Soil Bioplastic Mulches for Agroecosystem Sustainability: A Comprehensive Review
Abstract
:1. Introduction
2. General Background of Mulching
2.1. History and Economic Importance
2.2. Classification of Mulching and Main Issues
3. Plastic Mulch Materials
3.1. Polymers and Plastics
3.1.1. Conventional Petroleum-Based Plastics (CPs)
3.1.2. Bioplastics (BPs)
4. Biodegradable Plastic Mulches’ (BdPMs) Degradation in Soil
4.1. Abiotic Degradation
4.2. Biodegradation by Bacteria and Fungi
4.3. Biodegradation Methods
5. Effect of BdPMs on Soil Microorganisms and Their Activity
6. Effect of BdPMs on Weed Control
References | Product Name | Thickness (μm) | Key Product Ingredient(s) | Effect on Weeds | Main Crop |
---|---|---|---|---|---|
Zhang et al. [139] * | black polyethylene | 15.0 | PE | 97.2% WC | Lycopersicon esculentum (L.) Karsten ex Farw. |
black Mater-Bi® | 15.0 | Starch based, organic polyesters | 91.5% WC | ||
black Biofilm® | 17.0 | Organic polyesters + natural plasticizer | 86.0% WC | ||
black Enviroplast® | 15.0 | Oxo-degradable plastic mulch | 94.3% WC | ||
Zhang et al. [145] * | black polyethylene | 25.4 | PE | 0.1 weed m−2 | Cucurbita pepo L. |
clear polyethylene | 25.4 | PE | 10.1 weed m−2 | ||
clear Organix | 17.8 | PLA + PBAT | 34.5 weed m−2 | ||
black Organix | 15.2 | PLA + PBAT | 2.3 weed m−2 | ||
black film organic | 15.2 | − | 0.3 weed m−2 | ||
black AMX-01 | 254.0 | not provided by manufacturer | 0.4 weed m−2 | ||
brown WeedGuardPlus | 240.0 | Cellulose | 1.0 weed m−2 | ||
Marín-Guirao et al. [137] * | black polyethylene | 37.5 | PE | ~20% WP | L. esculentum |
Sotrafilm NG Bio | 18.0 | PLA + PBAT | ~18% WP | ||
Ngouajio et al. [144] * | low-density polyethylene | 25.0 | PE | 100.0% WC | L. esculentum |
black Ecoflex® | 25.0 | PBAT | 97.2% WC | ||
white Ecoflex® | 25.0 | PBAT | 28.74% WC | ||
black Ecoflex® | 35.0 | PBAT | 98.5% WC | ||
white Ecoflex® | 35.0 | PBAT | 33.7% WC | ||
Marí et al. [143] * | low-density polyethylene | 15.0 | PE | ~66% NC | Capsicum annuum L. |
black Sphere® 4 | 15.0 | Potato starch | ~56% NC | ||
black Mater-Bi® | 15.0 | Corn starch, co-polyester, vegetable oils | ~63% NC | ||
black Sphere® 6 | 15.0 | Potato starch | ~62% NC | ||
black Bioflex® | 15.0 | PLA, co-polyester | ~55% NC | ||
black Ecovio® | 15.0 | PLA | ~56% NC | ||
light brown Arrosi® 240 | 80.0 | Cellulosic fiber | ~91% NC | ||
light brown Arrosi® 69 | 80.0 | Cellulosic fiber | ~96% NC | ||
black Mimgreen® | 85.0 | Cellulosic fiber | ~99% NC |
7. Effect of Biodegradable Mulches on Soil Properties
8. Conclusive Remarks
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- European Bioplastics European Bioplastics. Available online: https://www.european-bioplastics.org/bioplastics/ (accessed on 31 July 2022).
- Kasirajan, S.; Ngouajio, M. Polyethylene and Biodegradable Mulches for Agricultural Applications: A Review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Kyrikou, I.; Briassoulis, D. Biodegradation of Agricultural Plastic Films: A Critical Review. J. Polym. Environ. 2007, 15, 125–150. [Google Scholar] [CrossRef]
- Tosin, M.; Barbale, M.; Chinaglia, S.; Degli-Innocenti, F. Disintegration and Mineralization of Mulch Films and Leaf Litter in Soil. Polym. Degrad. Stab. 2020, 179, 109309. [Google Scholar] [CrossRef]
- Danso, D.; Chow, J.; Streita, W.R. Plastics: Environmental and Biotechnological Perspectives on Microbial Degradation. Appl. Environ. Microbiol. 2019, 85, e01095-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zettler, E.R.; Mincer, T.J.; Amaral-Zettler, L.A. Life in the “plastisphere”: Microbial communities on plastic marine debris. Environ. Sci. Technol. 2013, 47, 7137–7146. [Google Scholar] [CrossRef] [PubMed]
- Zurier, H.S.; Goddard, J.M. Biodegradation of microplastics in food and agriculture. Curr. Opin. Food Sci. 2021, 37, 37–44. [Google Scholar] [CrossRef]
- Oxford University Press Oxford English Dictionary Online. Available online: https://www.oed.com (accessed on 2 August 2022).
- Harper, D. Online Etymology Dictionary. Available online: https://www.etymonline.com/ (accessed on 2 August 2022).
- Lightfoot, D.R. The Nature, History, and Distribution of Lithic Mulch Agriculture: An Ancient Technique of Dryland Agriculture. Agric. Hist. Rev. 1996, 44, 206–222. [Google Scholar]
- McCalla, T.M.; Army, T.J. Stubble Mulch Farming. Adv. Agron. 1961, 13, 125–196. [Google Scholar] [CrossRef]
- Li, A.; Zhang, J.; Ren, S.; Zhang, Y.; Zhang, F. Research Progress on Preparation and Field Application of Paper Mulch. Environ. Technol. Innov. 2021, 24, 101949. [Google Scholar] [CrossRef]
- Bartholomew, D.P.; Hawkins, R.A.; Lopez, J.A. Hawaii Pineapple: The Rise and Fall of an Industry. HortScience 2012, 47, 1390–1398. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M.H.; Malter, A.J. Protected Agriculture: A Global Review; The World Bank: Washington, DC, USA, 1995; ISBN 0821329308. [Google Scholar]
- Jouet, J.-P. Plastics in the World. Plasticulture 2001, 120, 108–126. [Google Scholar]
- Jouet, J.-P. The Situation of Plasticulture in the World. Plasticulture 2004, 123, 48–57. [Google Scholar]
- Castellón Petrovich, H.F. Situación de La Plasticultura Mundial y El XXI Congreso CIPA. 2022. Available online: https://www.researchgate.net/publication/360264665 (accessed on 7 September 2022). [CrossRef]
- An, L.; Liu, Q.; Deng, Y.; Wu, W.; Gao, Y.; Ling, W. Sources of Microplastic in the Environment. In Microplastics in Terrestrial Environments. The Handbook of Environmental Chemistry; He, D., Luo, Y., Eds.; Springer: Cham, Switzerland, 2020; Volume 95, pp. 143–159. [Google Scholar] [CrossRef]
- Jansen, L.; Henskens, M.; Hiemstra, F. Report on Use of Plastics in Agriculture; Schuttelaar & Partners: Wageningen, The Netherlands, 2019. [Google Scholar]
- APE Europe Agriculture Plastics Environment (APE) Europe. Available online: https://apeeurope.eu/statistics (accessed on 31 July 2022).
- Chalker-Scott, L. Impact of Mulches on Landscape Plants and the Environment. J. Environ. Hortic. 2007, 25, 239–249. [Google Scholar] [CrossRef]
- Lamont, W.J., Jr. Plastic Mulches for the Production of Vegetable Crops. In A Guide to the Manufacture, Performance, and Potential of Plastics in Agriculture; Orzolek, M.D., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; Chapter 3, pp. 45–60. [Google Scholar] [CrossRef]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic Mulching in Agriculture. Trading Short-Term Agronomic Benefits for Long-Term Soil Degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef]
- Mauro, R.P.; Anastasi, U.; Lombardo, S.; Pandino, G.; Pesce, R.; Restuccia, A.; Mauromicale, G. Cover Crops for Managing Weeds, Soil Chemical Fertility and Nutritional Status of Organically Grown Orange Orchard in Sicily. Ital. J. Agron. 2015, 10, 101–104. [Google Scholar] [CrossRef] [Green Version]
- Scavo, A.; Fontanazza, S.; Restuccia, A.; Pesce, G.R.; Abbate, C.; Mauromicale, G. The Role of Cover Crops in Improving Soil Fertility and Plant Nutritional Status in Temperate Climates. A Review. Agron. Sustain. Dev. 2022, 42, 93. [Google Scholar] [CrossRef]
- Restuccia, A.; Scavo, A.; Lombardo, S.; Pandino, G.; Fontanazza, S.; Anastasi, U.; Abbate, C.; Mauromicale, G. Long-Term Effect of Cover Crops on Species Abundance and Diversity of Weed Flora. Plants 2020, 9, 1506. [Google Scholar] [CrossRef]
- Scavo, A.; Restuccia, A.; Abbate, C.; Lombardo, S.; Fontanazza, S.; Pandino, G.; Anastasi, U.; Mauromicale, G. Trifolium Subterraneum Cover Cropping Enhances Soil Fertility and Weed Seedbank Dynamics in a Mediterranean Apricot Orchard. Agron. Sustain. Dev. 2021, 41, 70. [Google Scholar] [CrossRef]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Ito, K. Recent Advances in Mulching Materials and Methods for Modifying Soil Environment. Soil Tillage Res. 2017, 168, 155–166. [Google Scholar] [CrossRef]
- Mendonça, S.R.; Ávila, M.C.R.; Vital, R.G.; Evangelista, Z.R.; Pontes, N.d.C.; Nascimento, A.d.R. The Effect of Different Mulching on Tomato Development and Yield. Sci. Hortic. 2021, 275, 109657. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Zhao, X.; Wang, F. Mulching Increases Water-Use Efficiency of Peach Production on the Rainfed Semiarid Loess Plateau of China. Agric. Water Manag. 2015, 154, 20–28. [Google Scholar] [CrossRef]
- Tarara, J.M. Microclimate Modification with Plastic Mulch. HortScience 2000, 35, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.C.; Olson, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at Sea: Where Is All the Plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Horodytska, O.; Valdés, F.J.; Fullana, A. Plastic Flexible Films Waste Management—A State of Art Review. Waste Management 2018, 77, 413–425. [Google Scholar] [CrossRef]
- Le Moine, B.; Ferry, X. Plasticulture: Economy of Resources. Acta Hortic. 2020, 1271, 481–486. [Google Scholar] [CrossRef]
- Kulkarni, V.; Butte, K.; Rathod, S. Natural Polymers—A Comprehensive Review. Int. J. Pharm. Biomed. Res. 2012, 3, 1597–1613. [Google Scholar]
- van der Vegt, A.K. From Polymers to Plastics; VSSD: Delft, The Netherlands, 2006; ISBN 9789071301629. [Google Scholar]
- Suman, T.Y.; Li, W.G.; Alif, S.; Faris, V.R.P.; Amarnath, D.J.; Ma, J.G.; Pei, D.S. Characterization of Petroleum-Based Plastics and Their Absorbed Trace Metals from the Sediments of the Marina Beach in Chennai, India. Environ. Sci. Eur. 2020, 32, 110. [Google Scholar] [CrossRef]
- Andrady, A.L.; Neal, M.A. Applications and Societal Benefits of Plastics. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2009, 364, 1977–1984. [Google Scholar] [CrossRef] [Green Version]
- British Plastics Federation British Plastics Federation. Available online: https://www.bpf.co.uk/press/Oil_Consumption (accessed on 10 August 2022).
- Cabernard, L.; Pfister, S.; Oberschelp, C.; Hellweg, S. Growing Environmental Footprint of Plastics Driven by Coal Combustion. Nat. Sustain. 2022, 5, 139–148. [Google Scholar] [CrossRef]
- Espí, E.; Salmerón, A.; Fontecha, A.; García, Y.; Real, A.I. Plastic Films for Agricultural Applications. J. Plast. Film Sheeting 2006, 22, 85–102. [Google Scholar] [CrossRef]
- Scarascia-Mugnozza, G.; Sica, C.; Russo, G. Plastic Materials in European Agriculture: Actual Use and Perspectives. J. Agric. Eng. 2012, 42, 15. [Google Scholar] [CrossRef]
- Zhang, H.; Miles, C.; Gerdeman, B.; LaHue, D.G.; DeVetter, L. Plastic Mulch Use in Perennial Fruit Cropping Systems—A Review. Sci. Hortic. 2021, 281, 109975. [Google Scholar] [CrossRef]
- Omnexus Comprehensive Guide on Polyethylene (PE). Available online: https://omnexus.specialchem.com/selection-guide/polyethylene-plastic (accessed on 15 August 2022).
- Lü, H.; Mo, C.H.; Zhao, H.M.; Xiang, L.; Katsoyiannis, A.; Li, Y.W.; Cai, Q.Y.; Wong, M.H. Soil Contamination and Sources of Phthalates and Its Health Risk in China: A Review. Environ. Res. 2018, 164, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Carus, M. Bio-Based Building Blocks and Polymers—Global Capacities, Production, and Applications–Status Quo and Trends 2018–2023; Nova-Institute for Ecology and Innovation: Hürth, Germany, 2019; pp. 1–16. [Google Scholar]
- Carus, M. Bio-Based Building Blocks and Polymers—Global Capacities, Production and Trends 2020–2025; Nova-Institute for Ecology and Innovation: Hürth, Germany, 2021; pp. 1–16. [Google Scholar]
- Karan, H.; Funk, C.; Grabert, M.; Oey, M.; Hankamer, B. Green Bioplastics as Part of a Circular Bioeconomy. Trends Plant Sci. 2019, 24, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Gironi, F.; Piemonte, V. Bioplastics and Petroleum-Based Plastics: Strengths and Weaknesses. Energy Sources A Recovery Util. Environ. Eff. 2011, 33, 1949–1959. [Google Scholar] [CrossRef]
- Bastioli, C. Properties and Applications of Mater-Bi Starch-Based Materials. Polym. Degrad. Stab. 1998, 59, 263–272. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Calabia, B.P.; Ugwu, C.U.; Aiba, S. Biodegradability of Plastics. Int. J. Mol. Sci. 2009, 10, 3722–3742. [Google Scholar] [CrossRef] [Green Version]
- Sudesh, K.; Abe, H.; Doi, Y. Synthesis, Structure and Properties of Polyhydroxyalkanoates: Biological Polyesters. Prog. Polym. Sci. 2000, 25, 1503–1555. [Google Scholar] [CrossRef]
- Lu, J.; Tappel, R.C.; Nomura, C.T. Mini-Review: Biosynthesis of Poly(Hydroxyalkanoates). Polym. Rev. 2009, 49, 226–248. [Google Scholar] [CrossRef]
- Olivera, E.R.; Arcos, M.; Naharro, G.; Luengo, J.M. Unusual PHA Biosynthesis. In Plastics from Bacteria; Chen, G.Q., Ed.; Springer: Berlin, Germany, 2010; pp. 133–186. [Google Scholar] [CrossRef]
- Dobrogojski, J.; Spychalski, M.; Luciński, R.; Borek, S. Transgenic Plants as a Source of Polyhydroxyalkanoates. Acta Physiol. Plant 2018, 40, 1–17. [Google Scholar] [CrossRef]
- Gao, Q.; Yang, H.; Wang, C.; Xie, X.Y.; Liu, K.X.; Lin, Y.; Han, S.Y.; Zhu, M.; Neureiter, M.; Lin, Y.; et al. Advances and Trends in Microbial Production of Polyhydroxyalkanoates and Their Building Blocks. Front. Bioeng. Biotechnol. 2022, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Amelia, T.S.M.; Govindasamy, S.; Tamothran, A.M.; Vigneswari, S.; Bhubalan, K. Applications of PHA in Agriculture. In Biotechnological Applications of Polyhydroxyalkanoates; Kalia, V., Ed.; Springer: Singapore, 2019; pp. 347–361. [Google Scholar] [CrossRef]
- Noda, I.; Satkowski, M.M.; Dowrey, A.E.; Marcott, C. Polymer Alloys of Nodax Copolymers and Poly(Lactic Acid). Macromol. Biosci. 2004, 4, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Balla, E.; Daniilidis, V.; Karlioti, G.; Kalamas, T.; Stefanidou, M.; Bikiaris, N.D.; Vlachopoulos, A.; Koumentakou, I.; Bikiaris, D.N. Poly(Lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties -From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers 2021, 13, 1822. [Google Scholar] [CrossRef] [PubMed]
- Masutani, K.; Kimura, Y. PLA Synthesis. From the Monomer to the Polymer. In Poly(lactic acid) Science and Technology: Processing, Properties, Additives and Applications; Jiménez, A., Peltzer, M., Ruseckaite, R., Eds.; The Royal Society of Chemistry: London, UK, 2014; Chapter 1, pp. 1–36. [Google Scholar] [CrossRef]
- Hayes, D.G.; Dharmalingam, S.; Wadsworth, L.C.; Leonas, K.K.; Miles, C.; Inglis, D. Biodegradable Agricultural Mulches Derived from Biopolymers. In Degradable Polymers and Materials: Principles and Practice; Khemani, K., Scholz, C., Eds.; American Chemical Society: Washington, DC, USA, 2012; Chapter 13, 201–223. [Google Scholar] [CrossRef]
- Dharmalingam, S.; Hayes, D.G.; Wadsworth, L.C.; Dunlap, R.N.; DeBruyn, J.M.; Lee, J.; Wszelaki, A.L. Soil Degradation of Polylactic Acid/Polyhydroxyalkanoate-Based Nonwoven Mulches. J. Polym. Environ. 2015, 23, 302–315. [Google Scholar] [CrossRef]
- Hablot, E.; Dharmalingam, S.; Hayes, D.G.; Wadsworth, L.C.; Blazy, C.; Narayan, R. Effect of Simulated Weathering on Physicochemical Properties and Inherent Biodegradation of PLA/PHA Nonwoven Mulches. J. Polym. Environ. 2014, 22, 417–429. [Google Scholar] [CrossRef]
- Fan, D.; Dai, D.J.; Wu, H.S. Ethylene Formation by Catalytic Dehydration of Ethanol with Industrial Considerations. Materials 2013, 6, 101–115. [Google Scholar] [CrossRef] [Green Version]
- Miles, C.; DeVetter, L.; Ghimire, S.; Hayes, D.G. Suitability of Biodegradable Plastic Mulches for Organic and Sustainable Agricultural Production Systems. HortScience 2017, 52, 10–15. [Google Scholar] [CrossRef]
- Zumstein, M.T.; Schintlmeister, A.; Nelson, T.F.; Baumgartner, R.; Woebken, D.; Wagner, M.; Kohler, H.P.E.; McNeill, K.; Sander, M. Biodegradation of Synthetic Polymers in Soils: Tracking Carbon into CO2 and Microbial Biomass. Sci. Adv. 2018, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Chiellini, E.; Cinelli, P.; Corti, A.; Kenawy, E.R. Composite Films Based on Waste Gelatin: Thermal-Mechanical Properties and Biodegradation Testing. Polym. Degrad. Stab. 2001, 73, 549–555. [Google Scholar] [CrossRef]
- Sartore, L.; Vox, G.; Schettini, E. Preparation and Performance of Novel Biodegradable Polymeric Materials Based on Hydrolyzed Proteins for Agricultural Application. J. Polym. Environ. 2013, 21, 718–725. [Google Scholar] [CrossRef]
- Setti, L.; Francia, E.; Pulvirenti, A.; De Leo, R.; Martinelli, S.; Maistrello, L.; MacAvei, L.I.; Montorsi, M.; Barbi, S.; Ronga, D. Bioplastic Film from Black Soldier Fly Prepupae Proteins Used as Mulch: Preliminary Results. Agronomy 2020, 10, 933. [Google Scholar] [CrossRef]
- Guerrero, P.; Retegi, A.; Gabilondo, N.; De La Caba, K. Mechanical and Thermal Properties of Soy Protein Films Processed by Casting and Compression. J. Food Eng. 2010, 100, 145–151. [Google Scholar] [CrossRef]
- Han, Y.; Li, K.; Chen, H.; Li, J. Properties of Soy Protein Isolate Biopolymer Film Modified by Graphene. Polymers 2017, 9, 312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibarra, V.G.; Sendón, R.; De Quirós, A.R.B. Antimicrobial Food Packaging Based on Biodegradable Materials. In Antimicrobial Food Packaging; Barros-Velázquez, J., Ed.; Academic Press: Cambridge, MA, USA, 2016; Chapter 29, pp. 363–384. [Google Scholar] [CrossRef]
- Parris, N.; Douds, D.D.; Dickey, L.C.; Moreau, R.A.; Phillips, J. Effect of Zein Films on the Growth of Tomato Plants and Evaporative Water Loss. HortScience 2004, 39, 1324–1326. [Google Scholar] [CrossRef]
- Adhikari, R.; Bristow, K.L.; Casey, P.S.; Freischmidt, G.; Hornbuckle, J.W.; Adhikari, B. Preformed and Sprayable Polymeric Mulch Film to Improve Agricultural Water Use Efficiency. Agric. Water Manag. 2016, 169, 1–13. [Google Scholar] [CrossRef]
- Rizzarelli, P.; Rapisarda, M.; Ascione, L.; Innocenti, F.D.; Degli Innocenti, F. Influence of Photo-Oxidation on the Performance and Soil Degradation of Oxo- and Biodegradable Polymer-Based Items for Agricultural Applications. Polym. Degrad. Stab. 2021, 188, 109578. [Google Scholar] [CrossRef]
- Copinet, A.; Bertrand, C.; Govindin, S.; Coma, V.; Couturier, Y. Effects of Ultraviolet Light (315 Nm), Temperature and Relative Humidity on the Degradation of Polylactic Acid Plastic Films. Chemosphere 2004, 55, 763–773. [Google Scholar] [CrossRef]
- Stloukal, P.; Verney, V.; Commereuc, S.; Rychly, J.; Matisova-Rychlá, L.; Pis, V.; Koutny, M. Assessment of the Interrelation between Photooxidation and Biodegradation of Selected Polyesters after Artificial Weathering. Chemosphere 2012, 88, 1214–1219. [Google Scholar] [CrossRef]
- Wypych, G. Handbook of UV Degradation and Stabilization, 2nd ed.; ChemTec Publishing: Toronto, ON, Canada, 2015. [Google Scholar]
- Dilara, P.A.; Briassoulis, D. Standard Testing Methods for Mechanical Properties and Degradation of Low Density Polyethylene (LDPE) Films Used as Greenhouse Covering Materials: A Critical Evaluation. Polym. Test. 1998, 17, 549–585. [Google Scholar] [CrossRef]
- ASTM D5488-94de1; Standard Terminology of Environmental Labeling of Packaging Materials and Packages (Withdrawn 2002). ASTM International: West Conshohocken, PA, USA, 1994.
- Lucas, N.; Bienaime, C.; Belloy, C.; Queneudec, M.; Silvestre, F.; Nava-Saucedo, J.E. Polymer Biodegradation: Mechanisms and Estimation Techniques—A Review. Chemosphere 2008, 73, 429–442. [Google Scholar] [CrossRef]
- Leja, K.; Lewandowicz, G. Polymer Biodegradation and Biodegradable Polymers—A Review. Pol. J. Environ. Stud. 2010, 19, 255–266. [Google Scholar]
- Ng, E.L.; Huerta Lwanga, E.; Eldridge, S.M.; Johnston, P.; Hu, H.W.; Geissen, V.; Chen, D. An Overview of Microplastic and Nanoplastic Pollution in Agroecosystems. Sci. Total Environ. 2018, 627, 1377–1388. [Google Scholar] [CrossRef]
- Sánchez, C. Fungal Potential for the Degradation of Petroleum-Based Polymers: An Overview of Macro- and Microplastics Biodegradation. Biotechnol. Adv. 2020, 40, 107501. [Google Scholar] [CrossRef] [PubMed]
- Yamada-Onodera, K.; Mukumoto, H.; Katsuyaya, Y.; Saiganji, A.; Tani, Y. Degradation of Polyethylene by a Fungus, Penicillium simplicissimum YK. Polym. Degrad. Stab. 2001, 72, 323–327. [Google Scholar] [CrossRef]
- Daly, P.; Cai, F.; Kubicek, C.P.; Jiang, S.; Grujic, M.; Rahimi, M.J.; Sheteiwy, M.S.; Giles, R.; Riaz, A.; de Vries, R.P.; et al. From Lignocellulose to Plastics: Knowledge Transfer on the Degradation Approaches by Fungi. Biotechnol. Adv. 2021, 50, 107770. [Google Scholar] [CrossRef]
- Mergaert, J.; Webb, A.; Anderson, C.; Wouters, A.; Swings, J. Microbial Degradation of Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) in Soils. Appl. Environ. Microbiol. 1993, 59, 3233–3238. [Google Scholar] [CrossRef] [Green Version]
- Mergaert, J.; Swings, J. Biodiversity of Microorganisms That Degrade Bacterial and Synthetic Polyesters. J. Ind. Microbiol. Biotechnol. 1996, 17, 463–469. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Calabia, B.P. Biodegradability and Biodegradation of Poly(Lactide). Appl. Microbiol. Biotechnol. 2006, 72, 244–251. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Suzuki, T. Hydrolysis of Polyesters by Lipases. Nature 1977, 270, 76–78. [Google Scholar] [CrossRef]
- Calmon, A.; Guillaume, S.; Bellon-Maurel, V.; Feuilloley, P.; Silvestre1, F. Evaluation of Material Biodegradability in Real Conditions-Development of a Burial Test and an Analysis Methodology Based on Numerical Vision. J. Environ. Polym. Degrad. 1999, 7, 157–166. [Google Scholar] [CrossRef]
- Moreno, M.M.; González-Mora, S.; Villena, J.; Campos, J.A.; Moreno, C. Deterioration Pattern of Six Biodegradable, Potentially Low-Environmental Impact Mulches in Field Conditions. J. Environ. Manag. 2017, 200, 490–501. [Google Scholar] [CrossRef] [PubMed]
- Büyüksönmez, F.; Rynk, R.; Hess, T.F.; Bechinski, E. Occurrence, Degradation and Fate of Pesticides during Composting. Compost Sci. Util. 1999, 7, 66–82. [Google Scholar] [CrossRef]
- Büyüksönmez, F.; Rynk, R.; Hess, T.F.; Bechinski, E. Literature Review: Occurrence, Degradation and Fate of Pesticides during Composting: Part II: Occurrence and Fate of Pesticides in Compost and Composting Systems. Compost Sci. Util. 2000, 8, 61–81. [Google Scholar] [CrossRef]
- Francioni, M.; Kishimoto-Mo, A.W.; Tsuboi, S.; Takada Hoshino, Y. Evaluation of the Mulch Films Biodegradation in Soil: A Methodological Review. Ital. J. Agron. 2021, 17, 3. [Google Scholar] [CrossRef]
- Quecholac-Piña, X.; Hernández-Berriel, M.d.C.; Mañón-Salas, M.d.C.; Espinosa-Valdemar, R.M.; Vázquez-Morillas, A. Degradation of Plastics under Anaerobic Conditions: A Short Review. Polymers 2020, 12, 109. [Google Scholar] [CrossRef] [Green Version]
- Omotayo, O.P.; Babalola, O.O. Resident Rhizosphere Microbiome’s Ecological Dynamics and Conservation: Towards Achieving the Envisioned Sustainable Development Goals, a Review. Int. Soil Water Conserv. Res. 2021, 9, 127–142. [Google Scholar] [CrossRef]
- Bertin, C.; Yang, X.; Weston, L.A. The Role of Root Exudates and Allelochemicals in the Rhizosphere. Plant Soil 2003, 256, 67–83. [Google Scholar] [CrossRef]
- Scavo, A.; Abbate, C.; Mauromicale, G. Plant Allelochemicals: Agronomic, Nutritional and Ecological Relevance in the Soil System. Plant Soil 2019, 442, 23–48. [Google Scholar] [CrossRef]
- Trevors, J.T. One Gram of Soil: A Microbial Biochemical Gene Library. Antonie van Leeuwenhoek 2010, 97, 99–106. [Google Scholar] [CrossRef]
- Rovira, A.D. Interactions between Plant Roots and Soil Microorganisms. Ann. Rev. Microbiol. 1965, 19, 241–266. [Google Scholar] [CrossRef]
- Hinsinger, P.; Bengough, A.G.; Vetterlein, D.; Young, I.M. Rhizosphere: Biophysics, Biogeochemistry and Ecological Relevance. Plant Soil 2009, 321, 117–152. [Google Scholar] [CrossRef]
- Marschner, P.; Crowley, D.; Rengel, Z. Rhizosphere Interactions between Microorganisms and Plants Govern Iron and Phosphorus Acquisition along the Root Axis—Model and Research Methods. Soil Biol. Biochem. 2011, 43, 883–894. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, X.-X.; Guo, X.; Wang, D.; Chu, H. Bacterial Diversity in Soils Subjected to Long-Term Chemical Fertilization Can Be More Stably Maintained with the Addition of Livestock Manure than Wheat Straw. Soil Biol. Biochem. 2015, 88, 9–18. [Google Scholar] [CrossRef]
- Lombardo, S.; Abbate, C.; Pandino, G.; Parisi, B.; Scavo, A.; Mauromicale, G. Productive and Physiological Response of Organic Potato Grown under Highly Calcareous Soils to Fertilization and Mycorrhization Management. Agronomy 2020, 10, 1200. [Google Scholar] [CrossRef]
- Mendes, R.; Kruijt, M.; de Bruijn, I.; Dekkers, E.; van der Voort, M.; Schneider, J.H.M.; Piceno, Y.M.; DeSantis, T.Z.; Andersen, G.L.; Bakker, P.A.H.M.; et al. Deciphering the Rhizosphere Microbiome for Disease-Suppressive Bacteria. Science 2011, 332, 1097–1100. [Google Scholar] [CrossRef] [PubMed]
- Weinert, N.; Piceno, Y.; Ding, G.-C.; Meincke, R.; Heuer, H.; Berg, G.; Schloter, M.; Andersen, G.; Smalla, K. PhyloChip Hybridization Uncovered an Enormous Bacterial Diversity in the Rhizosphere of Different Potato Cultivars: Many Common and Few Cultivar-Dependent Taxa. FEMS Microbiol. Ecol. 2011, 75, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; van Themaat, E.V.L.; Schulze-Lefert, P. Structure and Functions of the Bacterial Microbiota of Plants. Ann. Rev. Plant Biol. 2013, 64, 807–838. [Google Scholar] [CrossRef]
- Ward, N.L.; Challacombe, J.F.; Janssen, P.H.; Henrissat, B.; Coutinho, P.M.; Wu, M.; Xie, G.; Haft, D.H.; Sait, M.; Badger, J.; et al. Three Genomes from the Phylum Acidobacteria Provide Insight into the Lifestyles of These Microorganisms in Soils. Appl. Environ. Microbiol. 2009, 75, 2046–2056. [Google Scholar] [CrossRef] [Green Version]
- Buée, M.; de Boer, W.; Martin, F.; van Overbeek, L.; Jurkevitch, E. The Rhizosphere Zoo: An Overview of Plant-Associated Communities of Microorganisms, Including Phages, Bacteria, Archaea, and Fungi, and of Some of Their Structuring Factors. Plant Soil 2009, 321, 189–212. [Google Scholar] [CrossRef]
- Offre, P.; Spang, A.; Schleper, C. Archaea in Biogeochemical Cycles. Ann. Rev. Microbiol. 2013, 67, 437–457. [Google Scholar] [CrossRef] [Green Version]
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of Pesticides Use in Agriculture: Their Benefits and Hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horrigan, L.; Lawrence, R.S.; Walker, P. How Sustainable Agriculture Can Address the Environmental and Human Health Harms of Industrial Agriculture. Environ. Health Perspect. 2002, 110, 445–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nkoa, R. Agricultural Benefits and Environmental Risks of Soil Fertilization with Anaerobic Digestates: A Review. Agron. Sustain. Dev. 2014, 34, 473–492. [Google Scholar] [CrossRef] [Green Version]
- Holthusen, D.; Brandt, A.A.; Reichert, J.M.; Horn, R. Soil Porosity, Permeability and Static and Dynamic Strength Parameters under Native Forest/Grassland Compared to No-Tillage Cropping. Soil Till. Res. 2018, 177, 113–124. [Google Scholar] [CrossRef]
- Kabiri, V.; Raiesi, F.; Ghazavi, M.A. Tillage Effects on Soil Microbial Biomass, SOM Mineralization and Enzyme Activity in a Semi-Arid Calcixerepts. Agric. Ecosyst. Environ. 2016, 232, 73–84. [Google Scholar] [CrossRef]
- Alori, E.T.; Babalola, O.O. Microbial Inoculants for Improving Crop Quality and Human Health in Africa. Front. Microbiol. 2018, 9, 2213. [Google Scholar] [CrossRef] [Green Version]
- Hashem, A.; Tabassum, B.; Fathi Abd_Allah, E. Bacillus subtilis: A Plant-Growth Promoting Rhizobacterium that Also Impacts Biotic Stress. Saudi J. Biol. Sci. 2019, 26, 1291–1297. [Google Scholar] [CrossRef]
- Adegboye, M.F.; Babalola, O.O. Phylogenetic Characterization of Culturable Antibiotic Producing Streptomyces from Rhizospheric Soils. Mol. Biol. 2014, 13. [Google Scholar] [CrossRef] [Green Version]
- Zaim, S.; Bekkar, A.A.; Belabid, L. Rhizobium as a Crop Enhancer and Biofertilizer for Increased Non-Legume Production. In Rhizobium Biology and Biotechnology; Hansen, A., Choudhary, D., Agrawal, P., Varma, A., Eds.; Springer: Cham, Switzerland, 2017; Volume 50, pp. 25–37. [Google Scholar]
- Igiehon, N.O.; Babalola, O.O.; Aremu, B.R. Genomic Insights into Plant Growth Promoting Rhizobia Capable of Enhancing Soybean Germination under Drought Stress. BMC Microbiol. 2019, 19, 159. [Google Scholar] [CrossRef] [Green Version]
- Shridhar, B.S. Review: Nitrogen Fixing Microorganisms. Int. J. Microbiol. Res. 2012, 3, 46–52. [Google Scholar] [CrossRef]
- Cyprowski, M.; Stobnicka-Kupiec, A.; Ławniczek-Wałczyk, A.; Bakal-Kijek, A.; Gołofit-Szymczak, M.; Górny, R.L. Anaerobic Bacteria in Wastewater Treatment Plant. Int. Arch. Occup. Environ. Health 2018, 91, 571–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Maurya, B.R.; Raghuwanshi, R.; Meena, V.S.; Tofazzal Islam, M. Co-Inoculation with Enterobacter and Rhizobacteria on Yield and Nutrient Uptake by Wheat (Triticum aestivum L.) in the Alluvial Soil under Indo-Gangetic Plain of India. J. Plant Growth Regul. 2017, 36, 608–617. [Google Scholar] [CrossRef]
- Bender, S.F.; Wagg, C.; van der Heijden, M.G.A. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. Trends Ecol. Evol. 2016, 31, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Vargas, L.; Santa Brígida, A.B.; Mota Filho, J.P.; de Carvalho, T.G.; Rojas, C.A.; Vaneechoutte, D.; van Bel, M.; Farrinelli, L.; Ferreira, P.C.G.; Vandepoele, K.; et al. Drought Tolerance Conferred to Sugarcane by Association with Gluconacetobacter Diazotrophicus: A Transcriptomic View of Hormone Pathways. PLoS ONE 2014, 9, e114744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satti, S.M.; Shah, A.A.; Marsh, T.L.; Auras, R. Biodegradation of Poly(Lactic Acid) in Soil Microcosms at Ambient Temperature: Evaluation of Natural Attenuation, Bio-Augmentation and Bio-Stimulation. J. Polym. Environ. 2018, 26, 3848–3857. [Google Scholar] [CrossRef]
- Ardisson, G.B.; Tosin, M.; Barbale, M.; Degli-Innocenti, F. Biodegradation of Plastics in Soil and Effects on Nitrification Activity. A Laboratory Approach. Front. Microbiol. 2014, 5, 710. [Google Scholar] [CrossRef] [Green Version]
- Fontanazza, S.; Restuccia, A.; Mauromicale, G.; Scavo, A.; Abbate, C. Pseudomonas putida Isolation and Quantification by Real-Time PCR in Agricultural Soil Biodegradable Mulching. Agriculture 2021, 11, 782. [Google Scholar] [CrossRef]
- Arcos-Hernandez, M.V.; Laycock, B.; Pratt, S.; Donose, B.C.; Nikolić, M.A.L.; Luckman, P.; Werker, A.; Lant, P.A. Biodegradation in a Soil Environment of Activated Sludge Derived Polyhydroxyalkanoate (PHBV). Polym. Degrad. Stab. 2012, 97, 2301–2312. [Google Scholar] [CrossRef]
- Zhang, M.; Jia, H.; Weng, Y.; Li, C. Biodegradable PLA/PBAT Mulch on Microbial Community Structure in Different Soils. Int. Biodeterior. Biodegrad. 2019, 145, 104817. [Google Scholar] [CrossRef]
- Wang, J.; Lv, S.; Zhang, M.; Chen, G.; Zhu, T.; Zhang, S.; Teng, Y.; Christie, P.; Luo, Y. Effects of Plastic Film Residues on Occurrence of Phthalates and Microbial Activity in Soils. Chemosphere 2016, 151, 171–177. [Google Scholar] [CrossRef]
- Jeszeová, L.; Puškárová, A.; Bučková, M.; Kraková, L.; Grivalský, T.; Danko, M.; Mosnáčková, K.; Chmela, Š.; Pangallo, D. Microbial Communities Responsible for the Degradation of Poly(Lactic Acid)/Poly(3-Hydroxybutyrate) Blend Mulches in Soil Burial Respirometric Tests. World J. Microbiol. Biotechnol. 2018, 34, 101. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Ruiz, H.; Martin-Closas, L.; Pelacho, A.M. Biodegradable Plastic Mulches: Impact on the Agricultural Biotic Environment. Sci. Total Environ. 2021, 750, 141228. [Google Scholar] [CrossRef] [PubMed]
- Bandopadhyay, S.; Liquet y González, J.E.; Henderson, K.B.; Anunciado, M.B.; Hayes, D.G.; DeBruyn, J.M. Soil Microbial Communities Associated with Biodegradable Plastic Mulch Films. Front. Microbiol. 2020, 11, 587074. [Google Scholar] [CrossRef]
- Moore-Kucera, J.; Cox, S.B.; Peyron, M.; Bailes, G.; Kinloch, K.; Karich, K.; Miles, C.; Inglis, D.A.; Brodhagen, M. Native Soil Fungi Associated with Compostable Plastics in Three Contrasting Agricultural Settings. Appl. Microbiol. Biotechnol. 2014, 98, 6467–6485. [Google Scholar] [CrossRef]
- Marín-Guirao, J.I.; Martín-Expósito, E.; García-García, M.D.C.; de Cara-García, M. Alternative Mulches for Sustainable Greenhouse Tomato Production. Agronomy 2022, 12, 1333. [Google Scholar] [CrossRef]
- Minuto, G.; Pisi, L.; Tinivella, F.; Bruzzone, C.; Guerrini, S.; Versari, M.; Pini, S.; Capurro, M. Weed Control with Biodegradable Mulch in Vegetable Crops. Acta Hortic. 2008, 801 PART 1, 291–298. [Google Scholar] [CrossRef]
- Zhang, H.; Miles, C.; Ghimire, S.; Benedict, C.; Zasada, I.; DeVetter, L. Polyethylene and Biodegradable Plastic Mulches Improve Growth, Yield, and Weed Management in Floricane Red Raspberry. Sci. Hortic. 2019, 250, 371–379. [Google Scholar] [CrossRef]
- Hakkarainen, M.; Albertsson, A.-C. Degradation Products of Aliphatic and Aliphatic–Aromatic Polyesters. In Chromatography for Sustainable Polymeric Materials; Albertsson, A.C., Hakkarainen, M., Eds.; Springer: Berlin, Germany, 2008; Volume 211, pp. 85–116. [Google Scholar] [CrossRef]
- Cirujeda, A.; Aibar, J.; Anzalone, Á.; Martín-Closas, L.; Meco, R.; Moreno, M.M.; Pardo, A.; Pelacho, A.M.; Rojo, F.; Royo-Esnal, A.; et al. Biodegradable Mulch Instead of Polyethylene for Weed Control of Processing Tomato Production. Agron. Sustain. Dev. 2012, 32, 889–897. [Google Scholar] [CrossRef] [Green Version]
- Tofanelli, M.B.D.; Wortman, S.E. Benchmarking the Agronomic Performance of Biodegradable Mulches against Polyethylene Mulch Film: A Meta-Analysis. Agronomy 2020, 10, 1618. [Google Scholar] [CrossRef]
- Marí, A.I.; Pardo, G.; Aibar, J.; Cirujeda, A. Purple Nutsedge (Cyperus rotundus L.) Control with Biodegradable Mulches and Its Effect on Fresh Pepper Production. Sci. Hortic. 2020, 263, 109111. [Google Scholar] [CrossRef]
- Ngouajio, M.; Ernest, J. Light Transmission through Colored Polyethylene Mulches Affects Weed Populations. HortScience 2004, 39, 1302–1304. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; DeVetter, L.W.; Scheenstra, E.; Miles, C. Weed Pressure, Yield, and Adhesion of Soil-Biodegradable Mulches with Pie Pumpkin (Cucurbita pepo). HortScience 2020, 55, 1014–1021. [Google Scholar] [CrossRef]
- Cowan, J.S.; Miles, C.A.; Andrews, P.K.; Inglis, D.A. Biodegradable Mulch Performed Comparably to Polyethylene in High Tunnel Tomato (Solanum lycopersicum L.) Production. J. Sci. Food Agric. 2014, 94, 1854–1864. [Google Scholar] [CrossRef]
- Marí, A.I.; Pardo, G.; Cirujeda, A.; Martínez, Y. Economic Evaluation of Biodegradable Plastic Films and Paper Mulches Used in Open-Air Grown Pepper (Capsicum annum L.) Crop. Agronomy 2019, 9, 36. [Google Scholar] [CrossRef] [Green Version]
- Pramanik, P.; Bandyopadhyay, K.K.; Bhaduri, D.; Bhattacharyya, R.; Aggarwal, P. Effect of Mulch on Soil Thermal Regimes—A Review. Int. J. Agric. Environ. Biotechnol. 2015, 8, 645–658. [Google Scholar] [CrossRef]
- Fernández, J.E.; Moreno, F.; Murillo, J.M.; Cuevas, M.V.; Kohler, F. Evaluating the Effectiveness of a Hydrophobic Polymer for Conserving Water and Reducing Weed Infection in a Sandy Loam Soil. Agric. Water Manag. 2001, 51, 29–51. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Tam, H.M.; Wani, S.P.; Long, T.D. Effect of Mulch on Soil Temperature, Moisture, Weed Infestation and Yield of Groundnut in Northern Vietnam. Field Crops Res. 2006, 95, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Briggs, H.S. Aggregate Disruption in the Surface Layers of a Soil under Rainfall. Trans. Int. Congr. Soil Sci. 1974, 11, 128–137. [Google Scholar]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A History of Research on the Link between (Micro)Aggregates, Soil Biota, and Soil Organic Matter Dynamics. Soil Till. Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Domagała-Światkiewicz, I.; Siwek, P. The Effect of Direct Covering with Biodegradable Nonwoven Film on the Physical and Chemical Properties of Soil. Pol. J. Environ. Stud. 2013, 22, 667–674. [Google Scholar]
- Mbah, C.N.; Nwite, J.N.; Njoku, C.; Ibeh, L.M.; Igwe, T.S. Physical Properties of an Ultisol under Plastic Film and No-Mulches and Their Effect on the Yield of Maize. World J. Agric. Sci. 2010, 6, 160–165. [Google Scholar]
- Khan, A.R.; Chandra, D.; Quraishi, S.; Sinha, R.K. Soil Aeration under Different Soil Surface Conditions. J. Agron. Crop Sci. 2000, 185, 105–112. [Google Scholar] [CrossRef]
- Bittelli, M.; Ventura, F.; Campbell, G.S.; Snyder, R.L.; Gallegati, F.; Pisa, P.R. Coupling of Heat, Water Vapor, and Liquid Water Fluxes to Compute Evaporation in Bare Soils. J. Hydrol. 2008, 362, 191–205. [Google Scholar] [CrossRef]
- Kader, M.A.; Singha, A.; Begum, M.A.; Jewel, A.; Khan, F.H.; Khan, N.I. Mulching as Water-Saving Technique in Dryland Agriculture: Review Article. Bull. Natl. Res. Cent. 2019, 43, 147. [Google Scholar] [CrossRef] [Green Version]
- Kirkham, M.B. Principles of Soil and Plant Water Relations, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar] [CrossRef]
- Montenegro, A.A.A.; Abrantes, J.R.C.B.; De Lima, J.L.M.P.; Singh, V.P.; Santos, T.E.M. Impact of Mulching on Soil and Water Dynamics under Intermittent Simulated Rainfall. Catena 2013, 109, 139–149. [Google Scholar] [CrossRef]
- Sintim, H.Y.; Bandopadhyay, S.; English, M.E.; Bary, A.; Liquet y González, J.E.; DeBruyn, J.M.; Schaeffer, S.M.; Miles, C.A.; Flury, M. Four Years of Continuous Use of Soil-Biodegradable Plastic Mulch: Impact on Soil and Groundwater Quality. Geoderma 2021, 381, 114665. [Google Scholar] [CrossRef]
- Chen, N.; Li, X.; Šimůnek, J.; Shi, H.; Ding, Z.; Peng, Z. Evaluating the Effects of Biodegradable Film Mulching on Soil Water Dynamics in a Drip-Irrigated Field. Agric. Water Manag. 2019, 226, 105788. [Google Scholar] [CrossRef]
- Saxton, K.E.; Rawls, W.J. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef]
- Howe, J.A.; Smith, A.P. The Soil Habitat. In Principles and Applications of Soil Microbiology, 3rd ed.; Gentry, T.J., Fuhrmann, J.J., Zuberer, D.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Chapter 2, pp. 23–55. [Google Scholar] [CrossRef]
- Ben-Noah, I.; Friedman, S.P. Review and Evaluation of Root Respiration and of Natural and Agricultural Processes of Soil Aeration. Vadose Zone J. 2018, 17, 170119. [Google Scholar] [CrossRef] [Green Version]
- Young, I.M.; Crawford, J.W.; Nunan, N.; Otten, W.; Spiers, A. Chapter 4 Microbial Distribution in Soils. Physics and Scaling. Adv. Agron. 2008, 100, 81–121. [Google Scholar] [CrossRef]
Property/Purpose | Material | ||||||
---|---|---|---|---|---|---|---|
LDPE | HDPE | PP | EVA | PVC | PC | PMMA | |
Chemical formula | (C2H4)n | (C3H6)n | (C2H4)n(C4H6O2)m | (CH2CHCI)n | (C16H14O3)n | (C5H8O2)n | |
Monomer molar mass (g mol−1) | 28.05 | 42.08 | 114.14 | 62.50 | 254.28 | 100.12 | |
Density ρ (kg m−3) (ISO 1183) | 910 ≤ ρ ≤ 925 | 940 ≤ ρ ≤ 965 | 850 ≤ ρ ≤ 900 | 926 ≤ ρ ≤ 950 | 1370 ≤ ρ ≤ 1430 | 1200 ≤ ρ ≤ 1220 | 1170 ≤ ρ ≤ 1200 |
Fertilizer bags | ✓ | ✓ | |||||
Greenhouse coverings | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Irrigation and drainage | ✓ | ✓ | ✓ | ✓ | |||
Low tunnel films | ✓ | ✓ | ✓ | ||||
Mulching films | ✓ | ✓ | |||||
Nets for collecting | ✓ | ✓ | |||||
Nonwoven/floating covers | ✓ | ✓ | |||||
Other (rigid sheets, pots, twine, etc.) | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Silage films and protective covering | ✓ | ||||||
Vineyard and orchard coverings | ✓ | ✓ | |||||
Woven nets (hail, wind, bird, shade) | ✓ |
Classes | PBAT and Starch | PET and Starch | PBAT and PLA | PLA and PHA | Paper | PE | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Humid/Si | Ocean/Sa | Humid/Si | Ocean/Sa | Humid/Si | Ocean/Sa | Humid/Si | Ocean/Sa | Humid/Si | Ocean/Sa | Humid/Si | Ocean/Sa | |
% | ||||||||||||
Acidobacteria Gp4 | 5 | 6 | 4 | 6 | 7 | 6 | 3 | 6 | 4 | 7 | 6 | 6 |
Acidobacteria Gp6 | 6 | 6 | 6 | 5 | 5 | 5 | ||||||
Acidobacteria Gp7 | 7 | 4 | 6 | 4 | 8 | 4 | 6 | 4 | 5 | 5 | 7 | 4 |
Acidobacteria Gp16 | 3 | 4 | 2 | 4 | 3 | 4 | 2 | 4 | 2 | 4 | 3 | 4 |
Actinobacteria | 14 | 9 | 15 | 9 | 11 | 7 | 14 | 9 | 16 | 10 | 15 | 9 |
Alphaproteobacteria | 9 | 9 | 9 | 9 | 8 | 9 | 10 | 10 | 11 | 10 | 7 | 10 |
Bacilli | 4 | 2 | 5 | 2 | 4 | 2 | 4 | 3 | 4 | 2 | 4 | 2 |
Unclassified bacteria | 29 | 29 | 28 | 31 | 30 | 30 | 29 | 29 | 28 | 27 | 31 | 29 |
Betaproteobacteria | 4 | 4 | 4 | 5 | 4 | 4 | 4 | 5 | 4 | 5 | 3 | 5 |
Gammaproteobacteria | 6 | 4 | 5 | 5 | 6 | 7 | ||||||
Planctomycetacia | 8 | 5 | 9 | 5 | 8 | 5 | 9 | 6 | 8 | 5 | 8 | 5 |
Spartobacteria | 3 | 3 | 3 | 2 | 4 | 2 | ||||||
Number of classes | 10 | 11 | 10 | 11 | 10 | 11 | 10 | 11 | 10 | 11 | 10 | 11 |
Classes | PBAT and Starch | PET and Starch | PBAT and PLA | PLA and PHA | Paper | PE | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Humid/Si | Ocean/Sa | Humid/Si | Ocean/Sa | Humid/Si | Ocean/Sa | Humid/Si | Ocean/Sa | Humid/Si | Ocean/Sa | Humid/Si | Ocean/Sa | |
% | ||||||||||||
Acidobacteria Gp16 | 8 | |||||||||||
Actinobacteria | 22 | 24 | 27 | 28 | 28 | 30 | 29 | 31 | 14 | 29 | 20 | 25 |
Alphaproteobacteria | 42 | 17 | 41 | 26 | 41 | 19 | 42 | 21 | 25 | 28 | 14 | 14 |
Armatimonadia | 1 | |||||||||||
Bacilli | 3 | 2 | 2 | 2 | 5 | 5 | 6 | 4 | 35 | 5 | ||
Unclassified bacteria | 3 | 1 | 14 | 1 | 5 | 3 | 3 | 5 | 29 | 5 | 8 | 8 |
Betaproteobacteria | 18 | 19 | 16 | 9 | 14 | 7 | 10 | 3 | 8 | 5 | 13 | |
Deinococci | 2 | 15 | 7 | 11 | 2 | 10 | 5 | 15 | 8 | 4 | 4 | |
Flavobacteria | 1 | |||||||||||
Gammaproteobacteria | 3 | 3 | 2 | 4 | 1 | 9 | ||||||
Planctomycetacia | 3 | |||||||||||
Sphingobacteria | 16 | 10 | 10 | 7 | 2 | 16 | 15 | |||||
Thermomicrobia | 2 | 4 | 3 | 2 | ||||||||
Number of classes | 8 | 7 | 6 | 7 | 8 | 9 | 8 | 7 | 9 | 7 | 6 | 7 |
Division | Class | Order | Family | Genus | Starch-Based | Paper | No Mulch | |||
---|---|---|---|---|---|---|---|---|---|---|
Humid/Si | Ocean/Sa | Humid/Si | Ocean/Sa | Humid/Si | Ocean/Sa | |||||
% | ||||||||||
Ascomycota | Dothideomycetes | Pleosporales | Didymellaceae | Leptosphaerulina | 5 | |||||
Leptosphaeriaceae | Leptosphaeria | 13 | ||||||||
Other | 7 | 1 | 7 | |||||||
Eurotiomycetes | Onygenales | Onygenaceae | Chrysosporium | 5 | 1 | |||||
Leotiomycetes | Chaetomellales | Chaetomellaceae | Chaetomella | 1 | ||||||
Helotiales spp | 20 | |||||||||
Sordariomycetes | Glomerellales | Plectosphaerellaceae | Plectosphaerella | 2 | ||||||
Hypocreales | Nectriaceae | Fusarium | 37 | 3 | 27 | 2 | 20 | 3 | ||
Volutella | 12 | 1 | 3 | |||||||
Other | 12 | 11 | 11 | 6 | 17 | 14 | ||||
Sordariales | Chaetomiaceae | Humicola | 20 | 13 | 26 | |||||
Lasiosphaeriaceae | Unidentified | 7 | 1 | 3 | ||||||
Other | 2 | 5 | 1 | 2 | 3 | |||||
Other | 3 | 4 | 8 | 6 | 4 | 1 | ||||
Unidentified | 18 | 56 | ||||||||
Basidiomycota | Tremellomycetes | Tremellales | Cryptococcaceae | Cryptococcus | 4 | 2 | 1 | 1 | 2 | |
Other fungi | 1 | 14 | 1 | 11 | 1 | 56 | ||||
Unidentified | 1 | 10 | 1 | 3 | 1 | 4 |
Division | Class | PBAT and Starch | PET And Starch | PBAT and PLA | PLA and PHA | Paper | PE | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Humid/Si | Ocean/Sa | Humid/Si | Ocean/Sa | Humid/Si | Ocean/Sa | Humid/Si | Ocean/Sa | Humid/Si | Ocean/Sa | Humid/Si | Ocean/Sa | ||
% | |||||||||||||
Ascomycota | Dothideomycetes | 71 | 52 | 91 | 50 | 74 | 49 | 77 | 50 | 9 | 3 | 49 | 62 |
Eurotiomycetes | 1 | 2 | 3 | ||||||||||
Leotiomycetes | 1 | 1 | 3 | 2 | 6 | ||||||||
Orbiliomycetes | 5 | ||||||||||||
Pezizomycetes | 38 | ||||||||||||
Sordariomycetes | 13 | 2 | 7 | 14 | 2 | 16 | 6 | 4 | 37 | 10 | |||
Unclassified | 6 | ||||||||||||
Basidiomycota | Agaricomycetes | 2 | 1 | 29 | 67 | ||||||||
Cystobasidiomycetes | 2 | 4 | |||||||||||
Microbotryomycetes | 9 | 9 | 2 | 8 | 8 | 6 | 5 | 7 | 7 | 2 | |||
Tremellomycetes | 31 | 39 | 1 | 40 | 31 | 5 | 22 | ||||||
Ustilaginomycetes | 1 | 1 | 2 | 1 | 4 | ||||||||
Chytridiomycota | Incertae sedis | 9 | 17 | ||||||||||
Mucoromycota | Incertae sedis | 6 | |||||||||||
Number of classes | 6 | 7 | 3 | 4 | 6 | 5 | 5 | 6 | 7 | 5 | 5 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbate, C.; Scavo, A.; Pesce, G.R.; Fontanazza, S.; Restuccia, A.; Mauromicale, G. Soil Bioplastic Mulches for Agroecosystem Sustainability: A Comprehensive Review. Agriculture 2023, 13, 197. https://doi.org/10.3390/agriculture13010197
Abbate C, Scavo A, Pesce GR, Fontanazza S, Restuccia A, Mauromicale G. Soil Bioplastic Mulches for Agroecosystem Sustainability: A Comprehensive Review. Agriculture. 2023; 13(1):197. https://doi.org/10.3390/agriculture13010197
Chicago/Turabian StyleAbbate, Cristina, Aurelio Scavo, Gaetano Roberto Pesce, Stefania Fontanazza, Alessia Restuccia, and Giovanni Mauromicale. 2023. "Soil Bioplastic Mulches for Agroecosystem Sustainability: A Comprehensive Review" Agriculture 13, no. 1: 197. https://doi.org/10.3390/agriculture13010197
APA StyleAbbate, C., Scavo, A., Pesce, G. R., Fontanazza, S., Restuccia, A., & Mauromicale, G. (2023). Soil Bioplastic Mulches for Agroecosystem Sustainability: A Comprehensive Review. Agriculture, 13(1), 197. https://doi.org/10.3390/agriculture13010197