Systems to Monitor the Individual Feeding and Drinking Behaviors of Growing Pigs Based on Machine Vision
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Acquisition and Recognition System
2.2. Animal and System Layout
2.3. Programming Language
2.4. Data Acquisition and Preprocessing
2.4.1. Image Acquisition
2.4.2. Image Resizing, Cutting, and Marking
2.5. CNN Algorithm
2.5.1. VGG19
2.5.2. Xception
2.5.3. MobileNetV2
3. Results and Discussion
3.1. Model Training
3.2. Model Test
3.3. Application Prospects
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Cai, J.; Xiao, D.; Li, Z.; Xiong, B. Real-time sow behavior detection based on deep learning. Comput. Electron. Agric. 2019, 163, 104884. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, W.; Steibel, J.; Siegford, J.; Han, J.; Norton, T. Classification of drinking and drinker-playing in pigs by a video-based deep learning method. Biosyst. Eng. 2020, 196, 1–14. [Google Scholar] [CrossRef]
- Friend, D.W.; Cunningham, H.M. The effect of water consumption on the growth, feed intake, and carcass composition of suckling piglets. Can. J. Anim. Sci. 1966, 46, 203–209. [Google Scholar] [CrossRef]
- Vukmirović, Đ.; Čolović, R.; Rakita, S.; Brlek, T.; Đuragić, O.; Solà-Oriol, D. Importance of feed structure (particle siz-e) and feed form (mash vs. pellets) in pig nutrition–A review. Anim. Feed. Sci. Technol. 2017, 233, 133–144. [Google Scholar] [CrossRef]
- Matthews, S.G.; Miller, A.L.; Clapp, J.; Plötz, T.; Kyriazakis, I. Early detection of health and welfare compromises thr-ough automated detection of behavioural changes in pigs. Vet. J. 2016, 217, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Brown-Brandl, T.M.; Rohrer, G.A.; Eigenberg, R.A. Analysis of feeding behavior of group housed growing—Finishing pigs. Comput. Electron. Agric. 2013, 96, 246–252. [Google Scholar] [CrossRef] [Green Version]
- Ostersen, T.; Cornou, C.; Kristensen, A.R. Detecting oestrus by monitoring sows’ visits to a boar. Comput. Electron. Agric. 2010, 74, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Andersen, H.; Dybkjær, L.; Herskin, M.S. Growing pigs’ drinking behaviour: Number of visits, duration, water intake and diurnal variation. Animal 2014, 8, 1881–1888. [Google Scholar] [CrossRef] [Green Version]
- Maselyne, J.; Van Nuffel, A.; De Ketelaere, B.; Vangeyte, J.; Hessel, E.F.; Sonck, B.; Saeys, W. Range measurements of a High Frequency Radio Frequency Identification (HF RFID) system for registering feeding patterns of growing-finishing pigs. Comput. Electron. Agric. 2014, 108, 209–220. [Google Scholar] [CrossRef]
- Maselyne, J.; Adriaens, I.; Huybrechts, T.; De Ketelaere, B.; Millet, S.; Vangeyte, J.; Van Nuffel, A.; Saeys, W. Measuring the drinking behaviour of individual pigs housed in group using radio frequency identification (RFID). Animal 2016, 10, 1557–1566. [Google Scholar] [CrossRef]
- Hoy, S.; Schamun, S.; Weirich, C. Investigations on feed intake and social behaviour of fattening pigs fed at an electronic feeding station. Appl. Anim. Behav. Sci. 2012, 139, 58–64. [Google Scholar] [CrossRef]
- Nielsen, B.L.; Lawrence, A.B.; Whittemore, C.T. Feeding behaviour of growing pigs using single or multi-space feeders. Appl. Anim. Behav. Sci. 1996, 47, 235–246. [Google Scholar] [CrossRef]
- Alameer, A.; Kyriazakis, I.; Dalton, H.A.; Miller, A.L.; Bacardit, J. Automatic recognition of feeding and foraging behaviour in pigs using deep learning. Biosyst. Eng. 2020, 197, 91–104. [Google Scholar] [CrossRef]
- Alameer, A.; Kyriazakis, I.; Bacardit, J. Automated recognition of postures and drinking behaviour for the detection of compromised health in pigs. Sci. Rep.-UK 2020, 10, 1–15. [Google Scholar] [CrossRef]
- Hansen, M.E.; Smith, M.L.; Smith, L.N.; Salter, M.G.; Baxter, E.M.; Farish, M.; Grieve, B. Towards on-farm pig face recognition using convolutional neural networks. Comput. Ind. 2018, 98, 145–152. [Google Scholar] [CrossRef]
- Zhang, J.; Zhuang, Y.; Ji, H.; Teng, G. Pig Weight and Body Size Estimation Using a Multiple Output Regression Convolutional Neural Network: A Fast and Fully Automatic Method. Sensors 2021, 21, 3218. [Google Scholar] [CrossRef]
- Yang, Q.; Xiao, D.; Lin, S. Feeding behavior recognition for group-housed pigs with the Faster R-CNN. Comput. Electron. Agric. 2018, 155, 453–460. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, W.; Steibel, J.; Siegford, J.; Han, J.; Norton, T. Recognition of feeding behaviour of pigs and determination of feeding time of each pig by a video-based deep learning method. Comput. Electron. Agric. 2020, 176, 105642. [Google Scholar] [CrossRef]
- Yan, L.; Miao, Z.; Zhang, W. Pig face detection method based on improved CenterNet algorithm. In Proceedings of the 2022 3rd International Conference on Electronic Communication and Artificial Intelligence (IWECAI), Sanya, China, 14–16 January 2022; pp. 174–179. [Google Scholar] [CrossRef]
- Marsot, M.; Mei, J.; Shan, X.; Ye, L.; Feng, P.; Yan, X.; Li, C.; Zhao, Y. An adaptive pig face recognition approach using Convolutional Neural Networks. Comput. Electron. Agric. 2020, 173, 105386. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, T. Two-stage method based on triplet margin loss for pig face recognition. Comput. Electron. Agric. 2022, 194, 106737. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar] [CrossRef]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar] [CrossRef]
- Focus to learn moreShao, H.; Pu, J.; Mu, J. Pig-posture recognition based on computer vision: Dataset and exploration. Animals 2021, 11, 1295. [Google Scholar] [CrossRef]
- Bhoj, S.; Tarafdar, A.; Chauhan, A.; Singh, M.; Gaur, G.K. Image processing strategies for pig liveweight measurement: Updates and challenges. Comput. Electron. Agric. 2022, 193, 106693. [Google Scholar] [CrossRef]
- Kodosky, J. LabVIEW. Proc. ACM Program. Lang. 2020, 4, 1–54. [Google Scholar] [CrossRef]
Model | Model Size (MB) | Training Duration |
---|---|---|
VGG19—feeding | 241 | 132 min 30 s |
Xception—feeding | 269 | 275 min 59 s |
MobileNetV2—feeding | 42 | 56 min 26 s |
VGG19—drinking | 241 | 80 min 03 s |
Xception—drinking | 269 | 190 min 19 s |
MobileNetV2—drinking | 42 | 31 min 53 s |
Item | VGG19 | MobileNetV2 | Xception |
---|---|---|---|
0 | 100.00% | 100.00% | 100.00% |
1 | 98.71% | 98.33% | 98.20% |
2 | 98.58% | 99.82% | 98.76% |
3 | 99.32% | 100.00% | 99.78% |
4 | 97.98% | 100.00% | 100.00% |
5 | 94.31% | 97.28% | 94.80% |
6 | 99.44% | 99.62% | 99.44% |
RMSE (s) | 0.86 | 0.60 | 0.81 |
MAE (s) | 0.30 | 0.12 | 0.26 |
Item | VGG19 | MobileNetV2 | Xception |
---|---|---|---|
0 | 100.00% | 100.00% | 100.00% |
1 | 100.00% | 99.57% | 99.57% |
2 | 99.78% | 99.78% | 99.55% |
3 | 100.00% | 99.47% | 100.00% |
4 | 97.08% | 97.92% | 93.75% |
5 | 100.00% | 100.00% | 99.26% |
6 | 98.58% | 98.58% | 97.16% |
RMSE (s) | 0.62 | 0.58 | 1.38 |
MAE (s) | 0.21 | 0.21 | 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, Y.; Zhou, K.; Zhou, Z.; Ji, H.; Teng, G. Systems to Monitor the Individual Feeding and Drinking Behaviors of Growing Pigs Based on Machine Vision. Agriculture 2023, 13, 103. https://doi.org/10.3390/agriculture13010103
Zhuang Y, Zhou K, Zhou Z, Ji H, Teng G. Systems to Monitor the Individual Feeding and Drinking Behaviors of Growing Pigs Based on Machine Vision. Agriculture. 2023; 13(1):103. https://doi.org/10.3390/agriculture13010103
Chicago/Turabian StyleZhuang, Yanrong, Kang Zhou, Zhenyu Zhou, Hengyi Ji, and Guanghui Teng. 2023. "Systems to Monitor the Individual Feeding and Drinking Behaviors of Growing Pigs Based on Machine Vision" Agriculture 13, no. 1: 103. https://doi.org/10.3390/agriculture13010103
APA StyleZhuang, Y., Zhou, K., Zhou, Z., Ji, H., & Teng, G. (2023). Systems to Monitor the Individual Feeding and Drinking Behaviors of Growing Pigs Based on Machine Vision. Agriculture, 13(1), 103. https://doi.org/10.3390/agriculture13010103