Genetic Correlations between Days to Calving across Joinings and Lactation Status in a Tropically Adapted Composite Beef Herd
Abstract
:1. Introduction
2. Materials and Methods
2.1. Breeding Program
2.2. Genotype Data
2.3. Phenotype Data
2.4. Genomic Model
2.5. Days to Calving Models
2.6. Univariate Models
2.7. Response to Selection
2.8. Multi-Variate Models
3. Results
3.1. Effect of Changing the Penalty Value of Days to Calving
3.2. Variance Components and Genetic Correlation of the Different Joining Number
3.3. Days to Calving Separated by Lactation Status
3.4. Univariate Models of Days to Calving
3.5. Response to Selection
3.6. Bivariate Models for Days to Calving
3.7. Days to Calving Correlations between Final Traits (Tri-Variate Model)
4. Discussion
4.1. Heritability of Days to Calving
4.2. Heifer Days to Calving
4.3. Second Joining Days to Calving
4.4. Difference between Lactating and Non-Lactating Cows in Days to Calving
4.5. Genetic and Phenotypic Correlation for Days to Calving
4.5.1. DC1 and DC2 Correlations
4.5.2. DC1 and DC3+ Correlations
4.5.3. DC2 and DC3+ Correlations
4.6. Recommended Days to Calving Traits
4.7. Heterosis Effect on Days to Calving
4.8. Comparison of the Penalty Value
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnston, D.J.; Barwick, S.A.; Fordyce, G.; Holroyd, R.G.; Williams, P.J.; Corbet, N.J.; Grant, T. Genetics of early and lifetime annual reproductive performance in cows of two tropical beef genotypes in northern Australia. Anim. Prod. Sci. 2014, 54, 1–15. [Google Scholar] [CrossRef]
- Chilcott, C.; Ash, A.; Lehnert, S.; Stokes, C.; Charmley, E.; Collins, K.; Pavey, C.; Macintosh, A.; Simpson, A.; Berglas, R. Northern Australia Beef Situation Analysis: A Report to the Cooperative Research Centre for Developing Northern Australia; CRC for Developing Northern Australia (CRCNA): Townsville, QLD, Australia, 2020. [Google Scholar]
- Abeygunawardena, H.; Dematawewa, C. Pre-pubertal and postpartum anestrus in tropical Zebu cattle. Anim. Reprod. Sci. 2004, 82, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Frisch, J.; Munro, R.; O’Neill, C. Some factors related to calf crops of Brahman, Brahman crossbred and Hereford× Shorthorn cows in a stressful tropical environment. Anim. Reprod. Sci. 1987, 15, 1–26. [Google Scholar] [CrossRef]
- Schatz, T.J.; Hearnden, M.N. Heifer fertility on commercial cattle properties in the Northern Territory. Aust. J. Exp. Agric. 2008, 48, 940. [Google Scholar] [CrossRef]
- Pravia, M.I.; Ravagnolo, O.; Urioste, J.I.; Garrick, D.J. Identification of breeding objectives using a bioeconomic model for a beef cattle production system in Uruguay. Livest. Sci. 2014, 160, 21–28. [Google Scholar] [CrossRef]
- Naya, H.; Peñagaricano, F.; Urioste, J.I. Modelling female fertility traits in beef cattle using linear and non-linear models. J. Anim. Breed. Genet. 2017, 134, 202–212. [Google Scholar] [CrossRef] [Green Version]
- Thundathil, J.C.; Dance, A.L.; Kastelic, J.P. Fertility management of bulls to improve beef cattle productivity. Theriogenology 2016, 86, 397–405. [Google Scholar] [CrossRef]
- Meyer, K.; Hammond, K.; Parnell, P.F.; Mackinnon, M.J.; Sivarajasingam, S. Estimates of heritability and repeatability for reproductive traits in Australian beef cattle. Livest. Prod. Sci. 1990, 25, 15–30. [Google Scholar] [CrossRef]
- Graser, H.-U.; Tier, B.; Johnston, D.J.; Barwick, S.A. Genetic evaluation for the beef industry in Australia. Aust. J. Exp. Agric. 2005, 45, 913–921. [Google Scholar] [CrossRef]
- Cammack, K.M.; Thomas, M.G.; Enns, R.M. Reproductive Traits and Their Heritabilities in Beef Cattle. Prof. Anim. Sci. 2009, 25, 517–528. [Google Scholar] [CrossRef]
- Mucari, T.B.; Alencar, M.M.D.; Barbosa, P.F.; Barbosa, R.T. Genetic analyses of days to calving and their relationships with other traits in a Canchim cattle herd. Genet. Mol. Biol. 2007, 30, 1070–1076. [Google Scholar] [CrossRef] [Green Version]
- Johnston, D.J.; Bunter, K.L. Days to calving in Angus cattle: Genetic and environmental effects, and covariances with other traits. Livest. Prod. Sci. 1996, 45, 13–22. [Google Scholar] [CrossRef]
- Sargolzaei, M.; Chesnais, J.P.; Schenkel, F. FImpute-An efficient imputation algorithm for dairy cattle populations. J. Dairy Sci. 2011, 94, 421. [Google Scholar]
- Vanraden, P.M. Efficient Methods to Compute Genomic Predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Facy, M.L.; Hebart, M.L.; Oakey, H.; McEwin, R.A.; Popplewell, G.I.; Pitchford, W.S. Evaluation of dominance in tropically adapted composite beef cattle. Anim. Prod. Sci. 2021, 61, 1811–1817. [Google Scholar] [CrossRef]
- RStudio. RStudio: Integrated Development Environment for R, 2022.7.1.554; RStudio, PBC: Boston, MA, USA, 2022. [Google Scholar]
- Butler, D.; Cullis, B.; Gilmour, A.; Gogel, B.; Thompson, R. ASReml-R Reference Manual Version 4; VSN International Ltd.: Hemel Hempstead, UK, 2017. [Google Scholar]
- Hazel, L.N. The genetic basis for constructing selection indexes. Genetics 1943, 28, 476–490. [Google Scholar] [CrossRef] [PubMed]
- Cameron, N. Selection Indices and Prediction of Genetic Merit in Animal Breeding; CAB International: Wallingford, UK, 1997. [Google Scholar]
- Johnston, D.J.; Corbet, N.J.; Barwick, S.A.; Wolcott, M.L.; Holroyd, R.G. Genetic correlations of young bull reproductive traits and heifer puberty traits with female reproductive performance in two tropical beef genotypes in northern Australia. Anim. Prod. Sci. 2014, 54, 74–84. [Google Scholar] [CrossRef]
- Wolcott, M.L.; Johnston, D.J.; Barwick, S.A.; Corbet, N.J.; Williams, P.J. The genetics of cow growth and body composition at first calving in two tropical beef genotypes. Anim. Prod. Sci. 2014, 54, 37. [Google Scholar] [CrossRef]
- Johnston, D. Genetic Improvement of Reproduction in Beef Cattle. In Proceedings of the 10th World Congress of Genetics Applied to Livestock Production, Vancouver, BC, Canada, 17–22 August 2014; pp. 17–22. [Google Scholar]
- Johnston, D.J.; Moore, K.L. Genetic Correlations between Days to Calving and Other Male and Female Reproductive Traits in Brahman Cattle. In Proceedings of the Association Advancement of Animal Breeding and Genetics, Armidale, NSW, Australia, 27 October–1 November 2019; pp. 354–357. [Google Scholar]
- Johnston, D.J.; Barwick, S.A.; Corbet, N.J.; Fordyce, G.; Holroyd, R.G.; Williams, P.J.; Burrow, H.M. Genetics of heifer puberty in two tropical beef genotypes in northern Australia and associations with heifer- and steer-production traits. Anim. Prod. Sci. 2009, 49, 399. [Google Scholar] [CrossRef] [Green Version]
- Entwhistle, K. Factors Influencing Reproduction in Beef Cattle in Australia; AMRC Review-Australian Meat Research Committee: Sydney, NSW, Australia, 1983. [Google Scholar]
- Montiel, F.; Ahuja, C. Body condition and suckling as factors influencing the duration of postpartum anestrus in cattle: A review. Anim. Reprod. Sci. 2005, 85, 1–26. [Google Scholar] [CrossRef]
- McSweeney, C.; Kennedy, P.; D’Occhio, M.; Fitzpatrick, L.; Reid, D.; Entwistle, K. Reducing post-partum anoestrous interval in first-calf Bos indicus crossbred beef heifers. 2. Responses to weaning and supplementation. Aust. J. Agric. Res. 1993, 44, 1079–1092. [Google Scholar] [CrossRef]
- Ciccioli, N.H.; Wettemann, R.P.; Spicer, L.J.; Lents, C.A.; White, F.J.; Keisler, D.H. Influence of body condition at calving and postpartum nutrition on endocrine function and reproductive performance of primiparous beef cows. J. Anim. Sci. 2003, 81, 3107–3120. [Google Scholar] [CrossRef] [PubMed]
- Rudder, T.; Seifert, G.; Burrow, H. Environmental and genotype effects on fertility in a commercial beef herd in central Queensland. Aust. J. Exp. Agric. 1985, 25, 489. [Google Scholar] [CrossRef]
- Neville, W.E., Jr. Comparison of Energy Requirements of Non-Lactating and Lactating Hereford Cows and Estimates of Energetic Efficiency of Milk Production. J. Anim. Sci. 1974, 38, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Wolcott, M.L.; Johnston, D.J.; Barwick, S.A. Genetic relationships of female reproduction with growth, body composition, maternal weaning weight and tropical adaptation in two tropical beef genotypes. Anim. Prod. Sci. 2014, 54, 60. [Google Scholar] [CrossRef]
- Olasege, B.S.; Tahir, M.S.; Gouveia, G.C.; Kour, J.; Porto-Neto, L.R.; Hayes, B.J.; Fortes, M.R.S. Genetic parameter estimates for male and female fertility traits using genomic data to improve fertility in Australian beef cattle. Anim. Prod. Sci. 2021, 61, 1863–1872. [Google Scholar] [CrossRef]
- Bourdon, R. Understanding Animal Breeding, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2014. [Google Scholar]
- Hallauer, A.R.; Miranda Filho, J.B. Quantitative Genetics in Maize Breeding, 1st ed.; Iowa State University Press: Ames, IA, USA, 1981. [Google Scholar]
- Birchler, J.A.; Yao, H.; Chudalayandi, S. Unraveling the Genetic Basis of Hybrid Vigor. Proc. Natl. Acad. Sci. USA 2006, 103, 12957–12958. [Google Scholar] [CrossRef] [Green Version]
- Basarab, J.A.; Crowley, J.J.; Abo-Ismail, M.K.; Manafiazar, G.M.; Akanno, E.C.; Baron, V.S.; Plastow, G. Genomic retained heterosis effects on fertility and lifetime productivity in beef heifers. Can. J. Anim. Sci. 2018, 98, 642–655. [Google Scholar] [CrossRef]
- Gregory, K.E.; Cundiff, L.V. Crossbreeding in Beef Cattle: Evaluation of Systems1. J. Anim. Sci. 1980, 51, 1224–1242. [Google Scholar] [CrossRef]
Joining Number | Total No. of Cows | No. of Lactating Cows | No of Non-Lactating Cows | No. of Empty 2 Cows | No. of Pregnant Cows | 3 Min days | 4 Max days | Mean Days | 5 SD Days |
---|---|---|---|---|---|---|---|---|---|
1 | 649 | - | - | 214 | 435 | 269 | 409 | 340.0 | 38.0 |
2 6 | 636 | 326 | 287 | 472 | 164 | 271 | 406 | 335.0 | 38.5 |
3 | 494 | 406 | 88 | 325 | 169 | 260 | 409 | 343.6 | 38.0 |
4 | 249 | 225 | 24 | 166 | 83 | 272 | 400 | 340.8 | 36.9 |
5+ | 214 | 197 | 17 | 166 | 48 | 283 | 400 | 332.2 | 34.4 |
Model | Description | Fixed | Random 1 |
---|---|---|---|
Model_1 | Overall days to calving, with a separate variance component for five joining categories | Join management group, heterozygosity fraction and Contemporary group:DPP | diag(Joining Number):vm(ID, GRM) |
Model_2 | Overall days to calving, fitted models with a separate variance component for each joining but estimation of the correlation between two joining at a time (due to computational limitations) with a total of 15 components | Join management group, heterozygosity fraction and Contemporary group:DPP | us(Joining Number):vm(ID, GRM) |
Trait | Description | Number of Records | Number of Contemporary Groups | Fixed Effects | Random Effects |
---|---|---|---|---|---|
DC1 | First joining days to calving | 649 | 45 | Birth group, Join group, Dam age, Het, contemporary group | GRM |
DC2 | Second joining days to calving with all records (wet 1 and dry 2) | 636 | 54 | Birth group, Dam age, Het, contemporary group:DPP:Lactation Status | GRM |
DC2_Dry | Second joining days to calving with dry 2 records only | 287 | 44 | Birth group, Dam age, Het, contemporary group:DPP | GRM |
DC2_Wet | Second joining days to calving with wet 1 records only | 326 | 45 | Birth group, Dam age, Het, contemporary group:DPP | GRM |
DC2+ | Days to calving that include records from the second joining, third joining, fourth joining and joining five + with both wet 1 and dry 2 records | 1534 | 213 | Joining number, Het, contemporary group:DPP:Lactation Status | GRM, ID |
DC2+_Dry | Days to calving that include records from the second joining, third joining, fourth joining and joining five + with dry 2 records only | 431 | 82 | Joining number, Het, contemporary group:DPP | GRM, ID |
DC2+_Wet | Days to calving that include records from the second joining, third joining, fourth joining and joining five + with wet 1 records only | 1103 | 189 | Joining number, Het, contemporary group:DPP | GRM, ID |
DC3+ | Days to calving that include records from the third joining, fourth joining and joining five + with both wet 1 and dry 2 records | 898 | 162 | Joining number, Het, contemporary group:DPP:Lactation Status | GRM, ID |
DC3+_Wet | Days to calving that include records from the third joining, fourth joining and joining five + with wet 1 records only | 796 | 143 | Joining number, Het, contemporary group:DPP | GRM, ID |
DC | All days to calving records, including both wet 1 and dry 2 records | 2242 | 270 | Joining number, join group, Hey, contemporary group:DPP | GRM, ID |
Index One | Index Two | Index Three |
---|---|---|
DC | DC1 | DC1 |
DC2+_Wet | DC2_Wet | |
DC3+_Wet |
Model | Number of Records | Additive Variance | Residual Variance | Heritability | Het Coefficient (Day/%) |
---|---|---|---|---|---|
No penalty | 435 | 25.9 (44) | 394 (47) | 0.06 (0.10) | −0.29 |
21 Days | 634 | 195 (95) | 827 (86) | 0.19 (0.09) | −1.59 |
32 Days | 634 | 257 (121) | 1049 (110) | 0.20 (0.09) | −1.90 |
43 Days | 634 | 309 (150) | 1290 (136) | 0.19 (0.09) | −2.16 |
63 Days | 634 | 446 (221) | 1903 (201) | 0.19 (0.09) | −2.73 |
252 Days | 634 | 2693 (1552) | 141,213 (1457) | 0.16 (0.09) | −7.93 |
Model | Number Records | Additive Variance | Repeatability Variance | Residual Variance | Heritability | Het Coefficient (Day/%) |
---|---|---|---|---|---|---|
No penalty | 1122 | 78 (31) | 53 (30) | 318 (23) | 0.17 (0.06) | −0.62 |
21 Days | 1550 | 81 (30) | 0 1 | 783 (37) | 0.09 (0.03) | −1.81 |
32 Days | 1550 | 86 (36) | 0 1 | 998 (46) | 0.08 (0.03) | −2.05 |
43 Days | 1550 | 92 (48) | 0 1 | 1227 (68) | 0.07 (0.04) | −2.26 |
63 Days | 1550 | 106 (65) | 0 1 | 1810 (99) | 0.06 (0.03) | −2.71 |
252 Days | 1550 | 371 (333) | 0 1 | 13,267 (584) | 0.03 (0.02) | −6.87 |
Joining Number | Variance |
---|---|
1 | 563 (107) |
2 | 280 (79) |
3 | 215 (77) |
4 | 125 (98) |
5+ | 104 (104) |
1 | 2 | 3 | 4 | 5+ | |
---|---|---|---|---|---|
1 | 1 | ||||
2 | −0.12 (0.19) | 1 | |||
3 | 0.73 (0.17) | 0.22 (0.25) | 1 | ||
4 | 0.36 (0.35) | −0.11 (0.39) | 0.79 (0.37) | 1 | |
5+ | 0.64 (0.39) | −0.64 (0.54) | −0.03 (0.61) | 0.99 (0.62) | 1 |
Models | Number of Records | Additive Variance | Repeatability Variance | Residual Variance | Heritability | Repeatability 1 | Het Coefficient | Response to Selection |
---|---|---|---|---|---|---|---|---|
DC2+_Dry | 431 | 217 (90) | NA | 775 (88) | 0.22 (0.09) | 0 | −2.38 | 6.92 |
DC2+_Wet | 1103 | 144 (53) | 166 (58) | 538 (42) | 0.17 (0.06) | 0.37 (0.07) | −2.80 | 4.92 |
Traits | Number | Repeatability Variance | Additive Variance | Residual Variance | Repeatability | Heritability | Het Coefficient | Response to Selection (Days/Gen) |
---|---|---|---|---|---|---|---|---|
DC | 2184 | 87 (43) | 124 (43) | 811 (38) | 0.20 (0.05) | 0.12 (0.04) | −2.45 | 4.0 |
DC1 | 634 | - | 257 (122) | 1049 (110) | - | 0.20 (0.09) | −1.90 | 7.2 |
DC2 | 621 | - | 192 (90) | 886 (89) | - | 0.18 (0.08) | −1.07 | 5.8 |
DC2_Wet | 326 | - | 353 (180) | 551 (143) | - | 0.39 (0.12) | −0.97 | 11.8 |
DC2_Dry | 287 | - | 211 (124) | 736 (117) | - | 0.22 (0.18) | −2.40 | 6.8 |
DC3+ | 929 | 101 (73) | 264 (78) | 714 (56) | 0.34 (0.08) | 0.25 (0.06) | −4.13 | 8.1 |
DC3+_Wet | 841 | 159 (68) | 150 (64) | 539 (47) | 0.36 (0.08) | 0.17 (0.08) | −3.68 | 5.0 |
DC1 | DC2+_Wet | |
---|---|---|
DC1 | 279 | - |
DC2+_Wet | 115 | 156 |
DC1 | DC2_Wet | DC3+_Wet | |
---|---|---|---|
DC1 | 332 | - | - |
DC2_Wet | 27 | 366 | - |
DC3+_Wet | 244 | 169 | 250 |
Index One | Index Two | Index Three | |
---|---|---|---|
Standard deviation of the breeding objective | 11.7 | 12.2 | 14.8 |
Standard deviation of the index | 5.9 | 6.4 | 9.5 |
Accuracy | 0.50 | 0.52 | 0.64 |
Response to selection (days/generation) | 2.97 | 3.32 | 6.08 |
DC1 | DC2 | DC2_Dry | DC2_Wet | DC3+ | DC3+_Wet | DC3+_Ave | DC3+_Ave_Wet | |
---|---|---|---|---|---|---|---|---|
DC1 | - | −0.22 (0.07) | −0.33 (0.11) | −0.04 (0.10) | NA | NA | 0.34 (0.06) | 0.31 (0.06) |
DC2 | −0.06 (0.33) | - | NA | NA | NA | NA | −0.17 (0.06) | −0.03 (0.07) |
DC2_Dry | 0.13 (0.48) | NA | - | NA | NA | NA | −0.28 (0.07) | −0.23 (0.08) |
DC2_Wet | −0.42 (0.37) | NA | NA | - | NA | NA | 0.07 (0.10) | 0.19 (0.10) |
DC3+ | 0.83 (0.20) | −0.04 (0.24) | −0.16 (0.25) | 0.41 (0.29) | - | NA | NA | NA |
DC3+_Wet | 0.66 (0.26) | −0.16 (0.27) | −0.14 (0.26) | 0.69 (0.33) | NA | - | NA | NA |
DC3+_Ave | 0.57 (0.29) | 0.27 (0.32) | −0.10 (0.37) | 0.70 (0.34) | NA | NA | - | NA |
DC3+_Ave_Wet | 0.32 (0.36) | 0.46 (0.32) | 0.32 (0.40) | 0.55 (0.35) | NA | NA | NA | - |
DC1 | DC2_Wet | DC3+_Wet | |
---|---|---|---|
DC1 | 0.25 (0.09) | ||
DC2_Wet | 0.08 (0.27) | 0.40 (0.17) | |
DC3+_Wet | 0.85 (0.18) | 0.56 (0.25) | 0.30 (0.06) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Facy, M.L.; Hebart, M.L.; Oakey, H.; McEwin, R.A.; Pitchford, W.S. Genetic Correlations between Days to Calving across Joinings and Lactation Status in a Tropically Adapted Composite Beef Herd. Agriculture 2023, 13, 37. https://doi.org/10.3390/agriculture13010037
Facy ML, Hebart ML, Oakey H, McEwin RA, Pitchford WS. Genetic Correlations between Days to Calving across Joinings and Lactation Status in a Tropically Adapted Composite Beef Herd. Agriculture. 2023; 13(1):37. https://doi.org/10.3390/agriculture13010037
Chicago/Turabian StyleFacy, Madeliene L., Michelle L. Hebart, Helena Oakey, Rudi A. McEwin, and Wayne S. Pitchford. 2023. "Genetic Correlations between Days to Calving across Joinings and Lactation Status in a Tropically Adapted Composite Beef Herd" Agriculture 13, no. 1: 37. https://doi.org/10.3390/agriculture13010037
APA StyleFacy, M. L., Hebart, M. L., Oakey, H., McEwin, R. A., & Pitchford, W. S. (2023). Genetic Correlations between Days to Calving across Joinings and Lactation Status in a Tropically Adapted Composite Beef Herd. Agriculture, 13(1), 37. https://doi.org/10.3390/agriculture13010037