Probabilistic Assessment of Cereal Rye Cover Crop Impacts on Regional Crop Yield and Soil Carbon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Simulation Setup
2.2.1. Modeling Platform
2.2.2. Uncertainty Propagation
2.2.3. Multi-Site and Multi-Criteria Model Calibration and Validation
2.3. Long Term Simulations
2.4. Statistical Analysis
3. Result
3.1. Sensitivity Analysis, Model Calibration and Validation
3.2. Rye Biomass
3.3. Soil Organic Carbon
3.4. Crop Performance
3.4.1. Corn
3.4.2. Soybean
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basche, A.D.; Archontoulis, S.V.; Kaspar, T.C.; Jaynes, D.B.; Parkin, T.B.; Miguez, F.E. Simulating Long-Term Impacts of Cover Crops and Climate Change on Crop Production and Environmental Outcomes in the Midwestern United States. Agric. Ecosyst. Environ. 2016, 218, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Nolan, B.T.; Hitt, K.J. Vulnerability of Shallow Groundwater and Drinking-Water Wells to Nitrate in the United States. Environ. Sci. Technol. 2006, 40, 7834–7840. [Google Scholar] [CrossRef]
- Cuadra, P.E.; Vidon, P. Storm Nitrogen Dynamics in Tile-Drain Flow in the US Midwest. Biogeochemistry 2011, 104, 293–308. [Google Scholar] [CrossRef]
- Amadou, M.A.; Alhameid, A.; Singh, S.; Polat, A.; Singh, J.; Kumar, S.; Osborne, S. Responses of Soil Organic Carbon, Aggregate Stability, Carbon and Nitrogen Fractions to 15 and 24 Years of No-till Diversified Crop Rotations. Soil Res. 2019, 57, 149. [Google Scholar] [CrossRef]
- Lal, R. A System Approach to Conservation Agriculture. J. Soil Water Conserv. 2015, 70, 82A–88A. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Regenerative Agriculture for Food and Climate. J. Soil Water Conserv. 2020, 75, 123A–124A. [Google Scholar] [CrossRef]
- Jackson Hammond, A.A.; Motew, M.; Brummitt, C.D.; DuBuisson, M.L.; Pinjuv, G.; Harburg, D.V.; Campbell, E.E.; Kumar, A.A. Implementing the Soil Enrichment Protocol at Scale: Opportunities for an Agricultural Carbon Market. Front. Clim. 2021, 3, 686440. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover Crops and Ecosystem Services: Insights from Studies in Temperate Soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef] [Green Version]
- Clark, A. Managing Cover Crops Profitably; Diane Publishing: Collingdale, PA, USA, 2008. [Google Scholar]
- Behnke, G.D.; Kim, N.; Villamil, M.B. Agronomic Assessment of Cover Cropping and Tillage Practices across Environments. Agron. J. 2020, 112, 3913–3928. [Google Scholar] [CrossRef]
- Bawa, A.; MacDowell, R.; Bansal, S.; McMaine, J.; Sexton, P. Responses of Leached Nitrogen Concentrations and Soil Health to Winter Rye Cover Crop under No-till Corn-Soybean Rotation in the Northern Great Plains. J. Environ. Qual. 2021. Early View. [Google Scholar] [CrossRef]
- Behnke, G.D.; Villamil, M.B. Cover Crop Rotations Affect Greenhouse Gas Emissions and Crop Production in Illinois, USA. Field Crops Res. 2019, 241, 107580. [Google Scholar] [CrossRef]
- Marcillo, G.S.; Miguez, F.E. Corn Yield Response to Winter Cover Crops: An Updated Meta-Analysis. J. Soil Water Conserv. 2017, 72, 226–239. [Google Scholar] [CrossRef] [Green Version]
- Carlson, S.; Stockwell, R. Research Priorities for Advancing Adoption of Cover Crops in Agriculture-Intensive Regions. J. Agric. Food Syst. Community Dev. 2013, 3, 125–129. [Google Scholar] [CrossRef] [Green Version]
- Basche, A.D.; Kaspar, T.C.; Archontoulis, S.V.; Jaynes, D.B.; Sauer, T.J.; Parkin, T.B.; Miguez, F.E. Soil Water Improvements with the Long-Term Use of a Winter Rye Cover Crop. Agric. Water Manag. 2016, 172, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Daryanto, S.; Fu, B.; Wang, L.; Jacinthe, P.A.; Zhao, W. Quantitative Synthesis on the Ecosystem Services of Cover Crops. Earth Sci. Rev. 2018, 185, 357–373. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Cheng, K.; Yue, Q.; Chadwick, D.; Espenberg, M.; Truu, J.; Rees, R.M.; Smith, P. A Critical Review of the Impacts of Cover Crops on Nitrogen Leaching, Net Greenhouse Gas Balance and Crop Productivity. Glob. Chang. Biol. 2019, 25, 2530–2543. [Google Scholar] [CrossRef] [Green Version]
- Poeplau, C.; Don, A. Carbon Sequestration in Agricultural Soils via Cultivation of Cover Crops—A Meta-Analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Guenet, B.; Gabrielle, B.; Chenu, C.; Arrouays, D.; Balesdent, J.; Bernoux, M.; Bruni, E.; Caliman, J.P.; Cardinael, R.; Chen, S.; et al. Can N2O Emissions Offset the Benefits from Soil Organic Carbon Storage? Glob. Chang. Biol. 2021, 27, 237–256. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, E.; Kersebaum, K.C.; Ausseil, A.G.; Cichota, R.; Guo, J.; Johnstone, P.; George, M.; Liu, J.; Malcolm, B.; Khaembah, E.; et al. Understanding Spatial and Temporal Variability of N Leaching Reduction by Winter Cover Crops under Climate Change. Sci. Total Environ. 2021, 771, 144770. [Google Scholar] [CrossRef]
- Jordon, M.W.; Smith, P.; Long, P.R.; Bürkner, P.C.; Petrokofsky, G.; Willis, K.J. Can Regenerative Agriculture Increase National Soil Carbon Stocks? Simulated Country-Scale Adoption of Reduced Tillage, Cover Cropping, and Ley-Arable Integration Using RothC. Sci. Total Environ. 2022, 825, 153955. [Google Scholar] [CrossRef]
- Holzworth, D.P.; Huth, N.I.; de Voil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; van Oosterom, E.J.; Snow, V.; Murphy, C.; et al. APSIM—Evolution towards a New Generation of Agricultural Systems Simulation. Environ. Model. Softw. 2014, 62, 327–350. [Google Scholar] [CrossRef]
- Dokoohaki, H.; Morrison, B.D.; Raiho, A.; Serbin, S.P.; Zarada, K.; Dramko, L.; Dietze, M. Development of an Open-Source Regional Data Assimilation System in PEcAn v. 1.7.2: Application to Carbon Cycle Reanalysis across the Contiguous US Using SIPNET. Geosci. Model Dev. 2022, 15, 3233–3252. [Google Scholar] [CrossRef]
- Kivi, M.; Blakely, B.; Masters, M.; Bernacchi, C.J.; Miguez, F.E.; Dokoohaki, H. Development of a Data-Assimilation System to Forecast Agricultural Systems: A Case Study of Constraining Soil Water and Soil Nitrogen Dynamics in the APSIM Model. Sci. Total Environ. 2022, 820, 153192. [Google Scholar] [CrossRef]
- Rai, T.S.; Nleya, T.; Kumar, S.; Sexton, P.; Wang, T.; Fan, Y. The Medium-Term Impacts of Integrated Crop–Livestock Systems on Crop Yield and Economic Performance. Agron. J. 2021, 113, 5207–5221. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, S. Evaluation of the DNDCv.CAN Model for Simulating Greenhouse Gas Emissions under Crop Rotations That Include Winter Cover Crops. Soil Res. 2022, 60, 534–546. [Google Scholar] [CrossRef]
- Adhikari, P.; Omani, N.; Ale, S.; DeLaune, P.B.; Thorp, K.R.; Barnes, E.M.; Hoogenboom, G. Simulated Effects of Winter Wheat Cover Crop on Cotton Production Systems of the Texas Rolling Plains. Trans. ASABE 2017, 60, 2083–2096. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.; Guan, K.; Zhou, W.; Peng, B.; Villamil, M.B.; Jin, Z.; Tang, J.; Grant, R.; Gentry, L.; Margenot, A.J.; et al. Assessing the Impacts of Cover Crops on Maize and Soybean Yield in the U.S. Midwestern Agroecosystems. Field Crops Res. 2021, 273, 108264. [Google Scholar] [CrossRef]
- USDA/NASS State Agriculture Overview for Illinois. Available online: https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=ILLINOIS (accessed on 27 January 2022).
- Jones, C. CERES-Maize; a Simulation Model of Maize Growth and Development; Texas A&M University Press: College Station, TX, USA, 1986. [Google Scholar]
- Elliott, J.; Kelly, D.; Chryssanthacopoulos, J.; Glotter, M.; Jhunjhnuwala, K.; Best, N.; Wilde, M.; Foster, I. The Parallel System for Integrating Impact Models and Sectors (PSIMS). Environ. Model. Softw. 2014, 62, 509–516. [Google Scholar] [CrossRef] [Green Version]
- Dokoohaki, H.; Kivi, M.S.; Martinez-Feria, R.; Miguez, F.E.; Hoogenboom, G. A Comprehensive Uncertainty Quantification of Large-Scale Process-Based Crop Modeling Frameworks. Environ. Res. Lett. 2021, 16, 084010. [Google Scholar] [CrossRef]
- Shangguan, W.; Dai, Y.; Duan, Q.; Liu, B.; Yuan, H. A Global Soil Data Set for Earth System Modeling. J. Adv. Model. Earth Syst. 2014, 6, 249–263. [Google Scholar] [CrossRef]
- Hengl, T.; de Jesus, J.M.; Heuvelink, G.B.M.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global Gridded Soil Information Based on Machine Learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A Decimal Code for the Growth Stages of Cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Dietzel, R.; Liebman, M.; Ewing, R.; Helmers, M.; Horton, R.; Jarchow, M.; Archontoulis, S. How Efficiently Do Corn-and Soybean-based Cropping Systems Use Water? A Systems Modeling Analysis. Glob. Chang. Biol. 2015, 22, 666–681. [Google Scholar] [CrossRef]
- Marcillo, G.S.; Carlson, S.; Filbert, M.; Kaspar, T.; Plastina, A.; Miguez, F.E. Maize System Impacts of Cover Crop Management Decisions: A Simulation Analysis of Rye Biomass Response to Planting Populations in Iowa, U.S.A. Agric. Syst. 2019, 176, 102651. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Chenu, K.; Doherty, A.; Chapman, S. This Documentation Is Compiled from the Source Codes and Internal Documents of APSIM-Wheat Module. In The APSIM-Wheat Module (7.5 R3008); Agricultural Production Systems Simulator (APSIM) Initiative, CSIRO: Canberra, Australia, 2015. [Google Scholar]
- Feyereisen, G.W.; Sands, G.R.; Wilson, B.N.; Strock, J.S.; Porter, P.M. Plant Growth Component of a Simple Rye Growth Model. Trans. ASABE 2006, 49, 1569–1578. [Google Scholar] [CrossRef]
- Wallach, D.; Makowski, D.; Jones, J.W.; Brun, F. Uncertainty and Sensitivity Analysis. In Working with Dynamic Crop Models; Elsevier: Amsterdam, The Netherlands, 2019; pp. 209–250. [Google Scholar]
- Dietze, M.C. Propagating, Analyzing, and Reducing Uncertainty. In Ecological Forecasting; Princeton University Press: Princeton, NJ, USA, 2017; pp. 138–164. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Wood, S. Generalized Additive Models; Chapman and Hall/CRC: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef] [Green Version]
- NIMBLE Development Team. NIMBLE: MCMC, Particle Filtering, and Programmable Hierarchical Modeling. Zenodo 2021. [Google Scholar] [CrossRef]
- de Valpine, P.; Turek, D.; Paciorek, C.J.; Anderson-Bergman, C.; Lang, D.T.; Bodik, R. Programming With Models: Writing Statistical Algorithms for General Model Structures With NIMBLE. J. Comput. Graph. Stat. 2017, 26, 403–413. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.M.; Yang, J.Y.; Liu, S.; Hoogenboom, G. An Evaluation of the Statistical Methods for Testing the Performance of Crop Models with Observed Data. Agric. Syst. 2014, 127, 81–89. [Google Scholar] [CrossRef]
- Iqbal, J.; Mitchell, D.C.; Barker, D.W.; Miguez, F.; Sawyer, J.E.; Pantoja, J.; Castellano, M.J. Does Nitrogen Fertilizer Application Rate to Corn Affect Nitrous Oxide Emissions from the Rotated Soybean Crop? J. Environ. Qual. 2015, 44, 711–719. [Google Scholar] [CrossRef] [Green Version]
- Elliott, J.; Müller, C.; Deryng, D.; Chryssanthacopoulos, J.; Boote, K.J.; Büchner, M.; Foster, I.; Glotter, M.; Heinke, J.; Iizumi, T.; et al. The Global Gridded Crop Model Intercomparison: Data and Modeling Protocols for Phase 1 (v1.0). Geosci. Model Dev. 2015, 8, 261–277. [Google Scholar] [CrossRef] [Green Version]
- Dokoohaki, H.; Rai, T.; Kivi, M.; Lewis, P.; Gómez-Dans, J.L.; Yin, F. Linking Remote Sensing with APSIM through Emulation and Bayesian Optimization to Improve Yield Prediction. Remote Sens. 2022, 14, 5389. [Google Scholar] [CrossRef]
- Boehm, J.D.; Abdel-Haleem, H.; Schapaugh, W.T.; Rainey, K.; Pantalone, V.R.; Shannon, G.; Klein, J.; Carter, T.E.; Cardinal, A.J.; Shipe, E.R.; et al. Genetic Improvement of US Soybean in Maturity Groups V, VI, and VII. Crop Sci. 2019, 59, 1838–1852. [Google Scholar] [CrossRef]
- Ruis, S.J.; Blanco-Canqui, H.; Creech, C.F.; Koehler-Cole, K.; Elmore, R.W.; Francis, C.A. Cover Crop Biomass Production in Temperate Agroecozones. Agron. J. 2019, 111, 1535–1551. [Google Scholar] [CrossRef]
- Dozier, I.A.; Behnke, G.D.; Davis, A.S.; Nafziger, E.D.; Villamil, M.B. Tillage and Cover Cropping Effects on Soil Properties and Crop Production in Illinois. Agron. J. 2017, 109, 1261–1270. [Google Scholar] [CrossRef] [Green Version]
- Polyakov, V.; Lal, R. Modeling Soil Organic Matter Dynamics as Affected by Soil Water Erosion. Environ. Int. 2004, 30, 547–556. [Google Scholar] [CrossRef]
- Dokoohaki, H.; Miguez, F.E.; Laird, D.; Dumortier, J. Where Should We Apply Biochar? Environ. Res. Lett. 2019, 14, 044005. [Google Scholar] [CrossRef]
- Singh, J.; Singh, N.; Kumar, S. X-Ray Computed Tomography–Measured Soil Pore Parameters as Influenced by Crop Rotations and Cover Crops. Soil Sci. Soc. Am. J. 2020, 84, 1267–1279. [Google Scholar] [CrossRef]
- Chatterjee, N.; Archontoulis, S.V.; Bastidas, A.; Proctor, C.A.; Elmore, R.W.; Basche, A.D. Simulating Winter Rye Cover Crop Production under Alternative Management in a Corn-soybean Rotation. Agron. J. 2020, 112, 4648–4665. [Google Scholar] [CrossRef]
- Pantoja, J.L.; Woli, K.P.; Sawyer, J.E.; Barker, D.W. Corn Nitrogen Fertilization Requirement and Corn–Soybean Productivity with a Rye Cover Crop. Soil Sci. Soc. Am. J. 2015, 79, 1482–1495. [Google Scholar] [CrossRef] [Green Version]
- Moore, E.B.; Wiedenhoeft, M.H.; Kaspar, T.C.; Cambardella, C.A. Rye Cover Crop Effects on Soil Quality in No-Till Corn Silage–Soybean Cropping Systems. Soil Sci. Soc. Am. J. 2014, 78, 968–976. [Google Scholar] [CrossRef]
- Acuña, J.C.M.; Villamil, M.B. Short-Term Effects of Cover Crops and Compaction on Soil Properties and Soybean Production in Illinois. Agron. J. 2014, 106, 860–870. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J. Cover Crop Impacts on Soil Physical Properties: A Review. Soil Sci. Soc. Am. J. 2020, 84, 1527–1576. [Google Scholar] [CrossRef]
- USDA-NASS. United States Summary and State Data Volume 1 • Geographic Area Series • Part 51 United States Department of Agriculture; USDA-NASS: Washington, DC, USA, 2017.
- Plastina, A.; Liu, F.; Miguez, F.; Carlson, S. Cover Crops Use in Midwestern US Agriculture: Perceived Benefits and Net Returns. Renew. Agric. Food Syst. 2020, 35, 38–48. [Google Scholar] [CrossRef] [Green Version]
- CTIC. Report of the 2019–2020 National Cover Crop Survey; Joint publication of the Conservation Technology Information Center, The North Central Region Sustainable Agriculture Research and Education Program, and the American Seed Trade Association: West Lafayette, IN, USA, 2020. [Google Scholar]
- Vose, R.S.; Applequist, S.; Squires, M.; Durre, I.; Menne, C.J.; Williams, C.N.; Fenimore, C.; Gleason, K.; Arndt, D. Improved Historical Temperature and Precipitation Time Series for U.S. Climate Divisions. J. Appl. Meteorol. Climatol. 2014, 53, 1232–1251. [Google Scholar] [CrossRef]
- Chabbi, A.; Lehmann, J.; Ciais, P.; Loescher, H.W.; Cotrufo, M.F.; Don, A.; Sanclements, M.; Schipper, L.; Six, J.; Smith, P.; et al. Aligning Agriculture and Climate Policy. Nat. Clim. Chang. 2017, 7, 307–309. [Google Scholar] [CrossRef]
- Chambers, A.; Lal, R.; Paustian, K. Soil Carbon Sequestration Potential of US Croplands and Grasslands: Implementing the 4 per Thousand Initiative. J. Soil Water Conserv. 2016, 71, 68A–74A. [Google Scholar] [CrossRef] [Green Version]
- Lal, R.; Bouma, J.; Brevik, E.; Dawson, L.; Field, D.J.; Glaser, B.; Hatano, R.; Hartemink, A.E.; Kosaki, T.; Lascelles, B.; et al. Soils and Sustainable Development Goals of the United Nations: An International Union of Soil Sciences Perspective. Geoderma Reg. 2021, 25, e00398. [Google Scholar] [CrossRef]
- Dokoohaki, H. The Promise of Biochar: From Lab Experiment to National Scale Impacts. Licentiate Thesis, Iowa State University, Ames, IA, USA, 2018. [Google Scholar]
- Mohanty, M.; Sinha, N.K.; Somasundaram, J.; McDermid, S.S.; Patra, A.K.; Singh, M.; Dwivedi, A.K.; Reddy, K.S.; Rao, C.S.; Prabhakar, M.; et al. Soil Carbon Sequestration Potential in a Vertisol in Central India- Results from a 43-Year Long-Term Experiment and APSIM Modeling. Agric. Syst. 2020, 184, 102906. [Google Scholar] [CrossRef]
Name | Options | Definition |
---|---|---|
Initial Conditions | Residue type (RT) | RT ~ sample (corn, soybean) |
Residue weight (RW; kg ha−1) | RW ~ U (100, 2500) | |
Water fraction (WF) | WF ~ U (0.05, 0.95) | |
Soil | GSDE/SoilGrid | |
Weather | 10 ensembles from ERA5 | |
Management | Planting date (pdate) | pdate + N (µ = 0, σ = sd(pdate)) |
Harvesting date (hdate) | hdate + N (µ = 0, σ = sd(hdate)) | |
Rye seeding rate (plpop; seeds m−2) | plpop ~ U (200, 500) | |
Parameters | Corn: Ensemble of 6 cultivar parameters | |
Soybean: Ensemble of predefined cultivars depending upon maturity group, based on latitude (30 total genotypes varying from MG 2 to MG 4) | ||
Rye: Ensemble of 7 optimized genotypes |
Parameter | Description | Default Value | Priors for Calibration |
---|---|---|---|
pesw_germ * | Plant extractable soil water in seedling layer inadequate for germination (mm/mm) | 0.00 | ~N (µ = 0.15, σ = 1) |
tt_end_of_juvenile * | The potential period from end of juvenile stage to terminal spikelet stage (°Cd) | 400 | ~N (µ = 400, σ = 25) |
tt_floral_initiation | The potential period from floral initiation flowering stage (°Cd) | 555 | |
vern_sens * | Vernalization sensitivity | 1.5 | ~N (µ = 5, σ = 2) |
photop-sens * | Photoperiod sensitivity | 3.0 | ~N (µ = 5, σ = 2) |
y_rue1 (fall) | Radiation use efficiency for fall (g MJ−1) | 1.24 | |
y_rue2 (spring) * | Radiation use efficiency for spring (g MJ−1) | 1.24 | ~N (µ = 2.98, σ = 1) |
x_ave_temp1 | Lower bound of the mean daily temperature where photosynthesis is not hindered (°C) | 10 | |
x_ave_temp2 | Upper bound of the mean daily temperature where photosynthesis is not hindered (°C) | 25 |
Variables | CRCR (%) | CRSR (%) | |
---|---|---|---|
CrC | CrS | ||
Latitude | 89 (−773) | 67 (−207) | 73 (−186) |
Precipitation | 3 (−38) | 1 (−8) | 5 (−51) |
Temperature | 2 (2077) | 1 (646) | 3 (2257) |
Clay | - | 7 (33) | 5 (118) |
Sand | - | 2 (19) | - |
CEC | - | 3 (138) | - |
pH | - | 1 (701) | - |
Residuals | 5 | 17 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rai, T.; Lee, N.; Williams, M., II; Davis, A.; Villamil, M.B.; Dokoohaki, H. Probabilistic Assessment of Cereal Rye Cover Crop Impacts on Regional Crop Yield and Soil Carbon. Agriculture 2023, 13, 176. https://doi.org/10.3390/agriculture13010176
Rai T, Lee N, Williams M II, Davis A, Villamil MB, Dokoohaki H. Probabilistic Assessment of Cereal Rye Cover Crop Impacts on Regional Crop Yield and Soil Carbon. Agriculture. 2023; 13(1):176. https://doi.org/10.3390/agriculture13010176
Chicago/Turabian StyleRai, Teerath, Nicole Lee, Martin Williams, II, Adam Davis, María B. Villamil, and Hamze Dokoohaki. 2023. "Probabilistic Assessment of Cereal Rye Cover Crop Impacts on Regional Crop Yield and Soil Carbon" Agriculture 13, no. 1: 176. https://doi.org/10.3390/agriculture13010176
APA StyleRai, T., Lee, N., Williams, M., II, Davis, A., Villamil, M. B., & Dokoohaki, H. (2023). Probabilistic Assessment of Cereal Rye Cover Crop Impacts on Regional Crop Yield and Soil Carbon. Agriculture, 13(1), 176. https://doi.org/10.3390/agriculture13010176