Compilation and Extrapolation of Load Spectrum of Tractor Ground Vibration Load Based on CEEMDAN-POT Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparatory Tasks
2.2. Acquisition System
2.2.1. Data Acquisition System Scheme
2.2.2. Platform of the Experimental Tractor
2.3. Acquisition System
3. Theory and Method
3.1. Data Preprocessing Method
3.2. Time-Domain Extrapolation Method of Ground Load
3.3. Extrapolation Process of Ground Load Spectrum
4. Results and Discussion
4.1. Data Collection and Preprocessing
4.1.1. Experimental Data Collection
4.1.2. Load Data Preprocessing
4.2. Ground Load Spectrum Compilation and Extrapolation
4.3. Correctness Inspection of Ground Load Spectrum Compilation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mattetti, M.; Maraldi, M.; Sedoni, E.; Molari, G. Optimal criteria for durability test of stepped transmissions of agricultural tractors. Biosyst. Eng. 2019, 178, 145–155. [Google Scholar] [CrossRef]
- Zhao, C. Analysis of tractor product characteristics and development trend at home and abroad. Tract. Farm Transp. 2021, 48, 1–9+15. [Google Scholar]
- Hostens, I.; Anthonis, J.; Kennes, P.; Ramon, H. PM—Power and Machinery: Six-degrees-of-freedom test rig design for simulation of mobile agricultural machinery vibrations. J. Agric. Eng. Res. 2000, 77, 155–169. [Google Scholar] [CrossRef]
- Li, M.; Yang, Q.; Chen, J. Design of tractor vibration testing system. J. Northwest AF Univ. (Nat. Sci. Ed.) 2010, 38, 229–234. [Google Scholar]
- Abubakar, M.S.; Ahmad, D.; Akande, F.B. A review of farm tractor overturning accidents and safety. Pertanika J. Sci. Technol. 2010, 18, 377–385. [Google Scholar]
- Wang, B. Cause analysis and preventive measures of agricultural machinery vibration. Farm Mach. Using Maint. 2014, 2, 26. [Google Scholar]
- Zhang, W.; Zhang, W.; Lu, Z.; Wang, B.; Tong, B. Research of wheeled tractor roll stability based on virtual prototyping technology. J. Mech. Strength 2017, 39, 138–142. [Google Scholar]
- Mattetti, M.; Molari, G.; Vertua, A. New methodology for accelerating the four-post testing of tractors using wheel hub displacements. Biosyst. Eng. 2015, 129, 307–314. [Google Scholar] [CrossRef]
- Tucker, L.; Bussa, S. The SAE cumulative fatigue damage test program. In SAE Technical Paper; 750038; SAE: Warrendale, PA, USA, 1975; pp. 1–51. [Google Scholar]
- Molari, G.; Mattetti, M.; Falagario, A.; Sedoni, E. Tractor accelerated structural testing by means of the rainflow method. In Solutions for Intelligent and Sustainable Farming; VDI: Düsseldorf, Germany, 2011; pp. 217–222. [Google Scholar]
- Chindamo, D.; Gadola, M.; Marchesin, F.P. Reproduction of real-world road profiles on a four-poster rig for indoor vehicle chassis and suspension durability testing. Adv. Mech. Eng. 2017, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zou, C. Research on the application of four column vibration table in vehicle fatigue test. Auto Parts 2018, 11, 142–144. [Google Scholar]
- Li, S.; Li, Y.; Ma, L. Research on road simulation test of electric vehicle. Automob. Technol. 2017, 02, 16–19. [Google Scholar]
- Shen, J.; Chen, Y.; Hu, H.; Xu, W.; Wang, W. Development of road simulation test for lower control arm on passenger cars. Chin. J. Automot. Eng. 2017, 1, 66–71. [Google Scholar]
- Duan, H.; Shi, F.; Xie, F.; Zhang, K. Summary of research on road spectrum measurement. J. Electron. Meas. Instrum. 2010, 24, 72–79. [Google Scholar] [CrossRef]
- Yan, J.G.; Wang, C.G.; Xie, S.S.; Wang, L.J. Design and validation of a surface profiling apparatus for agricultural terrain roughness measurements. R D Natl. Inst. Agric. Food Ind. Mach.-INMA Buchar. 2019, 59, 169–180. [Google Scholar] [CrossRef]
- Schiehlen, W.; Hu, B. Spectral simulation and shock absorber identification. Int. J. Non-Linear Mech. 2003, 38, 161–171. [Google Scholar] [CrossRef]
- Perera, R.W. Certification of Inertial Profilers. In Proceedings of the International Conference on Highway Pavements and Airfield Technology 2017, Philadelphia, PA, USA, 27–30 August 2017; pp. 268–278. [Google Scholar]
- Gillespie, T.D.; Sayers, M.W.; Segel, L. Calibration of response-type road roughness measuring systems. In NCHRP Report; Transport Research Board: Washington, DC, USA, 1980; pp. 1–290. [Google Scholar]
- Han, S.B. Measuring displacement signal with an accelerometer. J. Mech. Sci. Technol. 2010, 26, 1329–1335. [Google Scholar] [CrossRef]
- Huang, J. Research on Pavement Spectrum Test of Hillside Tractors and Its Reappearance Method. Master Dissertation, Jilin University, Changchun, China, 2018. [Google Scholar]
- Ma, R.; Song, H.; Lai, X. Pavement roughness measurement system based on laser displacement sensors. J. Chang. Univ. (Nat. Sci. Ed.) 2006, 26, 38–41. [Google Scholar]
- Lu, Z.; Jin, W.; Jin, F.; Jiang, C.; Liu, Y.; Xu, H.; Wang, Z. Design and test of non-contact laser surface roughness instrument. J. Nanjing Agric. Univ. 2015, 38, 511–516. [Google Scholar]
- Luan, S.; Yu, J.; Zheng, S. Vehicle load correlation analysis method and optimization application of road simulation test. Mech. Sci. Technol. Aerosp. Eng. 2021, 40, 1944–1951. [Google Scholar]
- Londhe, A.; Kangde, S.; Karthikeyan, K. Deriving the compressed accelerated test cycle from measured road load data. In SAE Technical Paper; SAE: Warrendale, PA, USA, 2012; pp. 1–12. [Google Scholar]
- Ge, S.; Han, C. Investigation of equivalent load spectrum for simulation test of whole tractor. J. Anhui Inst. Technol. 1990, 9, 71–77. [Google Scholar]
- Kim, D.C.; Ryu, I.H.; Kim, K.U. Analysis of tractor transmission and driving axle loads. Trans. ASAE 2001, 44, 751–757. [Google Scholar]
- Mattetti, M.; Molari, G.; Sedoni, E. Methodology for the realisation of accelerated structural tests on tractors. Biosyst. Eng. 2012, 13, 266–271. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Zong, J.; Lv, D.; Wang, S. Research on loading method of tractor pto based on dynamic load spectrum. Agriculture 2021, 11, 982. [Google Scholar] [CrossRef]
- Yang, Z.; Song, Z.H.; Zhao, X.Y.; Zhou, X.X. Time-domain extrapolation method for tractor drive shaft loads in stationary operating conditions. Biosyst. Eng. 2021, 210, 143–155. [Google Scholar] [CrossRef]
- Pan, H.; Liu, J.; Wang, N.; Zhao, J. Development of on-line monitoring equipment for tractor reliability test. Tract. Farm Transp. 2021, 48, 35–36. [Google Scholar]
- Li, J.; Sun, S.; Leng, J.; Zhang, Y. Research on frequency domain vibration fatigue acceleration testing of tractor hood based on damage equivalence. Agric. Equip. Veh. Eng. 2019, 57, 223–225. [Google Scholar]
- GB/T 7031-1986; Vehicle Vibration—Describing Method for Road Surface Irregularity. National Bureau of Statistics of China: Beijing, China, 1987; pp. 1–16.
- Duan, H.; Xie, F.; Zhang, K.; Ma, Y.; Shi, F. Methods of signal pre-processing with massive road surface measurement data. J. Vib. Shock 2011, 30, 101–106. [Google Scholar]
- Fei, H.; Shan, J. Application of CEEMDAN-Wavelet Threshold Method in the Signal Processing of Blasting Vibration. Blasting. 2022, 3, 41–47. [Google Scholar]
- Wang, Y.; Wang, L.; Wen, C.; Lv, D.; Wang, S. Extrapolation of tractor PTO torque load spectrum based on automated threshold selection with FDR. Trans. Chin. Soc. Agric. Mach. 2021, 52, 364–372. [Google Scholar]
- Wang, P.; Sun, H.; Chen, J.; Zhang, M.; He, C. Selection of time domain extrapolation GPD estimation method in super-threshold model. Chin. Hydraul. Pneum. 2021, 45, 38–43. [Google Scholar]
- Zhang, Z.; Liu, M.P.; Zhang, Z.T.; Wang, Q.N. A new method for power quality disturbance signal denoising based on CEEMDAN and wavelet soft threshold. Mod. Electron. Tech. 2021, 44, 63–68. [Google Scholar]
- Gu, Z. Research on Tracked Vehicle Engine Support Test System. Master Dissertation, North University of China, Taiyuan, China, 2020. [Google Scholar]
- Zhang, Y.; Wang, G.; Wang, J.; Hou, X.; Zhang, E.; Huang, J. Load spectrum compiling and fatigue life prediction of wheel loader axle shaft. J. Jilin Univ. Eng. Technol. Ed. 2011, 41, 1646–1651. [Google Scholar]
Parameters | Value |
---|---|
Weather | Sunny |
Atmospheric pressure | ≥96.6 kPa |
Environmental temperature | 18.5 °C |
Gear and speed of field farming | Gear: 2, 3, 4; Speed: 2~8 km·h−1 |
Gear and speed of transportation | Gear: 5, 6; Speed: 10~30 km·h−1 |
Parameters | Value |
---|---|
External dimensions (mm) | 4910 × 2430 × 3030 |
Vehicle weight (kg) | 4980 |
Speed range (km·h−1) | 2.84–38.58 |
Tire specifications | 14.9–38 |
Rated power (kW) | 103 |
Ground Selection | V (km·h−1) |
---|---|
Cement ground | 10–15 |
Hard soil ground | 5–10 |
Soft soil ground | 5–8 |
Slope ground | 5 |
Ploughing ground | 5 |
Rotary tillage ground | 5 |
IMF | IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | IMF7 | IMF8 | IMF9 | IMF10 |
PE | 0.9806 | 0.9672 | 0.8919 | 0.7997 | 0.6976 | 0.5755 | 0.5269 | 0.4680 | 0.4350 | 0.4125 |
IMF | IMF11 | IMF12 | IMF13 | IMF14 | IMF15 | IMF16 | IMF17 | IMF18 | IMF19 | |
PE | 0.4038 | 0.3965 | 0.3920 | 0.3902 | 0.388 | 0.3877 | 0.3856 | 0.3870 | 0.000763 |
Denoising Method | SNR | RSME |
---|---|---|
3σ-rule denoising | 15.9747 | 0.2372 |
Wavelet hard threshold denoising | 18.1262 | 0.1986 |
Wavelet soft threshold denoising | 20.0011 | 0.1554 |
Threshold | Threshold (μ) | Shape Parameter (ψ) | Scale Parameter (ξ) |
---|---|---|---|
Upper threshold | 4.152 | −0.1284 | 0.6071 |
lower threshold | −4.428 | −0.3526 | 0.5439 |
Extrapolation Factor | The Amount of Data | Max (m·s−2) | Min (m·s−2) | Mean Value (xi > 0) (m s−2) | Mean Value (xi < 0) (m·s−2) | Standard Deviation | Variance |
---|---|---|---|---|---|---|---|
Original load data (after denoising) | 75,000 | 6.438 | −5.926 | 1.216 | −1.174 | 1.506 | 2.268 |
Extrapolated 1 time | 75,000 | 6.502 | −6.113 | 1.220 | −1.183 | 1.505 | 2.266 |
Extrapolated 10 times | 750,003 | 6.611 | −6.127 | 1.222 | −1.186 | 1.507 | 2.271 |
Extrapolated to the full life-cycle, 287 times | 21,525,011 | 6.736 | −6.223 | 1.231 | −1.211 | 1.513 | 2.311 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, D.; Chen, D.; Wang, S.; Li, S.; Mao, X.; Zhang, B.; Wang, Z.; Ma, Z. Compilation and Extrapolation of Load Spectrum of Tractor Ground Vibration Load Based on CEEMDAN-POT Model. Agriculture 2023, 13, 125. https://doi.org/10.3390/agriculture13010125
Dai D, Chen D, Wang S, Li S, Mao X, Zhang B, Wang Z, Ma Z. Compilation and Extrapolation of Load Spectrum of Tractor Ground Vibration Load Based on CEEMDAN-POT Model. Agriculture. 2023; 13(1):125. https://doi.org/10.3390/agriculture13010125
Chicago/Turabian StyleDai, Dong, Du Chen, Shumao Wang, Song Li, Xu Mao, Bin Zhang, Zhenyu Wang, and Zheng Ma. 2023. "Compilation and Extrapolation of Load Spectrum of Tractor Ground Vibration Load Based on CEEMDAN-POT Model" Agriculture 13, no. 1: 125. https://doi.org/10.3390/agriculture13010125
APA StyleDai, D., Chen, D., Wang, S., Li, S., Mao, X., Zhang, B., Wang, Z., & Ma, Z. (2023). Compilation and Extrapolation of Load Spectrum of Tractor Ground Vibration Load Based on CEEMDAN-POT Model. Agriculture, 13(1), 125. https://doi.org/10.3390/agriculture13010125