Potential Anti-Sarcopenia Effect and Physicochemical and Functional Properties of Rice Protein Hydrolysate Prepared through High-Pressure Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Amino Acid Composition
2.3. Protein, Branched Chain Amino Acid, and Peptide Contents
2.4. Color and Appearance
2.5. Water Solubility Index and Water-Holding Capacity
2.6. Sulfhydryl and Disulfide Bond Contents
2.7. In Vitro Antioxidant Capacity
2.7.1. 2,2-diphenyl-1-picrylhydrazyl (DPPH)
2.7.2. Oxygen Radical Absorbance Capacity (ORAC)
2.8. DEX-Induced C2C12 Cell Atrophy Model
2.8.1. C2C12 Cell Culture and Differentiation
2.8.2. Dosage Regimen
2.8.3. Cell Viability Analysis
2.8.4. Measurement of Myotube Diameter
2.8.5. Periodic Acid Schiff Staining
2.9. Statistical Analysis
3. Results and Discussion
3.1. Color and Appearance of RPI
3.2. Amino Acid Composition of RPI
3.3. Protein and Peptide Content of RPI
3.4. WSI and WHC
3.5. Sulfhydryl and S-S Contents
3.6. In Vitro Antioxidant Capacity
3.7. Rice Protein Protects C2C12 Myotubes against DEX-Induced Atrophy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Coll, P.P.; Phu, S.; Hajjar, S.H.; Kirk, B.; Duque, G.; Taxel, P. The prevention of osteoporosis and sarcopenia in older adults. J. Am. Geriatr. Soc. 2021, 69, 1388–1398. [Google Scholar] [CrossRef] [PubMed]
- Granic, A.; Sayer, A.A.; Robinson, S.M. Dietary patterns, skeletal muscle health, and sarcopenia in older adults. Nutrients 2019, 11, 745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Cortés-García, F.J.; Camacho-Ferre, F. Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Glob. Ecol. Conserv. 2020, 22, e00902. [Google Scholar] [CrossRef]
- Guerrero, P.; Retegi, A.; Gabilondo, N.; de la Caba, K. Mechanical and thermal properties of soy protein films processed by casting and compression. J. Food Eng. 2010, 100, 145–151. [Google Scholar] [CrossRef]
- Azevedo, V.M.; Silva, E.K.; Gonçalves Pereira, C.F.; da Costa, J.M.G.; Borges, S.V. Whey protein isolate biodegradable films: Influence of the citric acid and montmorillonite clay nanoparticles on the physical properties. Food Hydrocoll. 2015, 43, 252–258. [Google Scholar] [CrossRef]
- Uthpala, T.; Navaratne, S.; Thibbotuwawa, A.; Jayasinghe, M.; Wanigasinghe, R. Agricultural By-Product Proteins: Emerging Source for Packaging Applications. Int. J. Food Sci. Agric. 2021, 5, 355–362. [Google Scholar] [CrossRef]
- Yuliarti, O.; Kiat Kovis, T.J.; Yi, N.J. Structuring the meat analogue by using plant-based derived composites. J. Food Eng. 2021, 288, 110138. [Google Scholar] [CrossRef]
- Mehanna, M.M.; Mneimneh, A.T. Updated but not outdated “Gliadin”: A plant protein in advanced pharmaceutical nanotechnologies. Int. J. Pharm. 2020, 587, 119672. [Google Scholar] [CrossRef]
- USDA. World Agricultural Production; United States Department of Agriculture: Washington, DC, USA, 2023. [Google Scholar]
- Amagliani, L.; O’Regan, J.; Kelly, A.L.; O’Mahony, J.A. The composition, extraction, functionality and applications of rice proteins: A review. Trends Food Sci. Technol. 2017, 64, 1–12. [Google Scholar] [CrossRef]
- Joy, J.M.; Lowery, R.P.; Wilson, J.M.; Purpura, M.; De Souza, E.O.; Wilson, S.; Kalman, D.S.; Dudeck, J.E.; Jäger, R. The effects of 8 weeks of whey or rice protein supplementation on body composition and exercise performance. Nutr. J. 2013, 12, 86–92. [Google Scholar] [CrossRef]
- Yang, T.; Zhu, H.; Zhou, H.; Lin, Q.; Li, W.; Liu, J. Rice protein hydrolysate attenuates hydrogen peroxide induced apoptosis of myocardiocytes H9c2 through the Bcl-2/Bax pathway. Food Res. Int. 2012, 48, 736–741. [Google Scholar] [CrossRef]
- Kannan, A.; Hettiarachchy, N.; Mahedevan, M. Peptides derived from rice bran protect cells from obesity and Alzheimer’s disease. Int. J. Biomed. Res 2012, 3, 131–135. [Google Scholar] [CrossRef] [Green Version]
- Kannan, A.; Hettiarachchy, N.S.; Lay, J.O.; Liyanage, R. Human cancer cell proliferation inhibition by a pentapeptide isolated and characterized from rice bran. Peptides 2010, 31, 1629–1634. [Google Scholar] [CrossRef]
- Li, G.-H.; Qu, M.-R.; Wan, J.-Z.; You, J.-M. Antihypertensive effect of rice protein hydrolysate with in vitro angiotensin I-converting enzyme inhibitory activity in spontaneously hypertensive rats. Asia Pac. J. Clin. Nutr. 2007, 16, 275–280. [Google Scholar]
- Wang, T.; Wang, L.; Wang, R.; Chen, Z. Effects of freeze-milling on the physicochemical properties of rice protein isolates. LWT Food Sci. Technol. 2016, 65, 832–839. [Google Scholar] [CrossRef]
- Kubota, M.; Saito, Y.; Masumura, T.; Kumagai, T.; Watanabe, R.; Fujimura, S.; Kadowaki, M. Improvement in the in vivo digestibility of rice protein by alkali extraction is due to structural changes in prolamin/protein body-I particle. Biosci. Biotechnol. Biochem. 2010, 74, 614–619. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Zhang, J.; Ma, Y.; Tian, S. Optimization of limited hydrolysis of proteins in rice residue and characterization of the functional properties of the products. J. Food Process. Preserv. 2013, 37, 245–253. [Google Scholar] [CrossRef]
- Li, Y.; Zhong, F.; Ji, W.; Yokoyama, W.; Shoemaker, C.F.; Zhu, S.; Xia, W. Functional properties of Maillard reaction products of rice protein hydrolysates with mono-, oligo- and polysaccharides. Food Hydrocoll. 2013, 30, 53–60. [Google Scholar] [CrossRef]
- Zhao, Q.; Xiong, H.; Selomulya, C.; Chen, X.D.; Huang, S.; Ruan, X.; Zhou, Q.; Sun, W. Effects of spray drying and freeze drying on the properties of protein isolate from rice dreg protein. Food Bioprocess Technol. 2013, 6, 1759–1769. [Google Scholar] [CrossRef]
- Li, X.; Xiong, H.; Yang, K.; Peng, D.; Peng, H.; Zhao, Q. Optimization of the biological processing of rice dregs into nutritional peptides with the aid of trypsin. J Food Sci Technol 2012, 49, 537–546. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Chang, R.; Lu, H.; Ma, R.; Qiu, L.; Tian, Y. Effect of amino acids composing rice protein on rice starch digestibility. LWT 2021, 146, 111417. [Google Scholar] [CrossRef]
- Mulla, M.Z.; Subramanian, P.; Dar, B.N. Functionalization of legume proteins using high pressure processing: Effect on technofunctional properties and digestibility of legume proteins. LWT 2022, 158, 113106. [Google Scholar] [CrossRef]
- Garcia-Mora, P.; Penas, E.; Frias, J.; Zielinski, H.; Wiczkowski, W.; Zielinska, D.; Martinez-Villaluenga, C. High-pressure-assisted enzymatic release of peptides and phenolics increases angiotensin converting enzyme I inhibitory and antioxidant activities of pinto bean hydrolysates. J. Agric. Food Chem. 2016, 64, 1730–1740. [Google Scholar] [CrossRef] [Green Version]
- Chan, Y.-J.; Lu, W.-C.; Lin, H.-Y.; Wu, Z.-R.; Liou, C.-W.; Li, P.-H. Effect of rice protein hydrolysates as an egg replacement on the physicochemical properties of flaky egg rolls. Foods 2020, 9, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemists, A. Approved methods of the AACC. Assoc. 2000, 10, 54–60. [Google Scholar]
- Li, P.-H.; Chan, Y.-J.; Lu, W.-C.; Huang, D.-W.; Chang, T.-C.; Chang, W.-H.; Nie, X.-B.; Jiang, C.-X.; Zhang, X.-L. Bioresource utilization of djulis (Chenopodium formosanum) biomass as natural antioxidants. Sustainability 2020, 12, 5926. [Google Scholar] [CrossRef]
- Lu, W.-C.; Cheng, Y.-T.; Chan, Y.-J.; Li, P.-H. Food safety assessments of acrylamide formation and characterizations of flaky rolls enriched with black rice (Oryza sativa). Front. Nutr. 2022, 9, 1–14. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, L.; Wang, X. Correlation Between Protein Hydrolysates and Color During Fermentation of Mucor-Type Douchi. Int. J. Food Prop. 2015, 18, 2800–2812. [Google Scholar] [CrossRef] [Green Version]
- Brands, C.M.J.; van Boekel, M.A.J.S. Kinetic modelling of reactions in heated disaccharide–casein systems. Food Chem. 2003, 83, 13–26. [Google Scholar] [CrossRef]
- Nooshkam, M.; Varidi, M.; Bashash, M. The Maillard reaction products as food-born antioxidant and antibrowning agents in model and real food systems. Food Chem. 2019, 275, 644–660. [Google Scholar] [CrossRef]
- Islam, M.; Huang, Y.; Islam, S.; Fan, B.; Tong, L.; Wang, F. Influence of the Degree of Hydrolysis on Functional Properties and Antioxidant Activity of Enzymatic Soybean Protein Hydrolysates. Molecules 2022, 27, 6110. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Smith, B. Effects of high hydrostatic pressure on the quality and functionality of protein isolates, concentrates, and hydrolysates derived from pulse legumes: A review. Trends Food Sci. Technol. 2021, 107, 466–479. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Kim, H.M.; Kim, J.H.; Lee, J.-h.; Zhang, K.; Guo, S.; Lee, D.-h.; Gao, E.M.; Son, R.H.; Kim, S.-M.; et al. Preventive effects of the butanol fraction of Justicia procumbens L. against dexamethasone-induced muscle atrophy in C2C12 myotubes. Heliyon 2022, 8, e11597. [Google Scholar] [CrossRef]
- Rudrappa, S.S.; Wilkinson, D.J.; Greenhaff, P.L.; Smith, K.; Idris, I.; Atherton, P.J. Human skeletal muscle disuse atrophy: Effects on muscle protein synthesis, breakdown, and insulin resistance—A qualitative review. Front. Physiol. 2016, 7, 361. [Google Scholar] [CrossRef]
- Eley, H.L.; Russell, S.T.; Tisdale, M.J. Effect of branched-chain amino acids on muscle atrophy in cancer cachexia. Biochem. J. 2007, 407, 113–120. [Google Scholar] [CrossRef]
Amino Acid (g/100 g Protein) | A | B | C | D |
---|---|---|---|---|
Essential amino acids | ||||
Leucine | 4.62 ± 0.08 c | 5.65 ± 0.14 b | 5.84 ± 0.27 ab | 6.10 ± 0.18 a |
Lysine | 1.96 ± 0.11 b | 2.36 ± 0.10 ab | 2.43 ± 0.21 a | 2.51 ± 0.14 a |
Phenylalanine | 3.37 ± 0.17 c | 4.23 ± 0.23 ab | 4.49 ± 0.18 ab | 4.76 ± 0.09 a |
Threonine | 3.18 ± 0.12 b | 3.84 ± 0.21 ab | 3.95 ± 0.22 a | 4.08 ± 0.10 a |
Valine | 3.07 ± 0.11 c | 4.01 ± 0.14 b | 4.37 ± 0.31 b | 4.75 ± 0.18 a |
Methionine | 1.67 ± 0.25 ab | 1.77 ± 0.17 ab | 1.81 ± 0.25 a | 0.94 ± 0.13 c |
Tryptophan | 0.64 ± 0.23 c | 0.85 ± 0.21 b | 0.95 ± 0.15 a | 1.02 ± 0.08 a |
Arginine | 3.69 ± 0.18 d | 4.23 ± 0.38 c | 5.14 ± 0.19 b | 5.98 ± 0.08 a |
Nonessential amino acids | ||||
Tyrosine | 2.73 ± 0.33 c | 3.52 ± 0.12 b | 3.81 ± 0.13 ab | 4.11 ± 0.25 a |
Cysteine | 1.12 ± 0.25 a | 1.21 ± 0.11 a | 1.13 ± 0.26 a | 1.07 ± 0.27 ab |
Aspartic acid | 3.74 ± 0.25 d | 5.88 ± 0.11 c | 7.16 ± 0.34 b | 8.37 ± 0.21 a |
Serine | 3.36 ± 0.18 c | 4.03 ± 0.27 ab | 4.12 ± 0.38 a | 4.24 ± 0.40 a |
Glutamic acid | 17.29 ± 0.31 b | 18.82 ± 0.16 a | 17.68 ± 0.21 b | 16.92 ± 0.24 c |
Proline | 6.87 ± 0.21 d | 9.19 ± 0.12 c | 10.18 ± 0.29 b | 11.16 ± 0.15 a |
Glycine | 2.60 ± 0.26 d | 3.67 ± 0.14 c | 4.18 ± 0.27 b | 4.69 ± 0.17 a |
Alanine | 2.27 ± 0.11 d | 3.16 ± 0.16 bc | 3.59 ± 0.17 b | 4.00 ± 0.15 a |
Partially essential amino acids | ||||
Histidine | 1.25 ± 0.26 d | 1.67 ± 0.21 c | 1.85 ± 0.14 ab | 2.03 ± 0.18 a |
Isoleucine | 2.98 ± 0.15 d | 3.68 ± 0.33 c | 3.82 ± 0.33 b | 4.00 ± 0.24 a |
Total amino acids | 66.41 ± 0.13 d | 81.77 ± 0.24 c | 86.5 ± 0.05 b | 90.73 ± 0.10 a |
Cell Viability (% of CON) | |||||
---|---|---|---|---|---|
Mean ± SD | |||||
50 mg/mL | 100 mg/mL | 200 mg/mL | 500 mg/mL | 1000 mg/mL | |
BCAA | 100.7 ± 0.8 | 101.1 ± 2.9 | 103.0 ± 0.4 | 84.9 ± 1.3 | 75.8 ± 1.1 |
A | 101.4 ± 1.3 | 100.9 ± 2.8 | 100.3 ± 1.2 | 103.5 ± 0.6 | 98.7 ± 0.1 |
B | 101.4 ± 1.4 | 100.6 ± 0.1 | 96.3 ± 0.4 | 87.5 ± 1.0 | 81.6 ± 0.0 |
C | 101.9 ± 0.0 | 102.6 ± 0.7 | 100.9 ± 0.6 | 87.3 ± 0.5 | 75.6 ± 4.0 |
D | 96.8 ± 2.9 | 101.5 ± 5.0 | 87.4 ± 0.2 | 69.3 ± 0.2 | 47.0 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-H.; Li, P.-H.; Chan, Y.-J.; Cheng, Y.-T.; Lin, H.-Y.; Lee, S.-C.; Lu, W.-C.; Ma, Y.-X.; Li, M.-Y.; Song, T.-Y. Potential Anti-Sarcopenia Effect and Physicochemical and Functional Properties of Rice Protein Hydrolysate Prepared through High-Pressure Processing. Agriculture 2023, 13, 209. https://doi.org/10.3390/agriculture13010209
Chen S-H, Li P-H, Chan Y-J, Cheng Y-T, Lin H-Y, Lee S-C, Lu W-C, Ma Y-X, Li M-Y, Song T-Y. Potential Anti-Sarcopenia Effect and Physicochemical and Functional Properties of Rice Protein Hydrolysate Prepared through High-Pressure Processing. Agriculture. 2023; 13(1):209. https://doi.org/10.3390/agriculture13010209
Chicago/Turabian StyleChen, Shih-Hsiao, Po-Hsien Li, Yung-Jia Chan, Yu-Tsung Cheng, Hui-Yao Lin, Shih-Chieh Lee, Wen-Chien Lu, Yu-Xu Ma, Min-Ying Li, and Tuzz-Ying Song. 2023. "Potential Anti-Sarcopenia Effect and Physicochemical and Functional Properties of Rice Protein Hydrolysate Prepared through High-Pressure Processing" Agriculture 13, no. 1: 209. https://doi.org/10.3390/agriculture13010209
APA StyleChen, S. -H., Li, P. -H., Chan, Y. -J., Cheng, Y. -T., Lin, H. -Y., Lee, S. -C., Lu, W. -C., Ma, Y. -X., Li, M. -Y., & Song, T. -Y. (2023). Potential Anti-Sarcopenia Effect and Physicochemical and Functional Properties of Rice Protein Hydrolysate Prepared through High-Pressure Processing. Agriculture, 13(1), 209. https://doi.org/10.3390/agriculture13010209