.20 | 2020 | 2020 | 120°26′51″ | 43°29′45″ | 333.42 |
50 | WL440 | 43.87 | 2020 | 2020 | 120°28′34″ | 43°27′56″ | 281.71 |
5 | WL168HQ | 35.07 | 2018 | 2019, 2020 | 120°19′3″ | 43°32′0″ | 331.28 |
35 | Optimus Prime | 40.80 | 2018 | 2019, 2020 | 120°26′43″ | 43°29′16″ | 333.15 |
2 | Zhongmu No.5 | 37.13 | 2019 | 2019 | 120°18′58″ | 43°31′56″ | 340.11 |
38 | Zhongmu No.5 | 69.20 | 2019 | 2019 | 120°19′3″ | 43°32′0″ | 331.28 |
5 | Bright clover | 35.07 | 2019 | 2019, 2020 | 120°19′3″ | 43°32′0″ | 331.28 |
20 | Bright clover | 24.60 | 2019 | 2020 | 120°19′22″ | 43°34′48″ | 324.49 |
25 | Bright clover | 43.87 | 2019 | 2020 | 120°14′44″ | 43°34′5″ | 356.64 |
27 | Bright clover | 5.80 | 2019 | 2020 | 120°15′21″ | 43°33′56″ | 349.83 |
46 | Bright clover | 54.73 | 2019 | 2020 | 120°13′13″ | 43°34′54″ | 350.72 |
47 | Bright clover | 59.67 | 2019 | 2020 | 120°13′23″ | 43°34′34″ | 343.48 |
76 | Bright clover | 38.60 | 2019 | 2019 | 120°18′49″ | 43°32′23″ | 360.13 |
18 | Adina | 42.40 | 2019 | 2020 | 120°29′10″ | 43°32′38″ | 321.18 |
19 | Adina | 83.47 | 2019 | 2020 | 120°26′34″ | 43°30′19″ | 323.24 |
25 | Adina | 43.87 | 2018 | 2020 | 120°13′43″ | 43°34′6″ | 356.51 |
35 | Adina | 36.33 | 2019 | 2019 | 120°13′43″ | 43°34′7″ | 357.18 |
37 | Adina | 10.27 | 2019 | 2020 | 120°26′39″ | 43°29′5″ | 319.44 |
41 | Adina | 35.67 | 2019 | 2020 | 120°26′40″ | 43°29′6″ | 331.19 |
42 | Adina | 35.40 | 2019 | 2020 | 120°27′52″ | 43°28′40″ | 308.89 |
56 | Adina | 47.33 | 2018 | 2019, 2020 | 120°13′43″ | 43°34′6″ | 356.51 |
57 | Adina | 30.27 | 2019 | 2020 | 120°13′43″ | 43°34′6″ | 356.51 |
Planting Site No. | Cultivar | Incidence (%) | Index |
---|---|---|---|
4 | WL525 | 49.19 ± 3.97 bc | 32.58 ± 2.05 bc |
52 | SW5909 | 43.77 ± 2.40 cd | 27.79 ± 2.85 bcd |
26 | Xinmu No.3 | 36.44 ± 2.41 e | 27.89 ± 1.04 bcd |
33 | WL440 | 42.87 ± 2.63 d | 22.51 ± 1.91 cde |
50 | WL440 | 43.35 ± 2.67 d | 33.64 ± 2.44 b |
5 | WL168HQ | 24.73 ± 1.59 hij | 51.00 ± 6.99 a |
35 | Optimus Prime | 59.76 ± 2.07 a | 16.50 ± 1.84 ef |
2 | Zhongmu No.5 | 29.04 ± 1.77 fghi | 18.49 ± 1.82 def |
38 | Zhongmu No.5 | 21.11 ± 1.06 jkl | 15.76 ± 0.96 ef |
5 | Bright clover | 30.92 ± 1.88 efgh | 17.51 ± 3.03 def |
20 | Bright clover | 33.42 ± 1.59 ef | 18.15 ± 1.52 def |
25 | Bright clover | 25.31 ± 2.15 ghij | 17.21 ± 1.30 def |
27 | Bright clover | 25.30 ± 1.33 ghij | 20.52 ± 3.29 def |
46 | Bright clover | 26.21 ± 1.78 ghij | 18.54 ± 1.36 def |
47 | Bright clover | 23.57 ± 2.65 ijk | 17.92 ± 1.31 def |
76 | Bright clover | 31.38 ± 2.09 efg | 14.86 ± 1.94 ef |
18 | Adina | 35.45 ± 1.71 e | 17.98 ± 2.35 def |
19 | Adina | 18.02 ± 0.84 klm | 14.74 ± 6.30 ef |
25 | Adina | 15.10 ± 1.34 lm | 22.73 ± 4.60 cde |
35 | Adina | 23.74 ± 1.33 ijk | 16.33 ± 1.74 ef |
37 | Adina | 52.54 ± 2.32 b | 18.81 ± 5.95 ef |
41 | Adina | 17.28 ± 0.77l m | 21.64 ± 4.09 de |
42 | Adina | 17.08 ± 0.94 lm | 19.41 ± 4.71 def |
56 | Adina | 15.44 ± 1.10 lm | 14.46 ± 3.48 def |
57 | Adina | 12.13 ± 0.89 m | 9.94 ± 1.08 f |
p < 0.05 | p < 0.05 |
Nutrient | Disease Severity Index | ||||
---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | |
Calcium (Ca %) | 1.7 ± 0.01 a | 1.5 ± 0.01 b | 1.5 ± 0.00 c | 1.3 ± 0.01 d | 1.2 ± 0.00 e |
Phosphorus (P %) | 0.4 ± 0.00 a | 0.3 ± 0.00 b | 0.3 ± 0.00 b | 0.3 ± 0.00 b | 0.3 ± 0.00 c |
Potassium (K %) | 2.4 ± 0.01 ab | 2.4 ± 0.01 a | 2.3 ± 0.03 ab | 2.3 ± 0.02 c | 2.3 ± 0.04 bc |
Magnesium (Mg %) | 0.4 ± 0.00 a | 0.3 ± 0.00 b | 0.3 ± 0.00 b | 0.3 ± 0.00 c | 0.3 ± 0.00 c |
Ash (%) | 7.8 ± 0.06 c | 7.6 ± 0.04 c | 8.4 ± 0.03 a | 8.0 ± 0.05 b | 7.2 ± 0.03 d |
Fat (%) | 1.8 ± 0.01 a | 1.6 ± 0.01 b | 1.6 ± 0.00 c | 1.5 ± 0.01 d | 1.5 ± 0.00 d |
Crude protein (CP %) | 21.5 ± 0.07 a | 20.0 ± 0.14 b | 19.1 ± 0.08 c | 18.4 ± 0.07 d | 17.9 ± 0.05 e |
Lignin (%) | 6.6 ± 0.01 a | 6.6 ± 0.07 a | 6.4 ± 0.02 b | 6.3 ± 0.03 c | 6.0 ± 0.02 d |
Rumen protein (RUP %) | 17.9 ± 0.07 c | 18.0 ± 0.27 c | 19.9 ± 0.22 ab | 19.3 ± 0.21 b | 20.5 ± 0.32 a |
Acid washing fiber (ADF %) | 30.2 ± 0.01 d | 30.9 ± 0.32 c | 33.0 ± 0.25 b | 32.3 ± 0.17 b | 33.9 ± 0.16 a |
Neutral detergent fiber (NDF %) | 39.1 ± 0.07 c | 40.0 ± 0.34 c | 42.4 ± 0.27 b | 42.4 ± 0.28 b | 43.8 ± 0.16 a |
Net milk production (NEL %) | 1.4 ± 0.00 a | 1.4 ± 0.01 b | 1.3 ± 0.01 c | 1.3 ± 0.00 c | 1.3 ± 0.01 c |
Maintain net energy (NEM %) | 1.4 ± 0.00 a | 1.4 ± 0.01 b | 1.3 ± 0.01 c | 1.3 ± 0.01 c | 1.3 ± 0.01 c |
Net weight gain (NEG %) | 0.7 ± 0.00 a | 0.6 ± 0.01 b | 0.6 ± 0.01 c | 0.6 ± 0.00 c | 0.6 ± 0.01 c |
Relative feeding value (RFV %) | 155.7 ± 0.33 a | 150.7 ± 1.67 b | 138.3 ± 1.45 c | 132.7 ± 0.88 d | 139.7 ± 1.20 c |
Relative forage quality (RFQ %) | 141.3 ± 0.33 a | 128.3 ± 2.33 b | 118.0 ± 1.53 c | 114.3 ± 0.67 c | 118.3 ± 1.45 c |
Total digestible nutrients (TDN %) | 59.0 ± 0.00 a | 56.3 ± 0.33 b | 55.3 ± 0.33 c | 55.0 ± 0.00 c | 55.3 ± 0.33 c |
Milk production (kg/milk) (MT DM %) | 1415.0 ± 1.53 a | 1324.0 ± 9.00 b | 1279.7 ± 6.77 c | 1284.7 ± 2.85 c | 1289.3 ± 6.84 c |
30 h NDF digestible rate (NDF30 %) | 14.9 ± 0.08 a | 14.5 ± 0.10 b | 14.0 ± 0.04 c | 14.0 ± 0.05 c | 13.2 ± 0.13 d |
48 h NDF digestible rate (NDF48 %) | 16.6 ± 0.08 a | 16.1 ± 0.03 b | 15.9 ± 0.07 bc | 15.8 ± 0.06 c | 15.1 ± 0.05 d |
Nonfibrous carbohydrate (NFC %) | 32.4 ± 0.20 a | 31.9 ± 0.04 b | 31.9 ± 0.17 b | 30.8 ± 0.19 c | 31.2 ± 0.08 c |
Nutrient | Disease Severity Index | ||||
---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | |
Calcium (Ca %) | 2.7 ± 0.01 a | 2.5 ± 0.00 b | 2.2 ± 0.01 c | 2.0 ± 0.00 d | 1.6 ± 0.01 e |
Phosphorus (P %) | 0.4 ± 0.00 a | 0.4 ± 0.00 b | 0.4 ± 0.00 c | 0.4 ± 0.00 d | 0.3 ± 0.00 e |
Potassium (K %) | 2.4 ± 0.02 a | 2.2 ± 0.01 b | 2.1 ± 0.01 c | 1.9 ± 0.02 e | 2.0 ± 0.01 d |
Magnesium (Mg %) | 0.6 ± 0.00 a | 0.6 ± 0.00 b | 0.5 ± 0.00 c | 0.5 ± 0.00 d | 0.5 ± 0.00 e |
Ash (%) | 12.3 ± 0.03 a | 10.5 ± 0.12 b | 10.3 ± 0.01 bc | 10.2 ± 0.04 c | 9.5 ± 0.05 d |
Fat (%) | 2.4 ± 0.01 a | 2.4 ± 0.01 a | 2.3 ± 0.01 b | 2.3 ± 0.01 c | 2.1 ± 0.00 d |
Crude protein (CP %) | 27.4 ± 0.01 a | 26. 5 ± 0.01 bc | 26.5 ± 0.08 b | 26.3 ± 0.07 c | 25.7 ± 0.10 d |
Lignin (%) | 4.2 ± 0.02 a | 3.8 ± 0.01 b | 3.1 ± 0.01 c | 2.9 ± 0.03 d | 2.7 ± 0.04 e |
Rumen protein (RUP %) | 13.0 ± 0.04 c | 12.4 ± 0.12 d | 13.4 ± 0.23 c | 14.1 ± 0.22 b | 16.5 ± 0.26 a |
Acid washing fiber (ADF %) | 16.1 ± 0.03 d | 16.2 ± 0.13 d | 16.6 ± 0.10 c | 17.2 ± 0.12 b | 19.8 ± 0.10 a |
Neutral detergent fiber (NDF %) | 21.4 ± 0.03 d | 21.6 ± 0.19 d | 22.1 ± 0.12 c | 22.6 ± 0.10 b | 25.2 ± 0.06 a |
Net milk production (NEL %) | 1.7 ± 0.00 a | 1.6 ± 0.00 b | 1.6 ± 0.00 c | 1.6 ± 0.00 d | 1.5 ± 0.00 e |
Maintain net energy (NEM %) | 1.7 ± 0.00 a | 1.7 ± 0.00 b | 1.7 ± 0.00 c | 1.7 ± 0.00 d | 1.6 ± 0.00 e |
Net weight gain (NEG %) | 1.0 ± 0.00 a | 1.0 ± 0.00 b | 1.0 ± 0.00 c | 0.9 ± 0.00 d | 0.9 ± 0.00 e |
Relative feeding value (RFV %) | 332.7 ± 0.33 a | 328.3 ± 3.18 a | 319.3 ± 2.03 b | 310.3 ± 1.76 c | 271.0 ± 1.00 d |
Relative forage quality (RFQ %) | 326.0 ± 3.46 a | 317.0 ± 0.58 b | 305.0 ± 1.73 c | 289.0 ± 2.08 d | 255.7 ± 0.67 e |
Total digestible nutrients (TDN %) | 70.0 ± 0.00 a | 69.0 ± 0.00 b | 68.3 ± 0.33 c | 67.0 ± 0.00 d | 65.0 ± 0.00 e |
Milk production (kg/milk) (MT DM %) | 1830.0 ± 3.79 a | 1783. 7 ± 0.88 b | 1768.3 ± 4.41 c | 1727.7 ± 2.60 d | 1616.0 ± 2.08 e |
30 h NDF digestible rate (NDF30 %) | 11.3 ± 0.10 a | 10.9 ± 0.02 b | 10.4 ± 0.05 c | 9.9 ± 0.03 d | 9.7 ± 0.04 e |
48 h NDF digestible rate (NDF48 %) | 12.3 ± 0.03 a | 11.2 ± 0.05 b | 10.4 ± 0.07 c | 10.0 ± 0.03 d | 10.0 ± 0.06 d |
Nonfibrous carbohydrate (NFC %) | 42.6 ± 0.06 a | 41.0 ± 0.07 b | 40.7 ± 0.09 c | 39.6 ± 0.02 d | 34.3 ± 0.07 e |
Nutrient | Pearson | Decision Coefficient | Regression Equation |
---|---|---|---|
Calcium (Ca %) | −0.986 ** | R2 = 0.970 | y = −0.115x + 1.645 |
Phosphorus (P %) | −0.866 | R2 = 0.677 | y = −0.012x + 0.348 |
Potassium (K %) | −0.747 | R2 = 0.586 | y = −0.028x + 2.386 |
Magnesium (Mg %) | −0.933 * | R2 = 0.916 | y = −0.016x + 0.337 |
Ash(%) | −0.247 | R2 = 0.061 | y = −0.073x + 7.952 |
Fat(%) | −0.906 * | R2 = 0.821 | y = −0.077x + 1.738 |
Crude protein(CP %) | −0.976 ** | R2 = 0.952 | y = −0.883x + 21.160 |
Lignin(%) | −0.939 * | R2 = 0.880 | y = −0.156x + 6.691 |
Rumen protein(RUP %) | 0.876 | R2 = 0.769 | y = 0.618x + 17.850 |
Acid washing fiber(ADF %) | 0.925 * | R2 = 0.855 | y = 0.882x + 30.270 |
Neutral detergent fiber(NDF %) | 0.960 ** | R2 = 0.921 | y = 1.177x + 39.220 |
Net milk production(NEL %) | −0.800 | R2 = 0.650 | y = −0.018x + 1.379 |
Maintain net energy(NEM %) | −0.839 | R2 = 0.690 | y = −0.023x + 1.391 |
Net weight gain(NEG %) | −0.839 | R2 = 0.673 | y = −0.023x + 0.670 |
Relative feeding value(RFV %) | −0.835 | R2 = 0.698 | y = −5.000x + 153.400 |
Relative forage quality(RFQ %) | −0.865 | R2 = 0.748 | y = −6.000x + 136.000 |
Total digestible nutrients(TDN %) | −0.834 | R2 = 0.695 | y = −0.866x + 57.930 |
Milk production(kg/milk) (MT DM %) | −0.811 | R2 = 0.657 | y = −29.060x + 1376.000 |
30 h NDF digestible rate(NDF30 %) | −0.976 ** | R2 = 0.950 | y = −0.386x + 14.890 |
48 h NDF digestible rate(NDF48 %) | −0.951 * | R2 = 0.903 | y = −0.320x + 16.550 |
Nonfibrous carbohydrate(NFC %) | −0.877 | R2 = 0.769 | y = −0.371x + 32.380 |
Nutrient | Pearson | Decision Coefficient | Regression Equation |
---|---|---|---|
Calcium (Ca %) | −0.987 ** | R2 = 0.972 | y = −0.273x + 2.728 |
Phosphorus (P %) | −0.926 * | R2 = 0.859 | y = −0.026x + 0.422 |
Potassium (K %) | −0.913 * | R2 = 0.834 | y = −0.118x + 2.349 |
Magnesium (Mg %) | −0.994 ** | R2 = 0.986 | y = −0.030x + 0.572 |
Ash(%) | −0.899 * | R2 = 0.806 | y = −0.583x + 11.710 |
Fat(%) | −0.895 * | R2 = 0.802 | y = −0.078x + 2.437 |
Crude protein(CP %) | −0.925 * | R2 = 0.853 | y = −0.354x + 27.170 |
Lignin(%) | −0.969 ** | R2 = 0.937 | y = −0.376x + 4.104 |
Rumen protein(RUP %) | 0.895 | R2 = 0.738 | y = 0.857x + 12.170 |
Acid washing fiber(ADF %) | 0.861 | R2 = 0.741 | y = 0.821x + 15.520 |
Neutral detergent fiber(NDF %) | 0.891 * | R2 = 0.793 | y = 0.876x + 20.830 |
Net milk production(NEL %) | −0.874 | R2 = 0.799 | y = −0.030x + 1.670 |
Maintain net energy(NEM %) | −0.940 * | R2 = 0.916 | y = −0.034x + 1.750 |
Net weight gain(NEG %) | −0.956 * | R2 = 0.901 | y = −0.033x + 1.026 |
Relative feeding value(RFV %) | −0.907 * | R2 = 0.821 | y = −14.130x + 340.600 |
Relative forage quality(RFQ %) | −0.963 ** | R2 = 0.928 | y = −16.860x + 332.200 |
Total digestible nutrients(TDN %) | −0.979 ** | R2 = 0.958 | y = −1.200x + 70.260 |
Milk production(kg/milk) (MT DM %) | −0.945 * | R2 = 0.893 | y = −48.400x + 1841.000 |
30 h NDF digestible rate(NDF30 %) | −0.993 ** | R2 = 0.986 | y = −0.431x + 11.290 |
48 h NDF digestible rate(NDF48 %) | −0.947 * | R2 = 0.894 | y = −0.580x + 11.930 |
Nonfibrous carbohydrate(NFC %) | −0.900 * | R2 = 0.810 | y = −1.801x + 43.210 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Li, Y. Occurrence and Nutrition Indicators of Alfalfa withLeptosphaerulina in Chifeng, Inner Mongolia. Agriculture 2022, 12, 1465. https://doi.org/10.3390/agriculture12091465
Zhang L, Li Y. Occurrence and Nutrition Indicators of Alfalfa withLeptosphaerulina in Chifeng, Inner Mongolia. Agriculture. 2022; 12(9):1465. https://doi.org/10.3390/agriculture12091465
Chicago/Turabian StyleZhang, Lili, and Yanzhong Li. 2022. "Occurrence and Nutrition Indicators of Alfalfa withLeptosphaerulina in Chifeng, Inner Mongolia" Agriculture 12, no. 9: 1465. https://doi.org/10.3390/agriculture12091465
APA StyleZhang, L., & Li, Y. (2022). Occurrence and Nutrition Indicators of Alfalfa withLeptosphaerulina in Chifeng, Inner Mongolia. Agriculture, 12(9), 1465. https://doi.org/10.3390/agriculture12091465