Design and Test of a Straw-Clearing-Depth Self-Adaptive Control System of a Front-Mounted Seedbed-Preparation Device
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structure and Operation Principle
2.2. Design of Self-Adaptive Control System
2.2.1. Design of Front-Suspension Mechanism
2.2.2. Design of Profiling Mechanism
2.2.3. Design of Control System
2.3. Test Scheme Design
2.3.1. Performance Test of the Self-Adaptive Control System
- (1)
- Manual button control performance test of the front-suspension mechanism
- (2)
- Profiling performance test of the self-adaptive control system
2.3.2. Whole-Machine Field Test
2.3.3. Measurement of Evaluation Indices
- (1)
- Straw clearing rate
- (2)
- Qualified rate of operation depth
- (3)
- Consistency of straw clearing between rows
3. Results
3.1. Performance Test of Self-Adaptive Control System
3.2. Whole-Machine Field Test Results
4. Discussion
4.1. Analysis of the Influence Law of Each Factor on Straw Clearing Rate
4.2. Analysis of the Influence Law of Each Factor on Qualified Rate of Operation Depth
4.3. Analysis of the Influence Law of Each Factor on Consistency of Straw Clearing between Rows
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Tian, C.; Wang, R.; Li, J.; Wang, X. Conservation tillage rotation enhanced soil structure and soil nutrients in long-term dryland agriculture. Eur. J. Agron. 2021, 131, 126379. [Google Scholar] [CrossRef]
- Reza, K.A.; Perry, C.; James, A.I.; Majid, D.; Bryan, R.; Hunter, D.; Jim, F. Corn productivity and soil characteristic alterations following transition from conventional to conservation tillage. Soil Tillage Res. 2022, 220, 105351. [Google Scholar] [CrossRef]
- Zhou, D.; Li, M.; Li, Y.; Qi, J.T.; Liu, K.; Cong, X.; Tian, X.L. Detection of ground straw coverage under conservation tillage based on deep learning. Comput. Electron. Agric. 2020, 172, 105369. [Google Scholar] [CrossRef]
- Lv, L.G.; Gao, Z.B.; Liao, K.H.; Zhu, K.; Zhu, J.J. Impact of conservation tillage on the distribution of soil nutrients with depth. Soil Tillage Res. 2023, 225, 105527. [Google Scholar] [CrossRef]
- Ma, Y.C.; Xue, X.J.; Wang, P.; Qi, L.Q.; Wan, P.J.; Zhang, W.; Zhang, B.; Wang, J.J. Design and Test on No-tillage Precision Corn Seeder with Ridge Two Rows of Type 2BDMJ-6. J. Heilongjiang Bayi Agric. Univ. 2019, 31, 91–95. [Google Scholar]
- Wang, Q.J.; Li, H.W.; Xu, D.J.; Liu, A.D.; Zhang, X.D. Study on the technology of the corn no-till planting of one big ridge two rows. Agric. Res. Arid. Areas 2007, 2, 17–20. [Google Scholar]
- Wang, Q.J.; Li, H.W.; He, J. Effects of wide-ridge and narrow-row no-till cultivation on soil water and maize yield. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2010, 26, 39–43. [Google Scholar]
- Huang, T.; Yang, N.; Lu, C.; Qin, X.; Siddique, K.H.M. Soil Organic Carbon, Total Nitrogen, Available Nutrients, and Yield under Different Straw Returning Methods. Soil Tillage Res. 2021, 214, 105171. [Google Scholar] [CrossRef]
- Xiao, L.; Zhao, R.; Kuhn, N. Straw mulching is more important than no tillage in yield improvement on the Chinese Loess Plateau. Soil Tillage Res. 2019, 194, 104314. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Q.; Li, Z.; Qiao, Y.; Du, K.; Tian, C.; Zhu, N.; Leng, P.; Yue, Z.; Cheng, H.; et al. Effects of straw mulching and nitrogen application rates on crop yields, fertilizer use efficiency, and greenhouse gas emissions of summer maize. Sci. Total Environ. 2022, 847, 157681. [Google Scholar] [CrossRef]
- Chen, H.T.; Zha, S.H.; Dun, G.Q.; Cong, G.B.; Li, A.; Feng, Y.N. Optimization and Experiment of Cleaning Device of 2BMFJ Type No-till Precision Planter. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2016, 47, 96–102. [Google Scholar]
- Hou, S.Y.; Zhou, Z.; Wei, Z.P.; Ji, W.Y.; Chen, H.T. Design and Experiment of Rectifier for Multi-stage Lateral Movement of Corn Straw. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2021, 52, 45–56. [Google Scholar]
- Hou, S.Y.; Chen, H.T.; Zhou, Z.; Wei, Z.P.; Zhang, Y.L. Design and test of lateral stubble cleaning blade for corn stubble field. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2020, 36, 59–69. [Google Scholar]
- Chen, H.T.; Hou, L.; Hou, S.Y.; Li, Y.; Min, S.Y.; Chai, Y.D. Design and Optimization Experiment of Anti-blocking Mechanism of No-tillage Planter for Grand Ridge with Raw Corn Stubble. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2018, 49, 59–67. [Google Scholar]
- Tang, H.G. Design and Experiment of the Electro-hydraulic Control Profiling Depth Limiting Mechanism of No-tillage Straw-covering Planter in Original Stubble Field. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2020. [Google Scholar] [CrossRef]
- Chen, H.T.; Wei, Z.P.; Shu, W.H.; Hou, S.Y.; Ji, W.Y.; Shi, N.Y. Design and Experiment of Cleaning and Anti-blocking of Front-mounted Seed Bed Preparation Device for Grand Ridge with Raw Stubble. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2021, 52, 51–60+73. [Google Scholar]
- Hou, S.; Wang, S.; Ji, Z.; Zhu, X. Design and Test of the Clearing and Covering of a Minimum-Tillage Planter for Corn Stubble. Agriculture 2022, 12, 1209. [Google Scholar] [CrossRef]
- Wang, H.Y.; Chen, H.T.; Ji, W.Y. Anti-blocking Mechanism of Type 2BMFJ-3 No-till Precision Planter for Wheat Stubble Fields. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2013, 44, 64–70. [Google Scholar]
- Hou, S.; Zhu, Y.; Zhu, X.; Wang, Y.; Ji, W.; Chen, H. Design and Experiment of a Straw Clearing Mulching No-Tillage Planter. Biosyst. Eng. 2022, 221, 69–80. [Google Scholar] [CrossRef]
- Geng, A.J.; Zhang, M.; Zhang, J.; Gao, A.; Zheng, J.L. Design and Experiment of Automatic Control System for Corn Header Height. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2020, 51, 118–125. [Google Scholar]
- Shi, N.Y.; Chen, H.T.; Wei, Z.P.; Hou, S.Y.; Zhou, Z.; Wang, X. Design and experiment of stalk returning proportion adjusting device for corn original stubble. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2020, 36, 11–22. [Google Scholar]
- Ren, L.; Wang, N.; Cao, W.B.; Li, J.Q.; Ye, X.C. Fuzzy PID control of manipulator positioning for taking the whole row seedlings of tomato plug seedlings. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2020, 36, 21–30. [Google Scholar]
- Jin, X.; Chen, K.; Zhao, Y.; Ji, J.; Jing, P. Simulation of Hydraulic Transplanting Robot Control System Based on Fuzzy PID Controller. Measurement 2020, 164, 108023. [Google Scholar] [CrossRef]
- Zhao, X.G.; Xu, L.M.; He, S.L.; Xing, J.J. Constant Tension Winding System of Corn Directional Belt Making Machine Based on Self-adaptive Fuzzy-PID Control. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2015, 46, 90–96. [Google Scholar]
- Shao, M.X.; Xing, Z.; Jiang, Q.B.; Zhang, Y.A.; Du, Y.F.; Yang, H.F. Fuzzy PID control for lateral pose adjustment of tractor rear suspension. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2019, 35, 34–42. [Google Scholar]
- Zhou, X.; Wang, J.; Huang, L.; Li, D.; Duan, Q. Modelling and Controlling Dissolved Oxygen in Recirculating Aquaculture Systems Based on Mechanism Analysis and an Adaptive PID Controller. Comput. Electron. Agric. 2022, 192, 106583. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, Y.; Zhang, X.; Ren, J.; An, D. Fuzzy Self-Tuning PID-Based Intelligent Control of an Anti-Wave Buoy Data Acquisition Control System. IEEE Access 2019, 7, 166157–166164. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, T.J.; Chen, B.; Han, W.; Lv, Q.L.; Wang, J.Q. Design and Test of Subsoiling Rotary Rilling and Rilling Combined Operating Machine. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2019, 50, 28–39. [Google Scholar]
Parameter | Value |
---|---|
L0/mm | 578 |
e/mm | 70 |
S/mm | 566–756 |
LBC/mm | 350 |
LBD/mm | 820 |
α/° | 6.91 |
E | EC | ||||||
---|---|---|---|---|---|---|---|
NB | NM | NS | ZO | PS | PM | PB | |
NB | PB/NB/PS | PB/NB/NS | PM/NM/NB | PM/NM/NB | PS/NS/NS | ZO/ZO/NM | ZO/ZO/PS |
NM | PB/NB/PS | PB/NB/NS | PM/NM/NB | PS/NS/NM | PS/NS/NM | ZO/ZO/NS | NS/ZO/ZO |
NS | PM/NB/ZO | PM/NM/NS | PM/NS/NM | PS/NS/NM | ZO/ZO/NS | NS/PS/NS | NS/PS/ZO |
ZO | PM/NM/ZO | PM/NM/NS | PS/NS/NS | ZO/ZO/NS | NS/PS/NS | NM/PM/NS | NM/PM/ZO |
PS | PS/NM/ZO | PS/NS/ZO | ZO/ZO/ZO | NS/PS/ZO | NS/PS/ZO | NM/PM/ZO | NM/PB/ZO |
PM | PS/ZO/PB | ZO/ZO/PS | NS/PS/PS | NM/PS/PS | NM/PM/PS | NM/PB/PS | NB/PB/PB |
PB | ZO/ZO/PB | ZO/ZO/PM | NM/PS/PM | NM/PM/PM | NM/PM/PS | NB/PB/PS | NB/PB/PB |
Test Factors | Coded Value | |||||
---|---|---|---|---|---|---|
−1.68 | −1 | 0 | 1 | 1.68 | ||
X1 | Operation speed/(km·h−1) | 5 | 6 | 7.5 | 9 | 10 |
X2 | Operation depth of straw clearing knife/(mm) | 20 | 32 | 50 | 68 | 80 |
X3 | Straw covering amount/(kg·m−2) | 0.8 | 0.96 | 1.2 | 1.44 | 1.6 |
Test Numbers | Lifting Height/mm | Response Time/s | Lifting Speed/(m/s) |
---|---|---|---|
1 | 50 | 0.17 | 0.29 |
2 | −50 | 0.19 | 0.26 |
3 | 80 | 0.29 | 0.27 |
4 | −80 | 0.35 | 0.23 |
5 | 110 | 0.42 | 0.26 |
6 | −110 | 0.47 | 0.23 |
7 | 140 | 0.58 | 0.24 |
8 | −140 | 0.64 | 0.22 |
Test Numbers | Operation Depth/mm | Target Depth/mm | Actual Depth/mm | Relative Error/% |
---|---|---|---|---|
1 | 20 | 50 | 41.2 | 17.6 |
2 | 30 | 50 | 43.1 | 13.8 |
3 | 40 | 50 | 45.8 | 8.4 |
4 | 50 | 50 | 47.9 | 4.2 |
5 | 60 | 50 | 52.7 | 5.4 |
6 | 70 | 50 | 55.8 | 11.6 |
7 | 80 | 50 | 57.3 | 14.6 |
Number | Test Factors | Evaluation Indexes | ||||
---|---|---|---|---|---|---|
X1/ (km/h) | X2/ (mm) | X3/ (kg/m2) | Y1/(%) | Y2/(%) | Y3/(%) | |
1 | −1 | −1 | −1 | 85.9 | 86.3 | 81.8 |
2 | 1 | −1 | −1 | 85.2 | 87.5 | 80.3 |
3 | −1 | 1 | −1 | 87.1 | 87.6 | 83.4 |
4 | 1 | 1 | −1 | 88.2 | 87.2 | 82.6 |
5 | −1 | −1 | 1 | 87.1 | 88.1 | 81.9 |
6 | 1 | −1 | 1 | 84.6 | 87.1 | 80.7 |
7 | −1 | 1 | 1 | 90.2 | 87.4 | 82.6 |
8 | 1 | 1 | 1 | 88.4 | 85.4 | 81.8 |
9 | −1.68 | 0 | 0 | 86.9 | 88.1 | 83.1 |
10 | 1.68 | 0 | 0 | 85.7 | 87.2 | 81.5 |
11 | 0 | −1.68 | 0 | 84.9 | 86.4 | 80.2 |
12 | 0 | 1.68 | 0 | 89.1 | 85.7 | 82.7 |
13 | 0 | 0 | −1.68 | 87.2 | 88.9 | 82.4 |
14 | 0 | 0 | 1.68 | 88.2 | 88.1 | 81.2 |
15 | 0 | 0 | 0 | 89.1 | 89.4 | 83.9 |
16 | 0 | 0 | 0 | 90.1 | 89.4 | 84.3 |
17 | 0 | 0 | 0 | 89.5 | 89.1 | 84.6 |
18 | 0 | 0 | 0 | 89.4 | 89.2 | 84.1 |
19 | 0 | 0 | 0 | 89.3 | 89.5 | 83.7 |
20 | 0 | 0 | 0 | 89.3 | 88.7 | 83.9 |
21 | 0 | 0 | 0 | 89.1 | 89.1 | 83.3 |
22 | 0 | 0 | 0 | 89.2 | 89.4 | 83.6 |
23 | 0 | 0 | 0 | 89.5 | 89.3 | 84.5 |
Source Variance | Y1/(%) | Y2/(%) | Y3/(%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sum of Squares | Freedom | F | p | Sum of Squares | Freedom | F | p | Sum of Squares | Freedom | F | p | |
Model | 65.20 | 9 | 69.65 | <0.0001 | 34.65 | 9 | 69.27 | <0.0001 | 37.37 | 9 | 30.42 | <0.0001 |
X1 | 2.57 | 1 | 24.69 | 0.0003 | 1.01 | 1 | 18.17 | 0.0009 | 3.58 | 1 | 26.24 | 0.0002 |
X2 | 24.17 | 1 | 232.35 | <0.0001 | 0.49 | 1 | 8.74 | 0.0111 | 7.18 | 1 | 52.63 | <0.0001 |
X3 | 2.28 | 1 | 21.93 | 0.0004 | 0.28 | 1 | 4.99 | 0.0437 | 0.71 | 1 | 5.22 | 0.0398 |
X1X2 | 0.78 | 1 | 7.51 | 0.0168 | 0.84 | 1 | 15.21 | 0.0018 | 0.15 | 1 | 1.11 | 0.3116 |
X1X3 | 2.76 | 1 | 26.55 | 0.0002 | 1.81 | 1 | 32.48 | <0.0001 | 0.011 | 1 | 0.082 | 0.7785 |
X2X3 | 0.91 | 1 | 8.76 | 0.0111 | 1.44 | 1 | 26.00 | 0.0002 | 0.55 | 1 | 4.04 | 0.0657 |
X12 | 17.19 | 1 | 165.22 | <0.0001 | 5.73 | 1 | 103.07 | <0.0001 | 4.96 | 1 | 36.32 | <0.0001 |
X22 | 9.96 | 1 | 95.71 | <0.0001 | 21.69 | 1 | 390.23 | <0.0001 | 11.76 | 1 | 86.15 | <0.0001 |
X32 | 4.67 | 1 | 44.88 | <0.0001 | 1.40 | 1 | 25.21 | 0.0002 | 8.56 | 1 | 62.71 | <0.0001 |
Residual | 1.35 | 13 | 0.72 | 13 | 1.77 | 13 | ||||||
Lack of fit | 0.6 | 5 | 1.29 | 0.3562 | 0.24 | 5 | 0.81 | 0.5748 | 0.31 | 5 | 0.33 | 0.8799 |
Corrected | 0.75 | 8 | 0.48 | 8 | 3.04 | 1.47 | ||||||
Total | 66.55 | 22 | 35.37 | 22 | 39.14 | 22 |
X1/ (km/h) | Y1/(%) | Y2/(%) | Y3/(%) |
---|---|---|---|
5 | 87.1 | 88.7 | 83.8 |
6 | 87.5 | 87.9 | 83.4 |
7 | 86.2 | 87.1 | 84.1 |
8 | 86.4 | 86.8 | 82.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, S.; Xue, D.; Cao, B.; Chen, H.; Han, Y. Design and Test of a Straw-Clearing-Depth Self-Adaptive Control System of a Front-Mounted Seedbed-Preparation Device. Agriculture 2023, 13, 153. https://doi.org/10.3390/agriculture13010153
Hou S, Xue D, Cao B, Chen H, Han Y. Design and Test of a Straw-Clearing-Depth Self-Adaptive Control System of a Front-Mounted Seedbed-Preparation Device. Agriculture. 2023; 13(1):153. https://doi.org/10.3390/agriculture13010153
Chicago/Turabian StyleHou, Shouyin, Donghui Xue, Bingcheng Cao, Haitao Chen, and Yongjun Han. 2023. "Design and Test of a Straw-Clearing-Depth Self-Adaptive Control System of a Front-Mounted Seedbed-Preparation Device" Agriculture 13, no. 1: 153. https://doi.org/10.3390/agriculture13010153
APA StyleHou, S., Xue, D., Cao, B., Chen, H., & Han, Y. (2023). Design and Test of a Straw-Clearing-Depth Self-Adaptive Control System of a Front-Mounted Seedbed-Preparation Device. Agriculture, 13(1), 153. https://doi.org/10.3390/agriculture13010153