Assessment of Biometric Parameters and Health of Canna’s Cultivars as Plant Useful in Phytoremediation of Degraded Agrocenoses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Weather Parameters
2.3. Soil Analysis
2.4. Plant Health Assessement
2.5. Mycological Analysis
2.6. Measurements of Gas Exchange Parameters
2.7. Statistical Analysis
3. Results
3.1. Weather Parameters
3.2. Soil Analysis
3.3. Plant Health Assessement
3.4. Fungi Obtained from Canna Plant
3.5. Measurement of Gas Exchange Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hassan, I.; Chowdhury, S.R.; Prihartato, P.K.; Razzak, S.A. Wastewater Treatment Using Constructed Wetland: Current Trends and Future Potential. Processes 2021, 9, 1917. [Google Scholar] [CrossRef]
- European Commission. A Global Approach for Recovery of Arable Land through Improved Phytoremediation Coupled with Advanced Liquid Biofuel Production and Climate Friendly Copper Smelting Process; Horizon 2020; European Commission: Luxembourg, 2020.
- Ojoawo, S.O.; Udayakumar, G.; Naik, P. Phytoremediation of Phosphorus and Nitrogen with Canna x Generalis Reeds in Domestic Wastewater through NMAMIT Constructed Wetland. Aquat. Procedia 2015, 4, 349–356. [Google Scholar] [CrossRef]
- Arliyani, I.; Tangahu, B.; Mangkoedihardjo, S. Plant Diversity in a Constructed Wetland for Pollutant Parameter Processing on Leachate: A Review. J. Ecol. Eng. 2021, 22, 240–255. [Google Scholar] [CrossRef]
- Plaza, B.M.; Maggini, R.; Borghesi, E.; Pardossi, A.; Lao, M.T.; Jiménez-Becker, S. Nutrient Extraction in Pansy Fertigated with Pure, Diluted, Depurated and Phytodepurated Leachates from Municipal Solid Waste. Agronomy 2020, 10, 1911. [Google Scholar] [CrossRef]
- Čule, N.; Vilotic, D.; Nešić, M.; Veselinovic, M.; Drazic, D.; Mitrovic, S. Phytoremediation Potential of Canna Indica L. in Water Contaminated with Lead. Fresenesius Environ. Bull. 2016, 25, 3728–3733. [Google Scholar]
- Ghezali, K.; Bentahar, N.; Barsan, N.; Nedeff, V.; Moșneguțu, E. Potential of Canna Indica in Vertical Flow Constructed Wetlands for Heavy Metals and Nitrogen Removal from Algiers Refinery Wastewater. Sustainability 2022, 14, 4394. [Google Scholar] [CrossRef]
- Glinos, E.; Cocucci, A.A. Pollination Biology of Canna Indica (Cannaceae) with Particular Reference to the Functional Morphology of the Style. Plant Syst. Evol. 2011, 291, 49–58. [Google Scholar] [CrossRef]
- Yeo, P. Secondary Pollen Presentation: Form, Function, and Evolution; Plant Systematics and Evolution; Springer: Wien, Austria; New York, NY, USA, 1993; ISBN 978-0-387-82448-2. [Google Scholar]
- Henderson, L.; Cilliers, C.J. Invasive Aquatic Plants—A Guide to the Identification of the Most Important and Potentially Dangerous Invasive Aquatic and Wetland Plants in South Africa; ARC-Plant Protection Research Institute: Pretoria, South Africa, 2002. [Google Scholar]
- Okonwu, K.; Ariaga, C. Nutritional Evaluation of Various Parts of Canna Indica L. ARRB 2016, 11, 1–5. [Google Scholar] [CrossRef]
- Piperno, D.R. The Origins of Plant Cultivation and Domestication in the New World Tropics: Patterns, Process, and New Developments. Curr. Anthropol. 2011, 52, S453–S470. [Google Scholar] [CrossRef]
- Wagner, A.; Jamiołkowska, A.; Michałek, W. Pathogenicity of Fusarium Oxysporum from Different Soil Environments and Its Effect on Photosynthetic Activity of Tomato Plants. EJPAU 2007, 10, 29. [Google Scholar]
- Olszewska, M.; Grzegorczyk, S.; Olszewski, J.; Bałuch-Małecka, A. A Comparison of the Response of Selected Grass Species to Water Stress. Grassl. Sci. Pol. 2010, 13, 127–137. [Google Scholar]
- Rios, V.S.; Rios, J.A.; Aucique-Pérez, C.E.; Silveira, P.R.; Barros, A.V.; Rodrigues, F.Á. Leaf Gas Exchange and Chlorophyll a Fluorescence in Soybean Leaves Infected by Phakopsora Pachyrhizi. J. Phytopathol. 2018, 166, 75–85. [Google Scholar] [CrossRef]
- Polanco, L.R.; Rodrigues, F.A.; Nascimento, K.J.T.; Cruz, M.F.A.; Curvelo, C.R.S.; DaMatta, F.M.; Vale, F.X.R. Photosynthetic Gas Exchange and Antioxidative System in Common Bean Plants Infected by Colletotrichum Lindemuthianum and Supplied with Silicon. Trop. Plant Pathol. 2014, 39, 35–42. [Google Scholar] [CrossRef]
- Lobato, A.; Gonçalves-Vidigal, M.; Vidigal Filho, P.; Andrade, C.; Kvitschal, M.; Bonato, C. Relationships between Leaf Pigments and Photosynthesis in Common Bean Plants Infected by Anthracnose. N. Z. J. Crop Hortic. Sci. 2010, 38, 29–37. [Google Scholar] [CrossRef]
- Lobato, A.K.S.; Mc, G.-V.; PS Vidigal, F.; Costa, R.C.L.; Cruz, F.J.R.; Santos, D.G.C.; Silva, C.R.; Li, S.; Ll, S. Changes in Photosynthetic Pigment and Carbohydrate Content in Common Bean Cultivars Infected by Colletotrichum Lindemuthianum. Plant Soil Environ. 2009, 55, 58–61. [Google Scholar] [CrossRef] [Green Version]
- Alves, A.A.; Guimarães, L.M.d.S.; Chaves, A.R.d.M.; DaMatta, F.M.; Alfenas, A.C. Leaf Gas Exchange and Chlorophyll a Fluorescence of Eucalyptus Urophylla in Response to Puccinia Psidii Infection. Acta Physiol. Plant 2011, 33, 1831–1839. [Google Scholar] [CrossRef]
- Berger, S.; Sinha, A.K.; Roitsch, T. Plant Physiology Meets Phytopathology: Plant Primary Metabolism and Plant Pathogen Interactions. J. Exp. Bot. 2007, 58, 4019–4026. [Google Scholar] [CrossRef] [PubMed]
- Moshou, D.; Bravo, C.; Oberti, R.; West, J.; Bodria, L.; McCartney, A.; Ramon, H. Plant Disease Detection Based on Data Fusion of Hyper-Spectral and Multi-Spectral Fluorescence Imaging Using Kohonen Maps. Real-Time Imaging 2005, 11, 75–83. [Google Scholar] [CrossRef]
- Hortus Botanicus Universitatis Mariae Curie-Skłodowska. Index Seminum 2018; Hortus Botanicus Universitatis Mariae Curie-Skłodowska: Lublin, Polonia, 2019. [Google Scholar]
- Hortus Botanicus Universitatis Mariae Curie-Skłodowska. Index Seminum 2019; Hortus Botanicus Universitatis Mariae Curie-Skłodowska: Lublin, Polonia, 2020. [Google Scholar]
- Parafiniuk, S.; Kopacki, M. Biological Efficacy of the Chemical Chrysanthemums Protection with the Use of Fine and Coarse Droplets. J. Cent. Eur. Agric. 2012, 13, 554–559. [Google Scholar] [CrossRef]
- Kopacki, M.; Wagner, A. Effect of Some Fungicides on Mycelium Growth of Fusarium Avenaceum (Fr.) Sacc. Pathogenic to Chrysanthemum (Dendranthema Grandiflora Tzvelev). Agron. Res. 2006, 4, 237–240. [Google Scholar]
- Bordens, K.S.; Abbott, B.B. Research Design and Methods. A Process Approach, 7th ed.; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Raudonius, S. Application of Statistics in Plant and Crop Research: Important Issues. Zemdirb. Agric. 2017, 104, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Bispo, W.M.d.S.; Araujo, L.; Moreira, W.R.; Silva, L.d.C.; Rodrigues, F.Á. Differential Leaf Gas Exchange Performance of Mango Cultivars Infected by Different Isolates of Ceratocystis Fimbriata. Sci. Agric. (Piracicaba Braz.) 2016, 73, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, R.V.; Machado, E.C.; Oliveira, R.F. Growth- and Leaf-Temperature Effects on Photosynthesis of Sweet Orange Seedlings Infected with Xylella Fastidiosa. Plant Pathol. 2004, 53, 334–340. [Google Scholar] [CrossRef]
- Mikiciuk, G.; Mikiciuk, M.; Ptak, P. The Effect of Antitranspirant Di-1-p-Methene on Some Physiological Traits of Strawberry. J. Ecol. Eng. 2015, 16, 161–167. [Google Scholar] [CrossRef]
- Kopacki, M.; Wagner, A. Pathogenicity of Fusarium Spp. to Chrysanthemum (Dendranthema Grandiflora Tzvelev). Latv. J. Agron. 2004, 7, 158–159. [Google Scholar]
- Jerushalmi, S.; Maymon, M.; Dombrovsky, A.; Freeman, S. Fungal Pathogens Affecting the Production and Quality of Medical Cannabis in Israel. Plants 2020, 9, 882. [Google Scholar] [CrossRef]
- Kunal, T.; Milind, G.; Shrirang, B. Diversity of Rhizosphere Mycoflora of Canna Indica L. Int. J. Curr. Res. Life Sci. 2018, 7, 1669–1671. [Google Scholar]
- Olivares, B.O.; Rey, J.C.; Lobo, D.; Navas-Cortés, J.A.; Gómez, J.A.; Landa, B.B. Fusarium Wilt of Bananas: A Review of Agro-Environmental Factors in the Venezuelan Production System Affecting Its Development. Agronomy 2021, 11, 986. [Google Scholar] [CrossRef]
- Sharma, S.; Chandel, S. Management of Stem Rot (Rhizoctonia Solani) of Carnation by Fungicides. J. Mycol. Pl. Pathol. 2013, 43, 187–189. [Google Scholar]
- Grabowski, M.A.; Malvick, D.K. Evaluation of Ornamental Tropical Plants for Resistance to White Mold Caused by Sclerotinia Sclerotiorum. Hortscience 2017, 52, 1375–1379. [Google Scholar] [CrossRef] [Green Version]
- Kundu, D.; John, D.J.; Adhikari, T.; Ghosh, P.; Sarkar, S.; Mitra, A.K. Study of Rhizospheric Association in Improving the Effectiveness of a Phytorid Plant towards Bioremediation. World J. Pharm. Res. 2016, 5, 1546–1556. [Google Scholar]
- Roopa, P.; Fugro, P.A.; Kadam, J. Symptomatology, Host Range Study and Management by Botanicals against Alternaria Alternata of Canna Indica (Fr.) Keissler. Int. J. Life Sc. Bt. Pharm. Res. 2014, 3, 116–120. [Google Scholar]
- Ogórek, R.; Plaskowska, E. Epicoccum Nigrum for Biocontrol Agents in Vitro of Plant Fungal Pathogens. Commun. Agric. Appl. Biol. Sci. 2011, 76, 691–697. [Google Scholar]
- Fatima, N.; Ismail, T.; Muhammad, S.A.; Jadoon, M.; Ahmed, S.; Azhar, S.; Mumtaz, A. Epicoccum Sp. an Emerging Source of Unique Bioactive Metabolites. Acta Pol. Pharm. 2016, 73, 13–21. [Google Scholar]
- Soytong, K.; Kahonokmedhakul, S.; Song, J.; Tongon, R. Chaetomium Application in Agriculture. In Technology in Agriculture; Ahmad, F., Sultan, M., Eds.; IntechOpen: London, UK, 2021; ISBN 978-1-83881-921-7. [Google Scholar]
- Tyśkiewicz, R.; Nowak, A.; Ozimek, E.; Jaroszuk-Ściseł, J. Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. Int. J. Mol. Sci. 2022, 23, 2329. [Google Scholar] [CrossRef]
- Trąmpczyńska, A.; Gawroński, S.W. Canna x Generalis Jako Fitoremediant Terenów Zurbanizowanych. Folia Hortic. 2003, 1, 447–449. [Google Scholar]
- Choudhary, A.; Kumar, S.; Sharma, C.; Kumar, P. Performance of Constructed Wetland for the Treatment of Pulp and Paper Mill Wastewater. In Proceedings of the World Environmental and Water Resources Congress, Palm Springs, CA, USA, 22–26 May 2011. [Google Scholar]
- Huang, T.; Liu, W.; Zhang, Y.; Zhou, Q.; Wu, Z.; He, F. A Stable Simultaneous Anammox, Denitrifying Anaerobic Methane Oxidation and Denitrification Process in Integrated Vertical Constructed Wetlands for Slightly Polluted Wastewater. Environ. Pollut. 2020, 262, 114363. [Google Scholar] [CrossRef] [PubMed]
- Karungamye, P.N. Potential of Canna Indica in Constructed Wetlands for Wastewater Treatment: A Review. Conservation 2022, 2, 499–513. [Google Scholar] [CrossRef]
- Chen, Q.; Zeng, H.; Liang, Y.; Qin, L.; Peng, G.; Huang, L.; Song, X. Purification Effects on β-HCH Removal and Bacterial Community Differences of Vertical-Flow Constructed Wetlands with Different Vegetation Plantations. Sustainability 2021, 13, 13244. [Google Scholar] [CrossRef]
pH (in H2O) | Salinity [g NaCl/L] | Macro- and Microelements Content [mg/L of Sample] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Contaminated Soil | |||||||||||
N-NO3 | P | K | Ca | Mg | Zn | Mn | Cu | Fe | B | ||
6.77 | 2.21 | 119 | 171 | 664 | 4524 | 213 | 23.3 | 5.28 | 4.93 | 39.4 | 2.62 |
Garden Soil | |||||||||||
8.27 | <0.24 | <10.0 | 47 | <50.0 | 4212 | 63 | 7.58 | 2.85 | 3.79 | 24 | 0.36 |
Variety | Contaminated Soil | |||
---|---|---|---|---|
Pn | E | Gs | Ci | |
Aida | 10.56 b–f | 1.76 g | 94.50 f | 304.67 efg |
America | 11.06 a–e | 3.18 a | 152.50 ab | 392.25 b–e |
Botanica | 14.12 a | 2.01 fg | 119.67 b–f | 502.50 ab |
Cherry Red | 8.90 d–g | 2.38 c–g | 90.00 f | 393.67 a–e |
La Boheme | 11.31 a–e | 2.20 d–g | 106.25 def | 333.75 d–g |
Lucifer | 12.23 abc | 2.18 d–g | 113.50 c–f | 456.08 abc |
Picasso | 5.61 h | 2.09 efg | 103.67 def | 364.25 c–f |
President | 9.78 c–g | 2.83 c–g | 104.25 def | 412.25 a–e |
Robert Kemp | 12.32 abc | 2.42 b–f | 123.25 b–f | 508.08 a |
Wyoming | 12.08 a–d | 2.07 efg | 96.08 ef | 337.67 d–g |
Mean | 10.80 a | 2.31 b | 110.37 b | 400.52 a |
Garden Soil | ||||
Aida | 9.43 c–g | 2.52 b–f | 145.33 abc | 305.67 efg |
America | 7.77 fgh | 3.05 ab | 151.17 ab | 360.67 c–f |
Botanica | 13.23 abc | 2.67 a–e | 164.83 a | 440.17 a–d |
Cherry Red | 10.63 b–f | 3.03 abc | 142.83 abc | 360.00 c–f |
La Boheme | 7.17 gh | 2.63 a–f | 129.50 b–e | 255.17 fg |
Lucifer | 11.18 a–e | 2.33 d–g | 112.33 c–f | 355.83 c–f |
Picasso | 6.95 gh | 2.57 a–f | 122.17 b–f | 337.00 d–g |
President | 9.35 c–g | 2.67 a–e | 133.33 a–d | 342.00 c–g |
Robert Kemp | 8.63 e–h | 2.83 a–d | 146.33 abc | 442.00 c–g |
Wyoming | 10.58 b–f | 2.26 d–g | 98.17 ef | 240.83 g |
Mean | 9.49 b | 2.65 a | 134.60 a | 343.98 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szmagara, M.; Kopacki, M.; Skwaryło-Bednarz, B.; Jamiołkowska, A.; Marcinek, B.; Rysiak, K.; Szmagara, A. Assessment of Biometric Parameters and Health of Canna’s Cultivars as Plant Useful in Phytoremediation of Degraded Agrocenoses. Agriculture 2023, 13, 157. https://doi.org/10.3390/agriculture13010157
Szmagara M, Kopacki M, Skwaryło-Bednarz B, Jamiołkowska A, Marcinek B, Rysiak K, Szmagara A. Assessment of Biometric Parameters and Health of Canna’s Cultivars as Plant Useful in Phytoremediation of Degraded Agrocenoses. Agriculture. 2023; 13(1):157. https://doi.org/10.3390/agriculture13010157
Chicago/Turabian StyleSzmagara, Mariusz, Marek Kopacki, Barbara Skwaryło-Bednarz, Agnieszka Jamiołkowska, Barbara Marcinek, Krystyna Rysiak, and Agnieszka Szmagara. 2023. "Assessment of Biometric Parameters and Health of Canna’s Cultivars as Plant Useful in Phytoremediation of Degraded Agrocenoses" Agriculture 13, no. 1: 157. https://doi.org/10.3390/agriculture13010157
APA StyleSzmagara, M., Kopacki, M., Skwaryło-Bednarz, B., Jamiołkowska, A., Marcinek, B., Rysiak, K., & Szmagara, A. (2023). Assessment of Biometric Parameters and Health of Canna’s Cultivars as Plant Useful in Phytoremediation of Degraded Agrocenoses. Agriculture, 13(1), 157. https://doi.org/10.3390/agriculture13010157